Hepatic Injury from Chemotherapy

  • Chapter
  • First Online:
Colorectal Liver Metastasis
  • 609 Accesses

Abstract

Hepatotoxicity is an expanding field in hepatology and implies chemical-driven liver damage. This includes toxicity notably related to conventional drug medications, as well as illicit drugs, herbal medicine, and dietary supplements. Drug-induced liver injury is responsible for 5% of all hospital admissions and 50% of all acute liver failures. Patients with advanced colorectal cancer have largely gained these last decades in long-term survival rate from advances in multimodal treatment and standardized multidisciplinary approaches. However, as a drawback, several modern systemic chemotherapy-based treatments cause liver injury. These are qualified under the term chemotherapy-associated liver injury (CALI). Steatosis, steatohepatitis and sinusoidal obstruction syndrome develop following chemotherapy for colorectal cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 128.39
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 165.84
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 235.39
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. European Association for the Study of the Liver. Electronic address: easloffice@easloffice.eu, Clinical Practice Guideline Panel: Panel members, EASL Governing Board representative. EASL clinical practice guidelines: drug-induced liver injury. J Hepatol. 2019;70:1222–61.

    Google Scholar 

  2. Sgro C, Clinard F, Ouazir K, Chanay H, Allard C, Guilleminet C, et al. Incidence of drug-induced hepatic injuries: a French population-based study. Hepatol Baltim Md. 2002;36:451–5.

    Google Scholar 

  3. DeLeve LD, Kaplowitz N. Mechanisms of drug-induced liver disease. Gastroenterol Clin N Am. 1995;24(4):787–810.

    CAS  Google Scholar 

  4. Chow FC, Chok KS. Colorectal liver metastases: an update on multidisciplinary approach. World J Hepatol. 2019;11(2):150–72.

    Google Scholar 

  5. Martin J, Petrillo A, Smyth EC, Shaida N, Khwaja S, Cheow HK, Duckworth A, Heister P, Praseedom R, Jah A, Balakrishnan A, Harper S, Liau S, Kosmoliaptsis V, Huguet E. Colorectal liver metastases: current management and future perspectives. World J Clin Oncol. 2020;11(10):761–808.

    Google Scholar 

  6. Misiakos EP, Karidis NP, Kouraklis G. Current treatment for colorectal liver metastases. World J Gastroenterol. 2011;17:4067–75.

    Google Scholar 

  7. Adam R, Delvart V, Pascal G, et al. Rescue surgery for unresectable colorectal liver metastases downstaged by chemotherapy: a model to predict long-term survival. Ann Surg. 2004;240:644–57.

    Google Scholar 

  8. Adam R, Avisar E, Ariche A, et al. Five-year survival following hepatic resection after neoadjuvant therapy for nonresectable colorectal [liver]metastases. Ann Surg Oncol. 2001;8:347–53.

    CAS  Google Scholar 

  9. Kemeny N. Presurgical chemotherapy in patients being considered for liver resection. Oncologist. 2007;12:825–39.

    CAS  Google Scholar 

  10. Benoist S, Nordlinger B. Neoadjuvant treatment before resection of liver metastases. Eur J Surg Oncol. 2007;33(Suppl. 2):S35–41.

    Google Scholar 

  11. Chun YS, Laurent A, Maru D, Vauthey JN. Management of chemotherapy-associated hepatotoxicity in colorectal liver metastases. Lancet Oncol. 2009;10(3):278–28.

    CAS  Google Scholar 

  12. Zhao J, Sawo P, Rensen SS, et al. Impact of chemotherapy-associated liver injury on tumour regression grade and survival in patients with colorectal liver metastases. HPB (Oxford). 2018;20(2):147–54.

    Google Scholar 

  13. Zhao J, van Mierlo KMC, Gomez-Ramırez J, et al. Systematic review of the influence of chemotherapy-associated liver injury on outcome after partial hepatectomy for colorectal liver metastases. Br J Surg. 2017;104(8):990–1002.

    CAS  Google Scholar 

  14. Karoui M, Penna C, Amin-Hashem M, et al. Influence of preoperative chemotherapy on the risk of major hepatectomy for colorectal liver metastases. Ann Surg. 2006;243(1):1–7.

    Google Scholar 

  15. Nakano H, Oussoultzoglou E, Rosso E, Casnedi S, Chenard-Neu M-P, Dufour P, et al. Sinusoidal injury increases morbidity after major hepatectomy in patients with colorectal liver metastases receiving preoperative chemotherapy. Ann Surg. 2008;247:118–24.

    Google Scholar 

  16. Soubrane O, Brouquet A, Zalinski S, et al. Predicting high grade lesions of sinusoidal obstruction syndrome related to oxaliplatin based chemotherapy for colorectal liver metastases: correlation with post-hepatectomy outcome. Ann Surg. 2010;251(3):454–60.

    Google Scholar 

  17. Wicherts DA, de Haas RJ, Sebagh M, Ciacio O, Lévi F, Paule B, et al. Regenerative nodular hyperplasia of the liver related to chemotherapy: impact on outcome of liver surgery for colorectal metastases. Ann Surg Oncol. 2011;18:659–69.

    Google Scholar 

  18. Slade JH, Alattar ML, Fogelman DR, Overman MJ, Agarwal A, Maru DM, et al. Portal hypertension associated with oxaliplatin administration: clinical manifestations of hepatic sinusoidal injury. Clin Colorectal Cancer. 2009;8:225–30.

    CAS  Google Scholar 

  19. Pawlik TM, Olino K, Gleisner AL, et al. Preoperative chemotherapy for colorectal liver metastases: impact on hepatic histology and postoperative outcome. J Gastrointest Surg. 2007;11:860–8.

    Google Scholar 

  20. Powell EE, Wong VW-S, Rinella M. Non-alcoholic fatty liver disease. Lancet. 2021;397(10290):2212–24.

    CAS  Google Scholar 

  21. Mulhall BP, Ong JP, Younossi ZM. Nonalcoholic fatty liver disease: an overview. J Gastroenterol Hepatol. 2002;17:1136–43.

    CAS  Google Scholar 

  22. Eslam M, Newsome PN, Sarin SK, Anstee QM, Targher G, Romero-Gomez M, Zelber-Sagi S, Wai-Sun Wong V, Dufour JF, Schattenberg JM, Kawaguchi T, Arrese M, Valenti L, Shiha G, Tiribelli C, Yki-Järvinen H, Fan JG, Grønbæk H, Yilmaz Y, Cortez-Pinto H, Oliveira CP, Bedossa P, Adams LA, Zheng MH, Fouad Y, Chan WK, Mendez-Sanchez N, Ahn SH, Castera L, Bugianesi E, Ratziu V, George J. A new definition for metabolic dysfunction associated fatty liver disease: an international expert consensus statement. J Hepatol. 2020;73(1):202–9.

    Google Scholar 

  23. Peppercorn PD, Reznek RH, Wilson P, et al. Demonstration of hepatic steatosis by computerized tomography in patients receiving 5-fluorouracil-based therapy for advanced colorectal cancer. Br J Cancer. 1998;77:2008–11.

    CAS  Google Scholar 

  24. Miyake K, Hayakawa K, Nishino M, et al. Effects of oral 5-fluorouracil drugs on hepatic fat content in patients with colon cancer. Acad Radiol. 2005;12:722–7.

    Google Scholar 

  25. Thirion P, Michiels S, Pignon JP, et al. Modulation of fluorouracil by leucovorin in patients with advanced colorectal cancer: an updated meta-analysis. J Clin Oncol. 2004;22:3766–75.

    CAS  Google Scholar 

  26. Amacher DE, Chalasani N. Drug-induced hepatic steatosis. Semin Liver Dis. 2014;34:205–14.

    CAS  Google Scholar 

  27. Sommer J, Mahli A, Freese K, et al. Analysis of molecular mechanisms of 5-fluorouracil-induced steatosis and inflammation in vitro and in mice. Oncotarget. 2017;8:13059–72.

    Google Scholar 

  28. Sheka AC, Adeyi O, Thompson J, Hameed B, Crawford PA, Ikramuddin S. Nonalcoholic steatohepatitis: a review. JAMA. 2020;323(12):1175–83.

    CAS  Google Scholar 

  29. Day CP, James OF. Steatohepatitis: a tale of two “hits”? Gastroenterology. 1998 Apr;114(4):842–5.

    CAS  Google Scholar 

  30. Bieghs V, van Gorp PJ, Walenbergh SMA, Gijbels MJ, Verheyen F, Buurman WA, Briles DE, Hofker MH, Binder CJ, Shiri-Sverdlov R. Specific immunization strategies against oxidized low-density lipoprotein: a novel way to reduce nonalcoholic steatohepatitis in mice. Hepatology. 2012;56:894–903.

    CAS  Google Scholar 

  31. Meunier L, Larrey D. Chemotherapy-associated steatohepatitis. Ann Hepatol. 2020;19(6):597–601.

    CAS  Google Scholar 

  32. Schumacher J, Guo G. Mechanistic review of drug-induced steatohepatitis. Toxicol Appl Pharmacol. 2015;289(1):40–7.

    CAS  Google Scholar 

  33. Saltz LB, Cox JV, Blanke C, et al. Irinotecan plus fluorouracil and leucovorin for metastatic colorectal cancer. Irinotecan study group. N EnglJ Med. 2000;343:905–14.

    CAS  Google Scholar 

  34. Fernandez FG, Ritter J, Goodwin JW, et al. Effect of steatohepatitis associated with irinotecan or oxaliplatin pretreatment on resectability of hepatic colorectal metastases. J Am Coll Surg. 2005;200:845–53.

    Google Scholar 

  35. Mahli A, Saugspier M, Koch A, et al. ERK activation and autophagy impairment are central mediators of irinotecan-induced steatohepatitis. Gut. 2018;67:746–56.

    CAS  Google Scholar 

  36. Costa MLV, Lima-Júnior RCP, Aragão KS, et al. Chemotherapy-associated steatohepatitis induced by irinotecan: a novel animal model. Cancer Chemother Pharmacol. 2014;74:711–20.

    CAS  Google Scholar 

  37. Vauthey JN, Pawlik TM, Ribero D, et al. Chemotherapy regimen predicts steatohepatitis and an increase in 90-day mortality after surgery for hepatic colorectal metastases. J Clin Oncol. 2006;24(13):2065–72.

    CAS  Google Scholar 

  38. Stuart KL, Bras G. Veno-occlusive disease of the liver. Q J Med. 1957;26:291–315.

    CAS  Google Scholar 

  39. Deleve LD. Sinusoidal obstruction syndrome. Gastroenterol Hepatol (N Y). 2008;4(2):101–3.

    Google Scholar 

  40. DeLeve LD. Hepatic microvasculature in liver injury. Semin Liver Dis. 2007;27(4):390–400.

    CAS  Google Scholar 

  41. DeLeve LD, Valla DC, Garcia-Tsao G, American Association for the Study Liver Diseases. Vascular disorders of the liver. Hepatology. 2009;49(5):1729–64.

    CAS  Google Scholar 

  42. DeLeve LD, Shulman HM, McDonald GB. Toxic injury to hepatic sinusoids: sinusoidal obstruction syndrome (veno-occlusive disease). Semin Liver Dis. 2002;22(1):27–42.

    Google Scholar 

  43. Helmy A. Review article: updates in the pathogenesis and therapy of hepatic sinusoidal obstruction syndrome. Aliment Pharmacol Ther. 2006;23:11–25.

    CAS  Google Scholar 

  44. Rubbia-Brandt L, Audard V, Sartoretti P, Roth AD, Brezault C, Le Charpentier M, et al. Severe hepatic sinusoidal obstruction associated with oxaliplatin-based chemotherapy in patients with metastatic colorectal cancer. Ann Oncol. 2004;15:460–6.

    CAS  Google Scholar 

  45. Rubbia-Brandt L, Lauwers GY, Wang H, Majno PE, Tanabe K, Zhu AX, et al. Sinusoidal obstruction syndrome and nodular regenerative hyperplasia are frequent oxaliplatin-associated liver lesions and partially prevented by bevacizumab in patients with hepatic colorectal metastasis. Histopathology. 2010;56:430–9.

    Google Scholar 

  46. Aloia T, Sebagh M, Plasse M, Karam V, Lévi F, Giacchetti S, et al. Liver histology and surgical outcomes after preoperative chemotherapy with fluorouracil plus oxaliplatin in colorectal cancer liver metastases. J Clin Oncol. 2006;24:4983–90.

    CAS  Google Scholar 

  47. Viganò L, Capussotti L, De Rosa G, De Saussure WO, Mentha G, Rubbia-Brandt L. Liver resection for colorectal metastases after chemotherapy: impact of chemotherapy- related liver injuries, pathological tumor response, and micrometastases on long-term survival. Ann Surg. 2013;258(5):731–42.

    Google Scholar 

  48. Ryan P, Nanji S, Pollett A, et al. Chemotherapy-induced liver injury in metastatic colorectal cancer: semiquantitative histologic analysis of 334 resected liver specimens shows that vascular injury but not steatohepatitis is associated with preoperative chemotherapy. Am J Surg Pathol. 2010;34(6):784–91.

    Google Scholar 

  49. Viganò L, Rubbia-Brandt L, De Rosa G, Majno P, Langella S, Toso C, et al. Nodular regenerative hyperplasia in patients undergoing liver resection for colorectal metastases after chemotherapy: risk factors, preoperative assessment and clinical impact. Ann Surg Oncol. 2015;22:4149–57.

    Google Scholar 

  50. DeLeve LD, Maretti-Mira AC. Liver sinusoidal endothelial cell: an update. Semin Liver Dis. 2017;37(4):377–87.

    Google Scholar 

  51. Deleve LD, Wang X, Guo Y. Sinusoidal endothelial cells prevent rat stellate cell activation and promote reversion to quiescence. Hepatology. 2008;48(3):920–30.

    CAS  Google Scholar 

  52. DeLeve LD, McCuskey RS, Wang X, Hu L, McCuskey MK, Epstein RB, Kanel GC. Characterization of a reproducible rat model of hepatic veno-occlusive disease. Hepatology. 1999;29(6):1779–91.

    CAS  Google Scholar 

  53. Deleve LD, Wang X, Tsai J, Kanel G, Strasberg S, Tokes ZA. Sinusoidal obstruction syndrome (veno-occlusive disease) in the rat is prevented by matrix metalloproteinase inhibition. Gastroenterology. 2003;125(3):882–90.

    CAS  Google Scholar 

  54. DeLeve LD, Ito Y, Bethea NW, McCuskey MK, Wang X, McCuskey RS. Embolization by sinusoidal lining cells obstructs the microcirculation in rat sinusoidal obstruction syndrome. Am J Physiol Gastrointest Liver Physiol. 2003;284(6):G1045–52.

    CAS  Google Scholar 

  55. Wang L, Wang X, Wang L, Chiu JD, van de Ven G, Gaarde WA, Deleve LD. Hepatic vascular endothelial growth factor regulates recruitment of rat liver sinusoidal endothelial cell progenitor cells. Gastroenterology. 2012;143(6):1555–63.

    CAS  Google Scholar 

  56. Harb R, **e G, Lutzko C, Guo Y, Wang X, Hill CK, Kanel GC, DeLeve LD. Bone marrow progenitor cells repair rat hepatic sinusoidal endothelial cells after liver injury. Gastroenterology. 2009;137(2):704–12.

    Google Scholar 

  57. DeLeve LD, Wang X, Kanel GC, Ito Y, Bethea NW, McCuskey MK, Tokes ZA, Tsai J, McCuskey R. Decreased hepatic nitric oxide production contributes to the development of rat sinusoidal obstruction syndrome. Hepatology. 2003;38(4):900–8.

    CAS  Google Scholar 

  58. Wang X, Kanel GC, DeLeve LD. Support of sinusoidal endothelial cell glutathione prevents hepatic veno-occlusive disease in the rat. Hepatology. 2000;31(2):428–34.

    CAS  Google Scholar 

  59. DeLeve LD, Wang X, Kuhlenkamp JF, Kaplowitz N. Toxicity of azathioprine and monocrotaline in murine sinusoidal endothelial cells and hepatocytes: the role of glutathione and relevance to hepatic venoocclusive disease. Hepatology. 1996;23(3):589–99.

    CAS  Google Scholar 

  60. Schiffer E, Frossard JL, Rubbia-Brandt L, Mentha G, Pastor CM. Hepatic regeneration is decreased in a rat model of sinusoidal obstruction syndrome. J Surg Oncol. 2009;99(7):439–46.

    Google Scholar 

  61. Hubert C, Dahrenmoller C, Marique L, et al. Hepatic regeneration in a rat model is impaired by chemotherapy agents used in metastatic colorectal cancer. Eur J Surg Oncol. 2015;41:1471–8.

    CAS  Google Scholar 

  62. Oancea I, Png CW, Das I, Lourie R, Winkler IG, Eri R, et al. A novel mouse model of veno-occlusive disease provides strategies to prevent thioguanine-induced hepatic toxicity. Gut. 2013;62:594–605.

    CAS  Google Scholar 

  63. Robinson SM, Mann J, Vasilaki A, Mathers J, Burt AD, Oakley F, et al. Pathogenesis of FOLFOX induced sinusoidal obstruction syndrome in a murine chemotherapy model. J Hepatol. 2013;59:318–26.

    CAS  Google Scholar 

  64. Rubbia-Brandt L, Tauzin S, Brezault C, Delucinge-Vivier C, Descombes P, Dousset B, et al. Gene expression profiling provides insights into pathways of oxaliplatin-related sinusoidal obstruction syndrome in humans. Mol Cancer Ther. 2011;10:687–96.

    CAS  Google Scholar 

  65. Agostini J, Benoist S, Seman M, Julié C, Imbeaud S, Letourneur F, et al. Identification of molecular pathways involved in oxaliplatin-associated sinusoidal dilatation. J Hepatol. 2012;56:869–76.

    CAS  Google Scholar 

  66. Vigano L, De Rosa G, Toso C, et al. Reversibility of chemotherapy-related liver injury. J Hepatol. 2017;67(1):84–91.

    CAS  Google Scholar 

  67. Jafari A, Matthaei H, Wehner S, et al. Bevacizumab exacerbates sinusoidal obstruction syndrome (SOS) in the animal model and increases MMP 9 production. Oncotarget. 2018;9:21797–810.

    Google Scholar 

  68. Ribero D, Wang H, Donadon M, et al. Bevacizumab improves pathologic response and protects against hepatic injury in patients treated with oxaliplatin-based chemotherapy for colorectal liver metastases: colorectal liver metastases and bevacizumab. Cancer. 2007;110:2761–7.

    Google Scholar 

  69. Volk AM, Fritzmann J, Reissfelder C, et al. Impact of bevacizumab on parenchymal damage and functional recovery of the liver in patients with colorectal liver metastases. BMC Cancer. 2016;16:84.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Rubbia-Brandt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rubbia-Brandt, L. (2022). Hepatic Injury from Chemotherapy. In: Vauthey, JN., Kawaguchi, Y., Adam, R. (eds) Colorectal Liver Metastasis. Springer, Cham. https://doi.org/10.1007/978-3-031-09323-4_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-09323-4_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-09322-7

  • Online ISBN: 978-3-031-09323-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation