Energy Efficiency of a Single-Server with Inactive State by Matrix-Analytic Method

  • Conference paper
  • First Online:
Information Technologies and Mathematical Modelling. Queueing Theory and Applications (ITMM 2021)

Abstract

We consider a single-server system with energy saving inactive state, non-zero setup, shutoff and hot reserve state. Matrix-analytic method is used to obtain the steady-state performance and average power demand, as well as study the energy-performance tradeoff in explicit way. Numerical results illustrate the model’s properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 67.40
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 85.59
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. HP ProBook 450 G8 Notebook PC, c06907888 - DA16756 - Worldwide - Version 18 (2021). https://h20195.www2.hp.com/v2/GetPDF.aspx/c06907888.pdf

  2. Andrae, A.S.G., Edler, T.: On global electricity usage of communication technology: trends to 2030. Challenges 6(1), 1–41 (2015). https://doi.org/10.3390/challe6010117

  3. Basmadjian, R., Niedermeier, F., de Meer, H.: Modelling performance and power consumption of utilisation-based DVFS using M/M/1 queues. In: Proceedings of the Seventh International Conference on Future Energy Systems. e-Energy 2016. Association for Computing Machinery, New York (2016). https://doi.org/10.1145/2934328.2934342

  4. Daraseliya, A.V., Sopin, E.S., Samuylov, A.K., Shorgin, S.Y.: Comparative analysis of the mechanisms for energy efficiency improving in cloud computing systems. In: Galinina, O., Andreev, S., Balandin, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART -2018. LNCS, vol. 11118, pp. 268–276. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01168-0_25

    Chapter  Google Scholar 

  5. Fourneau, J.M.: Modeling green data-centers and jobs balancing with energy packet networks and interrupted poisson energy arrivals. SN Comput. Sci. 1(1), 28 (2020)

    Google Scholar 

  6. Latouche, G., Ramaswami, V.: Introduction to Matrix Analytic Methods in Stochastic Modeling. ASA-SIAM, Philadelphia (1999)

    Google Scholar 

  7. Gandhi, A., Gupta, V., Harchol-Balter, M., Kozuch, M.A.: Optimality analysis of energy-performance trade-off for server farm management. Perform. Eval. 67(11), 1155–1171 (2010)

    Google Scholar 

  8. Gandhi, A., Harchol-Balter, M., Adan, I.: Server farms with setup costs. Perform. Eval. 67(11), 1123–1138 (2010)

    Google Scholar 

  9. Gandhi, A., Harchol-Balter, M., Das, R., Kephart, J.O., Lefurgy, C.: Power cap** via forced idleness. In: Proceedings of Workshop on Energy Efficient Design, pp. 1–6 (2009). http://repository.cmu.edu/compsci/868/

  10. Gebrehiwot, M.E., Aalto, S., Lassila, P.: Energy efficient load balancing in web server clusters. In: 2017 29th International Teletraffic Congress (ITC 29), vol. 3, pp. 13–18 (2017). https://doi.org/10.23919/ITC.2017.8065804

  11. Gillent, F., Latouche, G.: Semi-explicit solutions for M/PH/1-like queuing systems. Eur. J. Oper. Res. 13(2), 151–160 (1983)

    Google Scholar 

  12. Harrison, P.G., Patel, N.M., Knottenbelt, W.J.: Energy-Performance trade-offs via the EP queue. ACM Trans. Model. Perform. Eval. Comput. Syst. 1(2), 1–31 (2016)

    Google Scholar 

  13. He, Q.M.: Fundamentals of Matrix-Analytic Methods. Springer, New York (2014). https://doi.org/10.1007/978-1-4614-7330-5

    Book  MATH  Google Scholar 

  14. Kuehn, P.J., Mashaly, M.: DVFS-power management and performance engineering of data center server clusters. In: 2019 15th Annual Conference on Wireless On-demand Network Systems and Services (WONS), pp. 91–98 (2019). https://doi.org/10.23919/WONS.2019.8795470

  15. Lima, J.: Data centres of the world will consume 1/5 of earth’s power by 2025. Technical report, Data Economy (2017). https://www.broad-group.com/data/news/documents/b1m2y6qlx5dv5t

  16. Liu, D., Zhao, Y.Q.: Determination of Explicit Solutions for a General Class of Markov Processes. In: Chakravarthy, S., Alfa, A.S. (eds.) Matrix-Analytic Methods in Stochastic Models, 1 edn, pp. 363–378. CRC Press (1996). https://doi.org/10.1201/b17050-21. https://www.taylorfrancis.com/books/9781482292176/chapters/10.1201/b17050-21

  17. Morozov, E., Rumyantsev, A., Dey, S., Deepak, T.: Performance analysis and stability of multiclass orbit queue with constant retrial rates and balking. Perform. Eval. 134, 102005 (2019)

    Google Scholar 

  18. Neuts, M.F.: Matrix-Geometric Solutions in Stochastic Models: An Algorithmic Approach. Johns Hopkins University Press, Baltimore (1981)

    MATH  Google Scholar 

  19. Nguyen, M.H., Gruber, J., Fuchs, J., Marler, W., Hunsaker, A., Hargittai, E.: Changes in digital communication during the COVID-19 global pandemic: implications for digital inequality and future research. Soc. Media Soc. 6(3), 2056305120948255 (2020). https://doi.org/10.1177/2056305120948255

  20. Rumyantsev, A., Basmadjian, R., Golovin, A., Astafiev, S.: A three-level modelling approach for asynchronous speed scaling in high-performance data centres. In: Proceedings of the Twelfth ACM International Conference on Future Energy Systems, e-Energy 2021, pp. 417–423. Association for Computing Machinery, New York (2021). https://doi.org/10.1145/3447555.3466580

  21. Rumyantsev, A., Zueva, P., Kalinina, K., Golovin, A.: Evaluating a single-server queue with asynchronous speed scaling. In: German, R., Hielscher, K.-S., Krieger, U.R. (eds.) MMB 2018. LNCS, vol. 10740, pp. 157–172. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74947-1_11

    Chapter  Google Scholar 

  22. Zheng, X., Zhou, S., Jiang, Z., Niu, Z.: Closed-form analysis of non-linear age of information in status updates with an energy harvesting transmitter. IEEE Trans. Wirel. Commun. 18(8), 4129–4142 (2019). https://doi.org/10.1109/TWC.2019.2921372. Place: Piscataway Publisher: Ieee-Inst Electrical Electronics Engineers Inc WOS:000480661000026

Download references

Acknowledgements

The publication has been prepared with the support of Russian Science Foundation according to the research project No.21-71-10135 https://rscf.ru/en/project/21-71-10135/. The authors thank the referees for carefully reading the paper and for suggestions which helped to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Rumyantsev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Golovin, A., Rumyantsev, A. (2022). Energy Efficiency of a Single-Server with Inactive State by Matrix-Analytic Method. In: Dudin, A., Nazarov, A., Moiseev, A. (eds) Information Technologies and Mathematical Modelling. Queueing Theory and Applications. ITMM 2021. Communications in Computer and Information Science, vol 1605. Springer, Cham. https://doi.org/10.1007/978-3-031-09331-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-09331-9_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-09330-2

  • Online ISBN: 978-3-031-09331-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation