The Role of Interleukin-6/GP130 Cytokines in Cancer Cachexia

  • Chapter
  • First Online:
The Systemic Effects of Advanced Cancer

Abstract

Cancer cachexia is characterized by the involuntary loss of skeletal muscle with or without adipose tissue loss in the presence of tumor burden. It is a prevalent yet clinically unmet need that results in devastating systemic wasting effects. Chronic inflammation triggers cancer progression and is observed in cachexia. This review will highlight the Interleukin-6 (IL-6) family of cytokines, including IL-6 itself, Leukemia Inhibitory Factor (LIF), Ciliary Neurotrophic Factor (CNTF), Cardiotrophin-1 (CT-1), Oncostatin M (OSM), Interleukin-11 (IL-11), Interleukin-27 (IL-27), and Cardiotrophin-like cytokine (CLC), which all share signaling through IL-6 Signal Transducer (IL6ST), also known as Glycoprotein 130 (GP130) to activate common downstream pathways including the JAK/STAT, MAPK, and AKT pathways. IL-6 has been long linked to cancer cachexia through both associative and functional studies; furthermore, anti-IL-6 therapies have been trialed in patients. Recently, LIF has emerged as a novel cachexia mediator in experimental systems. Far less is known about the other cytokines in cachexia, although they have suggestive properties on adipose and muscle tissues in other contexts. Future studies are required to determine the roles of these other factors in cancer cachexia and their potential for designing therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baracos, V.E., Mazurak, V.C., Bhullar, A.S.: Cancer cachexia is defined by an ongoing loss of skeletal muscle mass. Ann Palliat Med. 8(1), 3–12 (2019)

    Article  PubMed  Google Scholar 

  2. Fearon, K., et al.: Definition and classification of cancer cachexia: an international consensus. Lancet Oncol. 12(5), 489–495 (2011)

    Article  PubMed  Google Scholar 

  3. Baracos, V.E., et al.: Cancer-associated cachexia. Nat. Rev. Dis. Primers. 4, 17105 (2018)

    Article  PubMed  Google Scholar 

  4. Prado, C.M., et al.: Central tenet of cancer cachexia therapy: do patients with advanced cancer have exploitable anabolic potential? Am. J. Clin. Nutr. 98(4), 1012–1019 (2013)

    Article  CAS  PubMed  Google Scholar 

  5. Baracos, V.E., Arribas, L.: Sarcopenic obesity: hidden muscle wasting and its impact for survival and complications of cancer therapy. Ann. Oncol. 29, ii1–ii9 (2018)

    Article  CAS  PubMed  Google Scholar 

  6. Aoyagi, T., et al.: Cancer cachexia, mechanism and treatment. World J Gastrointest Oncol. 7(4), 17–29 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  7. Argiles, J.M., et al.: Cancer cachexia: understanding the molecular basis. Nat. Rev. Cancer. 14(11), 754–762 (2014)

    Article  CAS  PubMed  Google Scholar 

  8. Fonseca, G., et al.: Cancer cachexia and related metabolic dysfunction. Int. J. Mol. Sci. 21(7) (2020)

    Google Scholar 

  9. Fearon, K., Arends, J., Baracos, V.: Understanding the mechanisms and treatment options in cancer cachexia. Nat. Rev. Clin. Oncol. 10(2), 90–99 (2013)

    Article  CAS  PubMed  Google Scholar 

  10. Porporato, P.E.: Understanding cachexia as a cancer metabolism syndrome. Oncogenesis. 5, e200 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tisdale, M.J.: Mechanisms of cancer cachexia. Physiol. Rev. 89(2), 381–410 (2009)

    Article  CAS  PubMed  Google Scholar 

  12. Heinrich, P.C., et al.: Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem. J. 374(Pt 1), 1–20 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Roy, A., Kumar, A.: ER stress and unfolded protein response in cancer cachexia. Cancers (Basel). 11(12) (2019)

    Google Scholar 

  14. Langstein, H.N., Norton, J.A.: Mechanisms of cancer cachexia. Hematol. Oncol. Clin. North Am. 5(1), 103–123 (1991)

    Article  CAS  PubMed  Google Scholar 

  15. Tisdale, M.J.: Catabolic mediators of cancer cachexia. Curr. Opin. Support. Palliat. Care. 2(4), 256–261 (2008)

    Article  PubMed  Google Scholar 

  16. Zimmers, T.A., Fishel, M.L., Bonetto, A.: STAT3 in the systemic inflammation of cancer cachexia. Semin. Cell Dev. Biol. 54, 28–41 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Benny Klimek, M.E., et al.: Acute inhibition of myostatin-family proteins preserves skeletal muscle in mouse models of cancer cachexia. Biochem. Biophys. Res. Commun. 391(3), 1548–1554 (2010)

    Article  CAS  PubMed  Google Scholar 

  18. Acunzo, M., Croce, C.M.: MicroRNA in cancer and cachexia – a mini-review. J. Infect. Dis. 212(Suppl 1), S74–S77 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zhang, G., et al.: Tumor induces muscle wasting in mice through releasing extracellular Hsp70 and Hsp90. Nat. Commun. 8(1), 589 (2017)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Michaelis, K.A., et al.: The TLR7/8 agonist R848 remodels tumor and host responses to promote survival in pancreatic cancer. Nat. Commun. 10(1), 4682 (2019)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Argilés, J.M., et al.: Cachexia: a problem of energetic inefficiency. J. Cachexia. Sarcopenia Muscle. 5(4), 279–286 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  22. Coussens, L.M., Werb, Z.: Inflammation and cancer. Nature. 420(6917), 860–867 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Singh, N., et al.: Inflammation and cancer. Ann. Afr. Med. 18(3), 121–126 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  24. West, N.R.: Coordination of immune-stroma crosstalk by IL-6 family cytokines. Front. Immunol. 10, 1093 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. White, U.A., Stephens, J.M.: The gp130 receptor cytokine family: regulators of adipocyte development and function. Curr. Pharm. Des. 17(4), 340–346 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rose-John, S.: Interleukin-6 family cytokines. Cold Spring Harb. Perspect. Biol. 10(2) (2018)

    Google Scholar 

  27. Gearing, D.P., et al.: Leukemia inhibitory factor receptor is structurally related to the IL-6 signal transducer, gp130. EMBO J. 10(10), 2839–2848 (1991)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pennica, D., et al.: Cardiotrophin-1. Biological activities and binding to the leukemia inhibitory factor receptor/gp130 signaling complex. J. Biol. Chem. 270(18), 10915–10922 (1995)

    Article  CAS  PubMed  Google Scholar 

  29. Gearing, D.P., et al.: The IL-6 signal transducer, gp130: an oncostatin M receptor and affinity converter for the LIF receptor. Science. 255(5050), 1434–1437 (1992)

    Article  CAS  PubMed  Google Scholar 

  30. Ichihara, M., et al.: Oncostatin M and leukemia inhibitory factor do not use the same functional receptor in mice. Blood. 90(1), 165–173 (1997)

    Article  CAS  PubMed  Google Scholar 

  31. Hermanns, H.M.: Oncostatin M and interleukin-31: Cytokines, receptors, signal transduction and physiology. Cytokine Growth Factor Rev. 26(5), 545–558 (2015)

    Article  CAS  PubMed  Google Scholar 

  32. Mosley, B., et al.: Dual oncostatin M (OSM) receptors. Cloning and characterization of an alternative signaling subunit conferring OSM-specific receptor activation. J. Biol. Chem. 271(51), 32635–32643 (1996)

    Article  CAS  PubMed  Google Scholar 

  33. Davis, S., et al.: LIFR beta and gp130 as heterodimerizing signal transducers of the tripartite CNTF receptor. Science. 260(5115), 1805–1808 (1993)

    Article  CAS  PubMed  Google Scholar 

  34. Elson, G.C., et al.: CLF associates with CLC to form a functional heteromeric ligand for the CNTF receptor complex. Nat. Neurosci. 3(9), 867–872 (2000)

    Article  CAS  PubMed  Google Scholar 

  35. Jones, S.A., Jenkins, B.J.: Recent insights into targeting the IL-6 cytokine family in inflammatory diseases and cancer. Nat. Rev. Immunol. 18(12), 773–789 (2018)

    Article  CAS  PubMed  Google Scholar 

  36. Tanaka, T., Narazaki, M., Kishimoto, T.: IL-6 in inflammation, immunity, and disease. Cold Spring Harb. Perspect. Biol. 6(10), a016295 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kishimoto, T.: Factors affecting B-cell growth and differentiation. Annu. Rev. Immunol. 3, 133–157 (1985)

    Article  CAS  PubMed  Google Scholar 

  38. Heinrich, P.C., Castell, J.V., Andus, T.: Interleukin-6 and the acute phase response. Biochem. J. 265(3), 621–636 (1990)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Johnson, D.E., O’Keefe, R.A., Grandis, J.R.: Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat. Rev. Clin. Oncol. 15(4), 234–248 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ishibashi, T., et al.: Interleukin-6 is a potent thrombopoietic factor in vivo in mice. Blood. 74(4), 1241–1244 (1989)

    Article  CAS  PubMed  Google Scholar 

  41. Miyamoto, Y., et al.: Molecular pathways: cachexia signaling-A targeted approach to cancer treatment. Clin. Cancer Res. 22(16), 3999–4004 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang, C.H., et al.: Clodronate alleviates cachexia and prolongs survival in nude mice xenografted with an anaplastic thyroid carcinoma cell line. J. Endocrinol. 190(2), 415–423 (2006)

    Article  CAS  PubMed  Google Scholar 

  43. Rose-John, S.: IL-6 trans-signaling via the soluble IL-6 receptor: importance for the pro-inflammatory activities of IL-6. Int. J. Biol. Sci. 8(9), 1237–1247 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Barton, B.E., Murphy, T.F.: Cancer cachexia is mediated in part by the induction of IL-6-like cytokines from the spleen. Cytokine. 16(6), 251–257 (2001)

    Article  CAS  PubMed  Google Scholar 

  45. Tamura, S., et al.: Involvement of human interleukin 6 in experimental cachexia induced by a human uterine cervical carcinoma xenograft. Clin. Cancer Res. 1(11), 1353–1358 (1995)

    CAS  PubMed  Google Scholar 

  46. Bonetto, A., et al.: The colon-26 carcinoma tumor-bearing mouse as a model for the study of cancer cachexia. J. Vis. Exp. 117 (2016)

    Google Scholar 

  47. Pin, F., et al.: Growth of ovarian cancer xenografts causes loss of muscle and bone mass: a new model for the study of cancer cachexia. J. Cachexia. Sarcopenia Muscle. 9(4), 685–700 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  48. Strassmann, G., et al.: Evidence for the involvement of interleukin 6 in experimental cancer cachexia. J. Clin. Invest. 89(5), 1681–1684 (1992)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Carson, J.A., Baltgalvis, K.A.: Interleukin 6 as a key regulator of muscle mass during cachexia. Exerc. Sport Sci. Rev. 38(4), 168–176 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  50. Fujimoto-Ouchi, K., et al.: Capecitabine improves cancer cachexia and normalizes IL-6 and PTHrP levels in mouse cancer cachexia models. Cancer Chemother. Pharmacol. 59(6), 807–815 (2007)

    Article  CAS  PubMed  Google Scholar 

  51. Bonetto, A., et al.: JAK/STAT3 pathway inhibition blocks skeletal muscle wasting downstream of IL-6 and in experimental cancer cachexia. Am. J. Physiol. Endocrinol. Metab. 303(3), E410–E421 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Fujimoto-Ouchi, K., et al.: Establishment and characterization of cachexia-inducing and -non-inducing clones of murine colon 26 carcinoma. Int. J. Cancer. 61(4), 522–528 (1995)

    Article  CAS  PubMed  Google Scholar 

  53. Matsuyama, T., et al.: Tumor inoculation site affects the development of cancer cachexia and muscle wasting. Int. J. Cancer. 137(11), 2558–2565 (2015)

    Article  CAS  PubMed  Google Scholar 

  54. Mehl, K.A., et al.: Myofiber degeneration/regeneration is induced in the cachectic ApcMin/+ mouse. J. Appl. Physiol. (1985), 2005. 99(6): 2379–2387

    Google Scholar 

  55. Petruzzelli, M., et al.: A switch from white to brown fat increases energy expenditure in cancer-associated cachexia. Cell Metab. 20(3), 433–447 (2014)

    Article  CAS  PubMed  Google Scholar 

  56. Onuma, E., et al.: Parathyroid hormone-related protein (PTHrP) as a causative factor of cancer-associated wasting: possible involvement of PTHrP in the repression of locomotor activity in rats bearing human tumor xenografts. Int. J. Cancer. 116(3), 471–478 (2005)

    Article  CAS  PubMed  Google Scholar 

  57. Iguchi, H., et al.: Involvement of parathyroid hormone-related protein in experimental cachexia induced by a human lung cancer-derived cell line established from a bone metastasis specimen. Int. J. Cancer. 94(1), 24–27 (2001)

    Article  CAS  PubMed  Google Scholar 

  58. Zaki, M.H., Nemeth, J.A., Trikha, M.: CNTO 328, a monoclonal antibody to IL-6, inhibits human tumor-induced cachexia in nude mice. Int. J. Cancer. 111(4), 592–595 (2004)

    Article  CAS  PubMed  Google Scholar 

  59. Flint, T.R., et al.: Tumor-induced IL-6 reprograms host metabolism to suppress anti-tumor immunity. Cell Metab. 24(5), 672–684 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Rupert, J.E., et al.: Tumor-derived IL-6 and trans-signaling among tumor, fat, and muscle mediate pancreatic cancer cachexia. J. Exp. Med. 218(6), e20190450 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Negri, D.R., et al.: Role of cytokines in cancer cachexia in a murine model of intracerebral injection of human tumours. Cytokine. 15(1), 27–38 (2001)

    Article  CAS  PubMed  Google Scholar 

  62. Baltgalvis, K.A., et al.: Interleukin-6 and cachexia in ApcMin/+ mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 294(2), R393–R401 (2008)

    Article  CAS  PubMed  Google Scholar 

  63. Lu, S., et al.: Ginsenoside Rb1 can ameliorate the key inflammatory cytokines TNF-alpha and IL-6 in a cancer cachexia mouse model. BMC Complement Med Ther. 20(1), 11 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  64. Liva, S.G., et al.: Overcoming resistance to anabolic SARM therapy in experimental cancer cachexia with an HDAC inhibitor. EMBO Mol. Med. 12(2), e9910 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Liu, H., et al.: Coix seed oil ameliorates cancer cachexia by counteracting muscle loss and fat lipolysis. BMC Complement. Altern. Med. 19(1), 267 (2019)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Nakamura, K., et al.: A ketogenic formula prevents tumor progression and cancer cachexia by attenuating systemic inflammation in colon 26 tumor-bearing mice. Nutrients. 10(2) (2018)

    Google Scholar 

  67. An, J.M., et al.: Dietary intake of probiotic kimchi ameliorated IL-6-driven cancer cachexia. J. Clin. Biochem. Nutr. 65(2), 109–117 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Enomoto, A., et al.: Suppression of cancer cachexia by 20S,21-epoxy-resibufogenin-3-acetate-a novel nonpeptide IL-6 receptor antagonist. Biochem. Biophys. Res. Commun. 323(3), 1096–1102 (2004)

    Article  CAS  PubMed  Google Scholar 

  69. Au, E.D., et al.: The MEK-inhibitor selumetinib attenuates tumor growth and reduces IL-6 expression but does not protect against muscle wasting in lewis lung cancer cachexia. Front. Physiol. 7, 682 (2016)

    PubMed  Google Scholar 

  70. Miller, A., et al.: Blockade of the IL-6 trans-signalling/STAT3 axis suppresses cachexia in Kras-induced lung adenocarcinoma. Oncogene. 36(21), 3059–3066 (2017)

    Article  CAS  PubMed  Google Scholar 

  71. Bonetto, A., et al.: STAT3 activation in skeletal muscle links muscle wasting and the acute phase response in cancer cachexia. PLoS One. 6(7), e22538 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Mantovani, G., et al.: Serum levels of leptin and proinflammatory cytokines in patients with advanced-stage cancer at different sites. J. Mol. Med. (Berl). 78(10), 554–561 (2000)

    Article  CAS  Google Scholar 

  73. White, J.P., et al.: The regulation of skeletal muscle protein turnover during the progression of cancer cachexia in the Apc(Min/+) mouse. PLoS One. 6(9), e24650 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Chen, J.L., et al.: Differential effects of IL6 and activin A in the development of cancer-associated cachexia. Cancer Res. 76(18), 5372–5382 (2016)

    Article  CAS  PubMed  Google Scholar 

  75. VanderVeen, B.N., et al.: The regulation of skeletal muscle fatigability and mitochondrial function by chronically elevated interleukin-6. Exp. Physiol. 104(3), 385–397 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kuroda, K., et al.: Interleukin 6 is associated with cachexia in patients with prostate cancer. Urology. 69(1), 113–117 (2007)

    Article  PubMed  Google Scholar 

  77. Sato, H., et al.: Relationships between oxycodone pharmacokinetics, central symptoms, and serum interleukin-6 in cachectic cancer patients. Eur. J. Clin. Pharmacol. 72(12), 1463–1470 (2016)

    Article  CAS  PubMed  Google Scholar 

  78. Eskiler, G.G., et al.: IL-6 mediated JAK/STAT3 signaling pathway in cancer patients with cachexia. Bratisl. Lek. Listy. 66(11), 819–826 (2019)

    PubMed  Google Scholar 

  79. Iwase, S., et al.: Steep elevation of blood interleukin-6 (IL-6) associated only with late stages of cachexia in cancer patients. Eur. Cytokine Netw. 15(4), 312–316 (2004)

    CAS  PubMed  Google Scholar 

  80. Han, J., et al.: Interleukin-6 induces fat loss in cancer cachexia by promoting white adipose tissue lipolysis and browning. Lipids Health Dis. 17(1), 14 (2018)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Talbert, E.E., et al.: Circulating monocyte chemoattractant protein-1 (MCP-1) is associated with cachexia in treatment-naive pancreatic cancer patients. J. Cachexia. Sarcopenia Muscle. 9(2), 358–368 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  82. Garcia, J.M., et al.: Active ghrelin levels and active to total ghrelin ratio in cancer-induced cachexia. J. Clin. Endocrinol. Metab. 90(5), 2920–2926 (2005)

    Article  CAS  PubMed  Google Scholar 

  83. Utech, A.E., et al.: Predicting survival in cancer patients: the role of cachexia and hormonal, nutritional and inflammatory markers. J. Cachexia. Sarcopenia Muscle. 3(4), 245–251 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  84. Ando, K., et al.: Possible role for tocilizumab, an anti-interleukin-6 receptor antibody, in treating cancer cachexia. J. Clin. Oncol. 31(6), e69–e72 (2013)

    Article  PubMed  Google Scholar 

  85. Gearing, D.P., et al.: Molecular cloning and expression of cDNA encoding a murine myeloid leukaemia inhibitory factor (LIF). EMBO J. 6(13), 3995–4002 (1987)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Smith, A.G., et al.: Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature. 336(6200), 688–690 (1988)

    Article  CAS  PubMed  Google Scholar 

  87. Baumann, H., et al.: Distinct sets of acute phase plasma proteins are stimulated by separate human hepatocyte-stimulating factors and monokines in rat hepatoma cells. J. Biol. Chem. 262(20), 9756–9768 (1987)

    Article  CAS  PubMed  Google Scholar 

  88. Patterson, P.H., Chun, L.L.: The induction of acetylcholine synthesis in primary cultures of dissociated rat sympathetic neurons. II. Developmental aspects. Dev Biol. 60(2), 473–481 (1977)

    Article  CAS  PubMed  Google Scholar 

  89. Mori, M., Yamaguchi, K., Abe, K.: Purification of a lipoprotein lipase-inhibiting protein produced by a melanoma cell line associated with cancer cachexia. Biochem. Biophys. Res. Commun. 160(3), 1085–1092 (1989)

    Article  CAS  PubMed  Google Scholar 

  90. Nicola, N.A., Babon, J.J.: Leukemia inhibitory factor (LIF). Cytokine Growth Factor Rev. 26(5), 533–544 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Robinson, R.C., et al.: The crystal structure and biological function of leukemia inhibitory factor: implications for receptor binding. Cell. 77(7), 1101–1116 (1994)

    Article  CAS  PubMed  Google Scholar 

  92. Hilton, D.J., Nicola, N.A.: Kinetic analyses of the binding of leukemia inhibitory factor to receptor on cells and membranes and in detergent solution. J. Biol. Chem. 267(15), 10238–10247 (1992)

    Article  CAS  PubMed  Google Scholar 

  93. Williams, R.L., et al.: Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature. 336(6200), 684–687 (1988)

    Article  CAS  PubMed  Google Scholar 

  94. Hilton, D.J., Nicola, N.A., Metcalf, D.: Distribution and comparison of receptors for leukemia inhibitory factor on murine hemopoietic and hepatic cells. J. Cell. Physiol. 146(2), 207–215 (1991)

    Article  CAS  PubMed  Google Scholar 

  95. Ni, H., et al.: Expression of leukemia inhibitory factor receptor and gp130 in mouse uterus during early pregnancy. Mol. Reprod. Dev. 63(2), 143–150 (2002)

    Article  CAS  PubMed  Google Scholar 

  96. Walker, E.C., et al.: Oncostatin M promotes bone formation independently of resorption when signaling through leukemia inhibitory factor receptor in mice. J. Clin. Invest. 120(2), 582–592 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Chesnokova, V., Auernhammer, C.J., Melmed, S.: Murine leukemia inhibitory factor gene disruption attenuates the hypothalamo-pituitary-adrenal axis stress response. Endocrinology. 139(5), 2209–2216 (1998)

    Article  CAS  PubMed  Google Scholar 

  98. Jo, C., et al.: Leukemia inhibitory factor blocks early differentiation of skeletal muscle cells by activating ERK. Biochim. Biophys. Acta. 1743(3), 187–197 (2005)

    Article  CAS  PubMed  Google Scholar 

  99. Li, X., et al.: LIF promotes tumorigenesis and metastasis of breast cancer through the AKT-mTOR pathway. Oncotarget. 5(3), 788–801 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  100. Yue, X., et al.: Leukemia inhibitory factor promotes EMT through STAT3-dependent miR-21 induction. Oncotarget. 7(4), 3777–3790 (2016)

    Article  PubMed  Google Scholar 

  101. Metcalf, D., Gearing, D.P.: Fatal syndrome in mice engrafted with cells producing high levels of the leukemia inhibitory factor. Proc. Natl. Acad. Sci. USA. 86(15), 5948–5952 (1989)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Mori, M., et al.: Cancer cachexia syndrome developed in nude mice bearing melanoma cells producing leukemia-inhibitory factor. Cancer Res. 51(24), 6656–6659 (1991)

    CAS  PubMed  Google Scholar 

  103. Kamohara, H., et al.: Leukemia inhibitory factor functions as a growth factor in pancreas carcinoma cells: involvement of regulation of LIF and its receptor expression. Int. J. Oncol. 30(4), 977–983 (2007)

    CAS  PubMed  Google Scholar 

  104. Chang, J.W., et al.: Production of multiple cytokines and induction of cachexia in athymic nude mice by a new anaplastic thyroid carcinoma cell line. J. Endocrinol. 179(3), 387–394 (2003)

    Article  CAS  PubMed  Google Scholar 

  105. Kamoshida, S., et al.: Expression of cancer cachexia-related factors in human cancer xenografts: an immunohistochemical analysis. Biomed. Res. 27(6), 275–281 (2006)

    Article  CAS  PubMed  Google Scholar 

  106. Iseki, H., et al.: Cytokine production in five tumor cell lines with activity to induce cancer cachexia syndrome in nude mice. Jpn. J. Cancer Res. 86(6), 562–567 (1995)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Tanaka, R., et al.: Triple paraneoplastic syndrome of hypercalcemia, leukocytosis and cachexia in two human tumor xenografts in nude mice. Jpn. J. Clin. Oncol. 26(2), 88–94 (1996)

    Article  CAS  PubMed  Google Scholar 

  108. Terawaki, K., et al.: Leukemia inhibitory factor via the Toll-like receptor 5 signaling pathway involves aggravation of cachexia induced by human gastric cancer-derived 85As2 cells in rats. Oncotarget. 9(78), 34748–34764 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  109. Seto, D.N., Kandarian, S.C., Jackman, R.W.: A key role for leukemia inhibitory factor in c26 cancer cachexia. J. Biol. Chem. 290(32), 19976–19986 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Arora, G.K., et al.: Cachexia-associated adipose loss induced by tumor-secreted leukemia inhibitory factor is counterbalanced by decreased leptin. Jci Insight. 3(14), 26 (2018)

    Article  Google Scholar 

  111. Akiyama, Y., et al.: In vivo effect of recombinant human leukemia inhibitory factor in primates. Jpn. J. Cancer Res. 88(6), 578–583 (1997)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Kandarian, S.C., et al.: Tumour-derived leukaemia inhibitory factor is a major driver of cancer cachexia and morbidity in C26 tumour-bearing mice. J. Cachexia. Sarcopenia Muscle. 9(6), 1109–1120 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  113. Terawaki, K., et al.: New cancer cachexia rat model generated by implantation of a peritoneal dissemination-derived human stomach cancer cell line. Am. J. Physiol. Endocrinol. Metab. 306(4), E373–E387 (2014)

    Article  CAS  PubMed  Google Scholar 

  114. Billingsley, K.G., et al.: Macrophage-derived tumor necrosis factor and tumor-derived of leukemia inhibitory factor and interleukin-6: possible cellular mechanisms of cancer cachexia. Ann. Surg. Oncol. 3(1), 29–35 (1996)

    Article  CAS  PubMed  Google Scholar 

  115. Kajimura, N., et al.: Toxohormones responsible for cancer cachexia syndrome in nude mice bearing human cancer cell lines. Cancer Chemother. Pharmacol. 38(Suppl), S48–S52 (1996)

    Article  CAS  PubMed  Google Scholar 

  116. White, J.D., Davies, M., Grounds, M.D.: Leukaemia inhibitory factor increases myoblast replication and survival and affects extracellular matrix production: combined in vivo and in vitro studies in post-natal skeletal muscle. Cell Tissue Res. 306(1), 129–141 (2001)

    Article  CAS  PubMed  Google Scholar 

  117. Spangenburg, E.E., Booth, F.W.: Leukemia inhibitory factor restores the hypertrophic response to increased loading in the LIF(−/−) mouse. Cytokine. 34(3–4), 125–130 (2006)

    Article  CAS  PubMed  Google Scholar 

  118. Lynch, G.S., Schertzer, J.D., Ryall, J.G.: Therapeutic approaches for muscle wasting disorders. Pharmacol. Ther. 113(3), 461–487 (2007)

    Article  CAS  PubMed  Google Scholar 

  119. Gao, S., Carson, J.A.: Lewis lung carcinoma regulation of mechanical stretch-induced protein synthesis in cultured myotubes. Am. J. Physiol. Cell Physiol. 310(1), C66–C79 (2016)

    Article  PubMed  Google Scholar 

  120. Marshall, M.K., et al.: Leukemia inhibitory factor induces changes in lipid metabolism in cultured adipocytes. Endocrinology. 135(1), 141–147 (1994)

    Article  CAS  PubMed  Google Scholar 

  121. He, W., et al.: The N-terminal cytokine binding domain of LIFR is required for CNTF binding and signaling. FEBS Lett. 579(20), 4317–4323 (2005)

    Article  CAS  PubMed  Google Scholar 

  122. Sendtner, M., et al.: Ciliary neurotrophic factor. J. Neurobiol. 25(11), 1436–1453 (1994)

    Article  CAS  PubMed  Google Scholar 

  123. Lam, A., et al.: Sequence and structural organization of the human gene encoding ciliary neurotrophic factor. Gene. 102(2), 271–276 (1991)

    Article  CAS  PubMed  Google Scholar 

  124. Barbin, G., Manthorpe, M., Varon, S.: Purification of the chick eye ciliary neuronotrophic factor. J. Neurochem. 43(5), 1468–1478 (1984)

    Article  CAS  PubMed  Google Scholar 

  125. Hughes, S.M., et al.: Ciliary neurotrophic factor induces type-2 astrocyte differentiation in culture. Nature. 335(6185), 70–73 (1988)

    Article  CAS  PubMed  Google Scholar 

  126. Davis, S., et al.: The receptor for ciliary neurotrophic factor. Science. 253(5015), 59–63 (1991)

    Article  CAS  PubMed  Google Scholar 

  127. Ip, N.Y., et al.: The alpha component of the CNTF receptor is required for signaling and defines potential CNTF targets in the adult and during development. Neuron. 10(1), 89–102 (1993)

    Article  CAS  PubMed  Google Scholar 

  128. Stockli, K.A., et al.: Regional distribution, developmental changes, and cellular localization of CNTF-mRNA and protein in the rat brain. J. Cell Biol. 115(2), 447–459 (1991)

    Article  CAS  PubMed  Google Scholar 

  129. Rende, M., et al.: Immunolocalization of ciliary neuronotrophic factor in adult rat sciatic nerve. Glia. 5(1), 25–32 (1992)

    Article  CAS  PubMed  Google Scholar 

  130. Friedman, B., et al.: Regulation of ciliary neurotrophic factor expression in myelin-related Schwann cells in vivo. Neuron. 9(2), 295–305 (1992)

    Article  CAS  PubMed  Google Scholar 

  131. Sendtner, M., Stockli, K.A., Thoenen, H.: Synthesis and localization of ciliary neurotrophic factor in the sciatic nerve of the adult rat after lesion and during regeneration. J. Cell Biol. 118(1), 139–148 (1992)

    Article  CAS  PubMed  Google Scholar 

  132. Pasquin, S., Sharma, M., Gauchat, J.F.: Cytokines of the LIF/CNTF family and metabolism. Cytokine. 82, 122–124 (2016)

    Article  CAS  PubMed  Google Scholar 

  133. Martin, D., et al.: Cachectic effect of ciliary neurotrophic factor on innervated skeletal muscle. Am. J. Phys. 271(5 Pt 2), R1422–R1428 (1996)

    CAS  Google Scholar 

  134. Henderson, J.T., Mullen, B.J., Roder, J.C.: Physiological effects of CNTF-induced wasting. Cytokine. 8(10), 784–793 (1996)

    Article  CAS  PubMed  Google Scholar 

  135. Henderson, J.T., et al.: Systemic administration of ciliary neurotrophic factor induces cachexia in rodents. J. Clin. Investig. 93(6), 2632–2638 (1994)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Espat, N.J., et al.: Ciliary neurotrophic factor is catabolic and shares with IL-6 the capacity to induce an acute phase response. Am. J. Phys. 271(1 Pt 2), R185–R190 (1996)

    CAS  Google Scholar 

  137. Matthys, P., Billiau, A.: Cytokines and cachexia. Nutrition. 13(9), 763–770 (1997)

    Article  CAS  PubMed  Google Scholar 

  138. Pennica, D., et al.: Expression cloning of cardiotrophin 1, a cytokine that induces cardiac myocyte hypertrophy. Proc. Natl. Acad. Sci. USA. 92(4), 1142–1146 (1995)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Stephanou, A., et al.: Cardiotrophin-1 induces heat shock protein accumulation in cultured cardiac cells and protects them from stressful stimuli. J. Mol. Cell. Cardiol. 30(4), 849–855 (1998)

    Article  CAS  PubMed  Google Scholar 

  140. Kuwahara, K., et al.: Cardiotrophin-1 phosphorylates akt and BAD, and prolongs cell survival via a PI3K-dependent pathway in cardiac myocytes. J. Mol. Cell. Cardiol. 32(8), 1385–1394 (2000)

    Article  CAS  PubMed  Google Scholar 

  141. Bustos, M., et al.: Liver damage using suicide genes. A model for oval cell activation. Am. J. Pathol. 157(2), 549–559 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Ho, D.W., et al.: Therapeutic potential of cardiotrophin 1 in fulminant hepatic failure: dual roles in antiapoptosis and cell repair. Arch. Surg. 141(11), 1077–1084 (2006) discussion 1084

    Article  CAS  PubMed  Google Scholar 

  143. Fritzenwanger, M., et al.: Cardiotrophin-1 induces interleukin-6 synthesis in human umbilical vein endothelial cells. Cytokine. 36(3–4), 101–106 (2006)

    Article  CAS  PubMed  Google Scholar 

  144. Lawrence, T., Fong, C.: The resolution of inflammation: anti-inflammatory roles for NF-kappaB. Int. J. Biochem. Cell Biol. 42(4), 519–523 (2010)

    Article  CAS  PubMed  Google Scholar 

  145. Fritzenwanger, M., et al.: Cardiotrophin-1 induces tumor necrosis factor alpha synthesis in human peripheral blood mononuclear cells. Mediat. Inflamm. 2009, 489802 (2009)

    Article  CAS  Google Scholar 

  146. Ichiki, T., et al.: Cardiotrophin-1 stimulates intercellular adhesion molecule-1 and monocyte chemoattractant protein-1 in human aortic endothelial cells. Am. J. Physiol. Heart Circ. Physiol. 294(2), H750–H763 (2008)

    Article  CAS  PubMed  Google Scholar 

  147. Fritzenwanger, M., et al.: Cardiotrophin-1 induces intercellular adhesion molecule-1 expression by nuclear factor kappaB activation in human umbilical vein endothelial cells. Chin. Med. J. 121(24), 2592–2598 (2008)

    Article  CAS  PubMed  Google Scholar 

  148. Mauer, J., Denson, J.L., Bruning, J.C.: Versatile functions for IL-6 in metabolism and cancer. Trends Immunol. 36(2), 92–101 (2015)

    Article  CAS  PubMed  Google Scholar 

  149. Lopez-Andres, N., et al.: Absence of cardiotrophin 1 is associated with decreased age-dependent arterial stiffness and increased longevity in mice. Hypertension. 61(1), 120–129 (2013)

    Article  CAS  PubMed  Google Scholar 

  150. Moreno-Aliaga, M.J., et al.: Cardiotrophin-1 is a key regulator of glucose and lipid metabolism. Cell Metab. 14(2), 242–253 (2011)

    Article  CAS  PubMed  Google Scholar 

  151. Limongelli, G., et al.: Cardiotrophin-1 and TNF-alpha circulating levels at rest and during cardiopulmonary exercise test in athletes and healthy individuals. Cytokine. 50(3), 245–247 (2010)

    Article  CAS  PubMed  Google Scholar 

  152. Yang, Z.F., et al.: Cardiotrophin-1 enhances regeneration of cirrhotic liver remnant after hepatectomy through promotion of angiogenesis and cell proliferation. Liver Int. 28(5), 622–631 (2008)

    Article  CAS  PubMed  Google Scholar 

  153. Castano, D., et al.: Cardiotrophin-1 eliminates hepatic steatosis in obese mice by mechanisms involving AMPK activation. J. Hepatol. 60(5), 1017–1025 (2014)

    Article  CAS  PubMed  Google Scholar 

  154. Malavazos, A.E., et al.: Association of increased plasma cardiotrophin-1 with left ventricular mass indexes in normotensive morbid obesity. Hypertension. 51(2), e8–e9 (2008) author reply e10

    Article  CAS  PubMed  Google Scholar 

  155. Rendo-Urteaga, T., et al.: Decreased cardiotrophin-1 levels are associated with a lower risk of develo** the metabolic syndrome in overweight/obese children after a weight loss program. Metabolism. 62(10), 1429–1436 (2013)

    Article  CAS  PubMed  Google Scholar 

  156. Barnabe-Heider, F., et al.: Evidence that embryonic neurons regulate the onset of cortical gliogenesis via cardiotrophin-1. Neuron. 48(2), 253–265 (2005)

    Article  CAS  PubMed  Google Scholar 

  157. Freed, D.H., et al.: Emerging evidence for the role of cardiotrophin-1 in cardiac repair in the infarcted heart. Cardiovasc. Res. 65(4), 782–792 (2005)

    Article  CAS  PubMed  Google Scholar 

  158. Ishikawa, M., et al.: A heart-specific increase in cardiotrophin-1 gene expression precedes the establishment of ventricular hypertrophy in genetically hypertensive rats. J. Hypertens. 17(6), 807–816 (1999)

    Article  CAS  PubMed  Google Scholar 

  159. Pan, J., et al.: Involvement of gp130-mediated signaling in pressure overload-induced activation of the JAK/STAT pathway in rodent heart. Heart Vessel. 13(4), 199–208 (1998)

    Article  CAS  Google Scholar 

  160. Talwar, S., Choudhary, S.K.: Tuberculous aneurysms of the aorta. J. Thorac. Cardiovasc. Surg. 125(5), 1184 (2003)

    Article  PubMed  Google Scholar 

  161. Lopez, B., et al.: Is plasma cardiotrophin-1 a marker of hypertensive heart disease? J. Hypertens. 23(3), 625–632 (2005)

    Article  CAS  PubMed  Google Scholar 

  162. Richards, C.D.: The enigmatic cytokine oncostatin m and roles in disease. ISRN Inflamm. 2013, 512103 (2013)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Argast, G.M., et al.: Cooperative signaling between oncostatin M, hepatocyte growth factor and transforming growth factor-beta enhances epithelial to mesenchymal transition in lung and pancreatic tumor models. Cells Tissues Organs. 193(1–2), 114–132 (2011)

    Article  CAS  PubMed  Google Scholar 

  164. Deng, G., et al.: Unique methylation pattern of oncostatin m receptor gene in cancers of colorectum and other digestive organs. Clin. Cancer Res. 15(5), 1519–1526 (2009)

    Article  CAS  PubMed  Google Scholar 

  165. Chollangi, S., et al.: A unique loop structure in oncostatin M determines binding affinity toward oncostatin M receptor and leukemia inhibitory factor receptor. J. Biol. Chem. 287(39), 32848–32859 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Junk, D.J., et al.: Oncostatin M promotes cancer cell plasticity through cooperative STAT3-SMAD3 signaling. Oncogene. 36(28), 4001–4013 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Pradeep, A.R., et al.: Serum levels of oncostatin M (a gp 130 cytokine): an inflammatory biomarker in periodontal disease. Biomarkers. 15(3), 277–282 (2010)

    Article  CAS  PubMed  Google Scholar 

  168. Hasegawa, M., et al.: Serum levels of interleukin 6 (IL-6), oncostatin M, soluble IL-6 receptor, and soluble gp130 in patients with systemic sclerosis. J. Rheumatol. 25(2), 308–313 (1998)

    CAS  PubMed  Google Scholar 

  169. Liang, H., et al.: Interleukin-6 and oncostatin M are elevated in liver disease in conjunction with candidate hepatocellular carcinoma biomarker GP73. Cancer Biomark. 11(4), 161–171 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Robak, E., et al.: Circulating interleukin-6 type cytokines in patients with systemic lupus erythematosus. Eur. Cytokine Netw. 8(3), 281–286 (1997)

    CAS  PubMed  Google Scholar 

  171. Stephens, J.M., Elks, C.M.: Oncostatin M: potential implications for malignancy and metabolism. Curr. Pharm. Des. 23(25), 3645–3657 (2017)

    Article  CAS  PubMed  Google Scholar 

  172. Miki, Y., et al.: Oncostatin M induces C2C12 myotube atrophy by modulating muscle differentiation and degradation. Biochem. Biophys. Res. Commun. 516(3), 951–956 (2019)

    Article  CAS  PubMed  Google Scholar 

  173. Sands, B.E., et al.: Randomized, controlled trial of recombinant human interleukin-11 in patients with active Crohn’s disease. Aliment. Pharmacol. Ther. 16(3), 399–406 (2002)

    Article  CAS  PubMed  Google Scholar 

  174. Permyakov, E.A., Uversky, V.N., Permyakov, S.E.: Interleukin-11: a multifunctional cytokine with intrinsically disordered regions. Cell Biochem. Biophys. 74(3), 285–296 (2016)

    Article  CAS  PubMed  Google Scholar 

  175. Matadeen, R., et al.: The dynamics of signal triggering in a gp130-receptor complex. Structure. 15(4), 441–448 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Barton, V.A., et al.: Interleukin-11 signals through the formation of a hexameric receptor complex. J. Biol. Chem. 275(46), 36197–36203 (2000)

    Article  CAS  PubMed  Google Scholar 

  177. Nguyen, P.M., Putoczki, T.L., Ernst, M.: STAT3-activating cytokines: a therapeutic opportunity for inflammatory bowel disease? J. Interf. Cytokine Res. 35(5), 340–350 (2015)

    Article  CAS  Google Scholar 

  178. Schwertschlag, U.S., et al.: Hematopoietic, immunomodulatory and epithelial effects of interleukin-11. Leukemia. 13(9), 1307–1315 (1999)

    Article  CAS  PubMed  Google Scholar 

  179. Putoczki, T., Ernst, M.: More than a sidekick: the IL-6 family cytokine IL-11 links inflammation to cancer. J. Leukoc. Biol. 88(6), 1109–1117 (2010)

    Article  CAS  PubMed  Google Scholar 

  180. Wan, B., et al.: Recombinant human interleukin-11 (IL-11) is a protective factor in severe sepsis with thrombocytopenia: a case-control study. Cytokine. 76(2), 138–143 (2015)

    Article  CAS  PubMed  Google Scholar 

  181. Obana, M., et al.: Therapeutic administration of IL-11 exhibits the postconditioning effects against ischemia-reperfusion injury via STAT3 in the heart. Am. J. Physiol. Heart Circ. Physiol. 303(5), H569–H577 (2012)

    Article  CAS  PubMed  Google Scholar 

  182. Kimura, R., et al.: Identification of cardiac myocytes as the target of interleukin 11, a cardioprotective cytokine. Cytokine. 38(2), 107–115 (2007)

    Article  CAS  PubMed  Google Scholar 

  183. Obana, M., et al.: Therapeutic activation of signal transducer and activator of transcription 3 by interleukin-11 ameliorates cardiac fibrosis after myocardial infarction. Circulation. 121(5), 684–691 (2010)

    Article  CAS  PubMed  Google Scholar 

  184. Ernst, M., Putoczki, T.L.: Targeting IL-11 signaling in colon cancer. Oncotarget. 4(11), 1860–1861 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  185. Johnstone, C.N., et al.: Emerging roles for IL-11 signaling in cancer development and progression: focus on breast cancer. Cytokine Growth Factor Rev. 26(5), 489–498 (2015)

    Article  CAS  PubMed  Google Scholar 

  186. Winship, A.L., et al.: Targeting interleukin-11 receptor-alpha impairs human endometrial cancer cell proliferation and invasion in vitro and reduces tumor growth and metastasis in vivo. Mol. Cancer Ther. 15(4), 720–730 (2016)

    Article  CAS  PubMed  Google Scholar 

  187. Putoczki, T.L., et al.: Interleukin-11 is the dominant IL-6 family cytokine during gastrointestinal tumorigenesis and can be targeted therapeutically. Cancer Cell. 24(2), 257–271 (2013)

    Article  CAS  PubMed  Google Scholar 

  188. Nara-Ashizawa, N., et al.: Lipolytic and lipoprotein lipase (LPL)-inhibiting activities produced by a human lung cancer cell line responsible for cachexia induction. Anticancer Res. 21(5), 3381–3387 (2001)

    CAS  PubMed  Google Scholar 

  189. Saitoh, M., et al.: Recombinant human interleukin-11 improved carboplatin-induced thrombocytopenia without affecting antitumor activities in mice bearing Lewis lung carcinoma cells. Cancer Chemother. Pharmacol. 49(2), 161–166 (2002)

    Article  CAS  PubMed  Google Scholar 

  190. Saleh, A.Z., et al.: Binding of madindoline A to the extracellular domain of gp130. Biochemistry. 44(32), 10822–10827 (2005)

    Article  CAS  PubMed  Google Scholar 

  191. Aparicio-Siegmund, S., et al.: Inhibition of protein kinase II (CK2) prevents induced signal transducer and activator of transcription (STAT) 1/3 and constitutive STAT3 activation. Oncotarget. 5(8), 2131–2148 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  192. Diegelmann, J., et al.: A novel role for interleukin-27 (IL-27) as mediator of intestinal epithelial barrier protection mediated via differential signal transducer and activator of transcription (STAT) protein signaling and induction of antibacterial and anti-inflammatory proteins. J. Biol. Chem. 287(1), 286–298 (2012)

    Article  CAS  PubMed  Google Scholar 

  193. Aparicio-Siegmund, S., Garbers, C.: The biology of interleukin-27 reveals unique pro- and anti-inflammatory functions in immunity. Cytokine Growth Factor Rev. 26(5), 579–586 (2015)

    Article  CAS  PubMed  Google Scholar 

  194. Hall, A.O., Silver, J.S., Hunter, C.A.: The immunobiology of IL-27. Adv. Immunol. 115, 1–44 (2012)

    Article  PubMed  CAS  Google Scholar 

  195. Pflanz, S., et al.: IL-27, a heterodimeric cytokine composed of EBI3 and p28 protein, induces proliferation of naive CD4+ T cells. Immunity. 16(6), 779–790 (2002)

    Article  CAS  PubMed  Google Scholar 

  196. Lu, D., et al.: Clinical implications of the interleukin 27 serum level in breast cancer. J. Investig. Med. 62(3), 627–631 (2014)

    Article  CAS  PubMed  Google Scholar 

  197. Chiyo, M., et al.: Expression of IL-27 in murine carcinoma cells produces antitumor effects and induces protective immunity in inoculated host animals. Int. J. Cancer. 115(3), 437–442 (2005)

    Article  CAS  PubMed  Google Scholar 

  198. Hisada, M., et al.: Potent antitumor activity of interleukin-27. Cancer Res. 64(3), 1152–1156 (2004)

    Article  CAS  PubMed  Google Scholar 

  199. Salcedo, R., et al.: Immunologic and therapeutic synergy of IL-27 and IL-2: enhancement of T cell sensitization, tumor-specific CTL reactivity and complete regression of disseminated neuroblastoma metastases in the liver and bone marrow. J. Immunol. 182(7), 4328–4338 (2009)

    Article  CAS  PubMed  Google Scholar 

  200. Salcedo, R., et al.: IL-27 mediates complete regression of orthotopic primary and metastatic murine neuroblastoma tumors: role for CD8+ T cells. J. Immunol. 173(12), 7170–7182 (2004)

    Article  CAS  PubMed  Google Scholar 

  201. Li, Q., et al.: Increased interleukin-27 promotes Th1 differentiation in patients with chronic immune thrombocytopenia. Scand. J. Immunol. 80(4), 276–282 (2014)

    Article  CAS  PubMed  Google Scholar 

  202. Fitzgerald, D.C., et al.: Suppression of autoimmune inflammation of the central nervous system by interleukin 10 secreted by interleukin 27-stimulated T cells. Nat. Immunol. 8(12), 1372–1379 (2007)

    Article  CAS  PubMed  Google Scholar 

  203. Stumhofer, J.S., et al.: Interleukins 27 and 6 induce STAT3-mediated T cell production of interleukin 10. Nat. Immunol. 8(12), 1363–1371 (2007)

    Article  CAS  PubMed  Google Scholar 

  204. Pot, C., et al.: Cutting edge: IL-27 induces the transcription factor c-Maf, cytokine IL-21, and the costimulatory receptor ICOS that coordinately act together to promote differentiation of IL-10-producing Tr1 cells. J. Immunol. 183(2), 797–801 (2009)

    Article  CAS  PubMed  Google Scholar 

  205. Owaki, T., et al.: IL-27 induces Th1 differentiation via p38 MAPK/T-bet- and intercellular adhesion molecule-1/LFA-1/ERK1/2-dependent pathways. J. Immunol. 177(11), 7579–7587 (2006)

    Article  CAS  PubMed  Google Scholar 

  206. Gwyer Findlay, E., et al.: IL-27 receptor signaling regulates CD4+ T cell chemotactic responses during infection. J. Immunol. 190(9), 4553–4561 (2013)

    Article  CAS  PubMed  Google Scholar 

  207. Boumendjel, A., et al.: IL-27 induces the production of IgG1 by human B cells. Eur. Cytokine Netw. 17(4), 281–289 (2006)

    CAS  PubMed  Google Scholar 

  208. Larousserie, F., et al.: Differential effects of IL-27 on human B cell subsets. J. Immunol. 176(10), 5890–5897 (2006)

    Article  CAS  PubMed  Google Scholar 

  209. Murakami, M., Kamimura, D., Hirano, T.: New IL-6 (gp130) family cytokine members, CLC/NNT1/BSF3 and IL-27. Growth Factors. 22(2), 75–77 (2004)

    Article  CAS  PubMed  Google Scholar 

  210. Senaldi, G., et al.: Novel neurotrophin-1/B cell-stimulating factor-3: a cytokine of the IL-6 family. Proc. Natl. Acad. Sci. USA. 96(20), 11458–11463 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Shi, Y., et al.: Computational EST database analysis identifies a novel member of the neuropoietic cytokine family. Biochem. Biophys. Res. Commun. 262(1), 132–138 (1999)

    Article  CAS  PubMed  Google Scholar 

  212. Benigni, F., et al.: Six different cytokines that share GP130 as a receptor subunit, induce serum amyloid A and potentiate the induction of interleukin-6 and the activation of the hypothalamus-pituitary-adrenal axis by interleukin-1. Blood. 87(5), 1851–1854 (1996)

    Article  CAS  PubMed  Google Scholar 

  213. Vlotides, G., et al.: Novel neurotrophin-1/B cell-stimulating factor-3 (NNT-1/BSF-3)/cardiotrophin-like cytokine (CLC) – a novel gp130 cytokine with pleiotropic functions. Cytokine Growth Factor Rev. 15(5), 325–336 (2004)

    Article  CAS  PubMed  Google Scholar 

  214. Plun-Favreau, H., et al.: The ciliary neurotrophic factor receptor alpha component induces the secretion of and is required for functional responses to cardiotrophin-like cytokine. EMBO J. 20(7), 1692–1703 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Forger, N.G., et al.: Cardiotrophin-like cytokine/cytokine-like factor 1 is an essential trophic factor for lumbar and facial motoneurons in vivo. J. Neurosci. 23(26), 8854–8858 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Uemura, A., et al.: Cardiotrophin-like cytokine induces astrocyte differentiation of fetal neuroepithelial cells via activation of STAT3. Cytokine. 18(1), 1–7 (2002)

    Article  CAS  PubMed  Google Scholar 

  217. Schmidt-Ott, K.M., et al.: Novel regulators of kidney development from the tips of the ureteric bud. J. Am. Soc. Nephrol. 16(7), 1993–2002 (2005)

    Article  CAS  PubMed  Google Scholar 

  218. Alexander, W.S., et al.: Suckling defect in mice lacking the soluble haemopoietin receptor NR6. Curr. Biol. 9(11), 605–608 (1999)

    Article  CAS  PubMed  Google Scholar 

  219. Elson, G.C., et al.: Cytokine-like factor-1, a novel soluble protein, shares homology with members of the cytokine type I receptor family. J. Immunol. 161(3), 1371–1379 (1998)

    CAS  PubMed  Google Scholar 

  220. Vicent, S., et al.: Cross-species functional analysis of cancer-associated fibroblasts identifies a critical role for CLCF1 and IL-6 in non-small cell lung cancer in vivo. Cancer Res. 72(22), 5744–5756 (2012)

    Article  CAS  PubMed  Google Scholar 

  221. Puppa, M.J., et al.: Skeletal muscle glycoprotein 130’s role in Lewis lung carcinoma-induced cachexia. FASEB J. 28(2), 998–1009 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Clinicaltrials.gov .

  223. Naito, T.: Emerging treatment options for cancer-associated cachexia: a literature review. Ther. Clin. Risk Manag. 15, 1253–1266 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Argilés, J.M., et al.: Therapeutic strategies against cancer cachexia. Eur J Transl Myol. 29(1), 7960 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  225. Belloum, Y., Rannou-Bekono, F., Favier, F.B.: Cancer-induced cardiac cachexia: Pathogenesis and impact of physical activity (Review). Oncol. Rep. 37(5), 2543–2552 (2017)

    Article  CAS  PubMed  Google Scholar 

  226. Hain, B.A., et al.: Chemotherapy-induced loss of bone and muscle mass in a mouse model of breast cancer bone metastases and cachexia. JCSM Rapid Commun. 2(1) (2019)

    Google Scholar 

  227. Bonetto, A., et al.: Differential bone loss in mouse models of colon cancer cachexia. Front. Physiol. 7, 679 (2016)

    PubMed  Google Scholar 

  228. Prado, B.L., Qian, Y.: Anti-cytokines in the treatment of cancer cachexia. Ann Palliat Med. 8(1), 67–79 (2019)

    Article  PubMed  Google Scholar 

  229. Laird, B.J.A., Balstad, T.R., Solheim, T.S.: Endpoints in clinical trials in cancer cachexia: where to start? Curr. Opin. Support. Palliat. Care. 12(4), 445–452 (2018)

    Article  PubMed  Google Scholar 

  230. McKeaveney, C., et al.: A critical review of multimodal interventions for cachexia. Adv. Nutr. (2020)

    Google Scholar 

  231. Roeland, E.J., et al.: Management of cancer cachexia: ASCO guideline. J. Clin. Oncol. 38(21), 2438–2453 (2020)

    Article  CAS  PubMed  Google Scholar 

  232. Vaughan, V.C., Martin, P., Lewandowski, P.A.: Cancer cachexia: impact, mechanisms and emerging treatments. J. Cachexia. Sarcopenia Muscle. 4(2), 95–109 (2013)

    Article  PubMed  Google Scholar 

  233. Rigas, J.R., et al.: Efect of ALD518, a humanized anti-IL-6 antibody, on lean body mass loss and symptoms in patients with advanced non-small cell lung cancer (NSCLC): results of a phase II randomized, double-blind safety and efficacy trial. J. Clin. Oncol. 28(15_suppl), 7622–7622 (2010)

    Article  Google Scholar 

  234. Hirata, H., et al.: Favorable responses to tocilizumab in two patients with cancer-related cachexia. J. Pain Symptom Manag. 46(2), e9–e13 (2013)

    Article  Google Scholar 

  235. Berti, A., et al.: Assessment of tocilizumab in the treatment of cancer cachexia. J. Clin. Oncol. 31(23), 2970 (2013)

    Article  PubMed  Google Scholar 

  236. Chen, I., et al.: PACTO: a single center, randomized, phase II study of the combination of nab-paclitaxel and gemcitabine with or without tocilizumab, an IL-6R inhibitor, as first-line treatment in patients with locally advanced or metastatic pancreatic cancer. Ann. Oncol. 28, v266 (2017)

    Google Scholar 

  237. Favalli, E.G.: Understanding the role of interleukin-6 (IL-6) in the joint and beyond: a comprehensive review of IL-6 inhibition for the management of rheumatoid arthritis. Rheumatol Ther. 7(3), 473–516 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  238. Heo, T.H., Wahler, J., Suh, N.: Potential therapeutic implications of IL-6/IL-6R/gp130-targeting agents in breast cancer. Oncotarget. 7(13), 15460–15473 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  239. Guo, D., et al.: Pantoprazole blocks the JAK2/STAT3 pathway to alleviate skeletal muscle wasting in cancer cachexia by inhibiting inflammatory response. Oncotarget. 8(24), 39640–39648 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  240. Reddel, C.J., et al.: Increased thrombin generation in a mouse model of cancer cachexia is partially interleukin-6 dependent. J. Thromb. Haemost. 15(3), 477–486 (2017)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge Kellie N. Kaneshiro from the IU School of Medicine Ruth Lilly Medical Library for her contributions in the literature review search and library preparation. Art is adapted from Servier Medical Art (servier.com) used under a Creative Commons Attribution 3.0 Unported License. T.A.Z. is supported in part by the National Institute for Arthritis and Musculoskeletal and Skin Diseases (NIAMS grant R21AR074908), the National Cancer Institute (grant R01CA194593), and the Veterans Administration (grants I01BX004177 and I01CX002046). D.H.A.J. is funded in part by the Adam W. Herbert Ph.D. Fellowship from Indiana University and the Cancer Biology Training Program Fellowship from the IU Simon Cancer Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa A. Zimmers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jengelley, D.H.A., Zimmers, T.A. (2022). The Role of Interleukin-6/GP130 Cytokines in Cancer Cachexia. In: Acharyya, S. (eds) The Systemic Effects of Advanced Cancer. Springer, Cham. https://doi.org/10.1007/978-3-031-09518-4_6

Download citation

Publish with us

Policies and ethics

Navigation