Recent Developments in Photocatalytic Techniques of Dye Degradation in Effluents

  • Chapter
  • First Online:
Trends and Contemporary Technologies for Photocatalytic Degradation of Dyes

Part of the book series: Environmental Science and Engineering ((ESE))

  • 188 Accesses

Abstract

In this chapter, we describe how a new trend of materials “nano” and its composites preferential grown as different sizes of small crystallites of structures using varied synthesis routes for photocatalytic dye degradation. Here, we will discuss about the different synthesis methods “traditional and trending” for the purification of water by degradation of dyes using photocatalytic techniques. To support the main outline of this chapter, we have supported various characterizations done to confirm the presence of nanomaterials like XRD for its crystal structure, SEM/TEM for morphology and XPS for elemental analysis; confirming with some functional groups using FTIR and Raman analysis. The modulation of parameters for the purification of water/effluents is pivotal in such work. So, we have compared the new novel techniques and materials trending all over research community as compared to the conventional ones. Certain nanomaterials synthesized are even doped with metals like rare-earth ions and transition metal ions to bring an effective output when illuminated to UV or visible light. Photocatalytic degradation has grown in last 20 years because of the impurities added to water bodies as source from industries and sewage, mainly comprising of waste like chemical dyes. This has paved way for lot of research in the fields of materials science, chemistry, environmental science and energy. Majorly synthetic dyes used in clothes, plastic, leather and other accessories are biggest motif behind this research. Our aim in this chapter is to summarize the whole scenario in compact but covering all relevant information. Usually, the procedure for photocatalytic dye degradation is step-wise process, involving choice of catalyst, concentration of dyes, light illumination and time taken for degradation of dye. Time taken for degradation of dye and choice of materials are inter-related, however efficiency of catalyst for certain dyes is better than other dyes. To make it clearer we will first give a brief introduction on the dyes, photocatalysis process, materials used as catalysts and purification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 103.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abo-Farha SA (2010) Photocatalytic degradation of monoazo and diazo dyes in waste water on nanometer sized TiO2. Researcher 2(7):1–20

    Google Scholar 

  • Ajmal A, Majeed I, Malik RN, Idriss H, Nadeem MA (2014) Principles and mechanism of photocatalytic dye degradation on TiO2 based photocatalysts: a comparative overview. RSC Adv 4:370003–437026

    Article  Google Scholar 

  • Akpan UG, Hameed BH Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: a review. J Hazard Mater 170:520–529

    Google Scholar 

  • Alaton IA, Balcioglu IA (2001) Photochemical and heterogeneous photocatalytic degradation of waste vinylsulphonate dyes: a case study with hydrolyzed reactive black 5. J Photochem Photobiol A Chem 141:247–254

    Article  CAS  Google Scholar 

  • AlHamedi FH, Rauf MA, Asraf SS (2009) Degradation of Rhodamine B in the presence of UV/H2O2. Desalination 239:159–166

    Article  CAS  Google Scholar 

  • Ameta R, Sharma S, Sharma S, Gorana Y (2015) Visible light induced photocatalytic degradation of toluidine blue-O using molybdenum doped titanium dioxide. Eur J Adv Engineer Technol 2:95–99

    Google Scholar 

  • Anpo M, Shima T, Kodama S, Kubokawa Y (1987) Photocatalytic hydrogenation of propyne with water on small particle titania: size quantization effects and reaction intermediates. J Phys Chem 91:4305–4310

    Article  CAS  Google Scholar 

  • Apostolescu GA, Cernatescu C, Cobzaru C, Tataru-Farmus RE, Apostolescu N (2015) Studies of the photocatalytic degradation of organic dyes using CeO2-ZnO mixed oxides, 14:415–420

    Google Scholar 

  • Avasarala BK, Tirukkovalluri SR, Bojja S (2016) Magnesium doped titania for photocatalytic degradation of dyes in visible light. J Environ Anal Toxicol 6:1–8

    Google Scholar 

  • Bakardiieva S, Subrt J, Stengl V, Dianez MJ, Sayagues MJ (2005) Photoactivity of anatase-rutile TiO2 nanocrystalline mixtures obtained by heat treatment of homogeneously precipitated anatase. Appl Catal B 58:193–202

    Article  Google Scholar 

  • Baran W, Makowski A, Wardas W (2003) The influence of FeCl3 on the photocatalytic degradation of dissolved azo dyes in aqueous TiO2 suspensions. Chemosphere 53:87–95

    Article  CAS  Google Scholar 

  • Baran W, Makowski A, Wardas W (2008) The effect of UV radiation adsorption of cationic and anionic dye solutions on their photocatalytic degradation in the presence of TiO2. Dyes Pigm 76:226–230

    Article  Google Scholar 

  • Bauer C, Jacques P, Kalt A (2001) Photooxidation of an azo dye induced by visible light incident on the surface of TiO2. J Photochem Photobiol A Chem 140:87

    Article  CAS  Google Scholar 

  • Bavykin DV, Friedrich JM, Walsh FC (2006) Protonated titanates and TiO2 nanostructured materials: synthesis, properties and applications. Adv Mater 18:2807–2824

    Article  CAS  Google Scholar 

  • Bhati I, Pinki BP, Suresh CA (2010) Photocatalytic degradation of fast green using nanosized CeCrO3. Maced J Chem Chem Eng 29:195–202

    Article  CAS  Google Scholar 

  • Birte M, Lennart M, Olaf W (2017) Photocatalytic degradation of toluene, butyl acetate a limonene under UV and visible light with titanium dioxide-graphene oxide as photocatalyst. Environs 4:1–9

    Google Scholar 

  • Bubacz K, Choina J, Dolat D, Morawski AW (2010) Methylene blue and phenol photocatalytic degradation on nanoparticles of anatase TiO2 Pol. J Environ Stud 19:685–691

    CAS  Google Scholar 

  • Colmenares JC, Luque R, Campelo JM, Colmenares F, Karpinski Z, Romero AA (2009) Nanostructured photocatalysts and their applications in the photocatalytic transformation of lignocellulosic biomass: an overview. Materials (basel) 2:2228–2258

    Article  CAS  Google Scholar 

  • Colon G, Hidalgo MC, Munuera G, Ferino I, Cutrufello MG, Navio JA (2006) Structural and surface approach to the enhanced photocatalytic activity of sulfated TiO2 photocatalyst. Appl Catal B 63:45–59

    Article  CAS  Google Scholar 

  • Dharmarajan P, Sabastiyan A, K< SM, Titus S, Muthukumar C (2013) Photocatalytic degradation of reactive dyes in effluents employing copper doped titanium dioxide nanocrystals and direct sunlight. Chem Sci Trans 2:1450–1458

    Google Scholar 

  • Dhatshabamurthi P, Subhash B, Shanthi M (2015) Investigation on UVA light photocatalytic degradation of azo dye in the presence of CdO/TiO2 coupled semiconductor. Mater Sci Semicond Process 35:22–29

    Article  Google Scholar 

  • Di Paola A, Bellardita M, Palmisano L (2013) Brookite, the least known TiO2 photo-catalyst. Catalysts 3:36–73

    Article  Google Scholar 

  • Dnyaneshwar R (2017) Photocatalytic degradation of dyes in water by analytical reagent grade photocatalysts—a comparative study. Drink Water Eng Sci 10:109

    Article  Google Scholar 

  • Elahee K (2010) Heat recovery in the textile dyeing and finishing industry: lessons from develo** economies. J Energy Southern Africa 21:9–15

    Article  Google Scholar 

  • Elena CP, Felix E, Fernando V (2017) Computational nanotechnology to predict photocatalysis of titania nanoparticles in cement-based materials. IEEE Conf Proc 17:208–123

    Google Scholar 

  • Elmorsi TM, Riyad YM, Mohamed ZH, Abd El Bary HM, Bary E (2010) Decolorization of mordant red 73 azo dye in water using H2O2/UV and photo-Fenton treatment. J Hazard Mater 174:352–358

    Article  CAS  Google Scholar 

  • Eyasu A, Yadav OP, Bachheti RK (2013) Photocatalytic degradation of methyl orange dye using Cr-doped ZnS nanoparticles under visible radiation. Int J Chemtech Res 5:1452–1461

    CAS  Google Scholar 

  • Foletto EL, Battiston S, Collazzo GC, Bassaco MM, Mazutti MA (2012) Degradation of leather dye using CeO2-SnO2 nanocomposite as photocatalyst under sunlight. Water Air Soil Pollution 223:5773–5779

    Article  CAS  Google Scholar 

  • Fox MA, Dulay MT (1993) Heterogeneous photocatalysis. Chem Rev 93:341

    Article  CAS  Google Scholar 

  • Gouvea CA, Wypych F, Moreaes SG, Duran N, Nagat N, Peralta-Zamora P (2000) Semiconductor-assisted photo-catalytic degradation of reactive dyes in aqueous solution. Chemosphere 40:433–440

    Article  CAS  Google Scholar 

  • Guettai N, Amar HA (2005) Photocatalytic oxidation of methyl orange in presence of titanium dioxide in aqueous suspension Part II Kinetic study. Desalination 185:439–448

    Article  CAS  Google Scholar 

  • Guillard C, Diadier J, Monnet C, Dussaud J, Malato S, Blanco J, Maldonano MI, Herrmann JM (2003) Solar efficiency of new deposited titania photo-catalyst: Chlorophenol, pesticide and dye removal applications. Appl Catal b: Environ 46:319–332

    Article  CAS  Google Scholar 

  • Gul S, Yildlrln O (2009) Degradation of reactive red 194 and reactive yellow 145 azo dyes by O3 and H2O2/UV-C process. Chem Eng J 155:684–690

    Article  Google Scholar 

  • Hashimoto K, Irie H, Fujishima A (2005) TiO2 photocatalysis: a historical overview future prospect. Jpn J Appl Phys 44:8269–8285

    Article  CAS  Google Scholar 

  • He Y, Zhang L, Fan M, Wang X, Walbridge ML, Nong Q, Wu Y, Zhao L (2015) Z-scheme SnO2-x/g-C3N4 composite as an efficient photocatalyst for dye degradation and photocatalytic CO2 reduction. Sol Energy Mater Sol Cells 137:175–184

    Article  CAS  Google Scholar 

  • Hernandez-Alonso MD, Fresno F, Suareza S, Coronado JM (2009) Development of alternative photocatalysts to TiO2: challenges and opportunities. Energy Environ Sci 2:1231–1257

    Article  CAS  Google Scholar 

  • Hoffman MR, Martin ST, Choi W, Bahnemannt DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96

    Article  Google Scholar 

  • Huang M, Xu C, Wu Z, Huang Y, Lin J, Wu J (2008) Photocatalytic decolorization of methyl orange solution by Pt modified TiO2 loaded on natural zeolite. Dyes Pigm 2:327–334

    Article  Google Scholar 

  • Iakandar F, Nandiyanto ABD, Yun KM, Hogan CJ, Biswas P (2007) Enhanced photocatalytic performance of brookite TiO2 macroporous particles prepared by spray drying with colloidal templating. Adv Mater 19:1408–1412

    Article  Google Scholar 

  • Ioannis KK, Triatafyllos A (2004) TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Appl Catal B 49:1–14

    Article  Google Scholar 

  • Kamal S, Afshin M, Behzad S, Borhan M, Fardin G (2014) Investigation of photocatalytic degradation of reactive balck 5 dyes using ZnO-CuO nano-composite. Zanki J Med Sci 15:66–74

    Google Scholar 

  • Karunakaran C, Magesan P, Gomathisankar P, Vinayagamoorthy P (2013) Photocatalytic degradation of dyes by Al2O3-TiO2 and ZrO2-TiO2 nanocomposites. Mater Sci Forum 734:325–333

    Article  Google Scholar 

  • Khan MR, Kurney ASW, Fahmida G (2017a) Parameters affecting the photocatalytic degradation of dyes using TiO2: a review. Appl Water Sci 7:1569–1578

    Article  Google Scholar 

  • Khan MR, Kurny ASW, Eahmida G (2017b) Parameters affecting the photo-catalytic degradation of dyes using TiO2: a review. Appl Water Sci 7:1569–1578

    Article  Google Scholar 

  • Khataee AR, Pons MN, Zahraa O (2009) Photocatalytic degradation of three azo dyes using immobilized TiO2 nanoparticles on glass plates activated by UV light irradiation: influence of dye molecular structure. J Hazard Mater 168:451–457

    Article  CAS  Google Scholar 

  • Khataee AK, Kasiri MB (2010) Photocatalytic degradation of organic dyes in the presence of nanostructured titanium dioxide: influence of the chemical structure dyes. J Mol Catal Chem 328:8–26

    Google Scholar 

  • Kirupavasam EK, Allen GR (2012) Photocatalytic degradation of amido black-10B catalyzed by carbon doped TiO2 photocatalyst. Int J Green Chem Bioprocess 2(3):20–25

    Google Scholar 

  • Koelsch M, Cassaignon S, Guillemoles JF, Jolivet JP (2002) Comparison of optical and electrochemical properties of anatase and brookite TiO2 synthesized by the sol-gel method. Thin Solid Films 403:312–319

    Article  Google Scholar 

  • Kumar S, Sahare PD (2013) Photocatalytic activity of bismuth vanadate for the degradation of organic compounds. NANO 8:1350007

    Article  Google Scholar 

  • Kurny ASW, Fahmida G (2017) Parameters affecting the photocatalytic degradation of dyes using TiO2: a review. Appl Water Sci 7:1569–1578

    Article  Google Scholar 

  • Li H (2011) Enhanced photocatalytic activity of electrospun TiO2 nanofibers with optimal anatase/rutile ratio. J Am Ceramic Soc 94:3184–3187

    Article  CAS  Google Scholar 

  • Li Q, Guan Z, Wu D, Zhao X, Bao S, Tian B, Zhang J (2017) Z scheme BiOCl-Au-CdS heterostructure with enhanced sun light driven photocatalytic activity in degrading water dyes and antibiotics. ACS Sustain Chem Eng 5:6958–6968

    Article  CAS  Google Scholar 

  • Lin H, Huang CP, Li W, Ni C, Shah SI, Tseng Y-H (2006) Size dependency of nanocrystalline TiO2 on its optical property and photocatalytic reactivity exemplified by 2-cholorophrnol. Appl Catal B 68:1–11

    Article  CAS  Google Scholar 

  • Liu Y, Wang R, Yang Z, Du H, Jiang Y, Shen C, Liang K, Xu A (2015) Enhanced visible light photocatalytic activity of Z-scheme graphitic carbon nitride/oxygen vacancy-rich zinc oxide hybrid photocatalysts. Chin J Catal 36:2135–2144

    Article  CAS  Google Scholar 

  • Liu P, Liu Y, Ye W, Ma J, Gao D (2016) Flower like N-doped MoS2 for photocatalytic degradation of RhB by visible light irradiation. Nanotechnology 27:225403

    Article  Google Scholar 

  • Long X, Yan T, Hu T, Gong X, Li H, Chu Z (2017) Enhanced photocatalysis of g-C3N4 thermally modified with calcium chloride. Catal Lett 147:1922–1930

    Article  CAS  Google Scholar 

  • Mahadwad OK, Parikh PA, Jasra RV, Patil C (2011) Photocatalytic degradation of reactive black-5 dye using TiO2 impregnated ZSM-5 Bull. Mater Sci 34:551–556

    CAS  Google Scholar 

  • Mahmoud MA, Poncheri A, Badr Y, Abd El Wahed MG (2009) Photocatalytic degradation of methyl red dye. South Afr. J. Sci. 105:299–303

    CAS  Google Scholar 

  • Marinovic V, Ljubas D, Curkovic L (2017) Effects of concentration and UV radiation wavelengths on photolytic and photocatalytic degradation of azo dyes aqueous solutions by sol-gel TiO2 films. Holistic Approach Environ 7:3–14

    CAS  Google Scholar 

  • Mehra M, Sharma TR (2012) Photo-catalytic degradation of two commercial dyes in aqueous phase using photo catalyst TiO2. Adv Appl Sci Res 3:849–853

    CAS  Google Scholar 

  • Mehta R, Surana M (2013) Photodegradation of dye acid orange 67 by titanium dioxide in the presence of visible light and UV light. Res Rev 2:1216

    Google Scholar 

  • Meng Z, Juan Z (2008) Wastewater treatment by photocatalytic oxidation of nano-ZnO. Global Environ Policy Jpn 12:1–9

    Google Scholar 

  • Mezughi K, Tizaoui C, Ma’an FA (2014) effect of TiO2 concentration on photocatalytic degradation of reactive orange 16 dye (RO16). Adv Environ Biol 8:692–695

    Google Scholar 

  • Mills A, Davies RH, Worsley D (1993) Water purification by semiconductor photocatalysis. Chem Soc Rev 22:417–425

    Article  CAS  Google Scholar 

  • Min OM, Ho LN, Ong SA, Wong YS (2015) Comparison between the photocatalytic degradation of single and binary azo dyes in TiO2 suspensions under solar light irradiation. J Water Reuse Desalin 5:579–591

    Article  CAS  Google Scholar 

  • Mo S-D, Ching WY (1995) Electronic and optical properties of three phases of titanium dioxide: rutile, anatase and brookite. Phys Rev B Condens Matter 51:13023–13032

    Article  CAS  Google Scholar 

  • Mohammed A, Kapoor K, Mobin SM (2016) Improved photocatalytic degradation of organic dyes by ZnO-nanoflowers. Chem Select 1:3483–3490

    Google Scholar 

  • Morgan BJ, Watson GW (2010) Intrinsic n-type defect formation in TiO2: a comparison of rutile and anatase from GGA plus U calculations. J Phys Chem 114:2321–2328

    CAS  Google Scholar 

  • Mukhtish MZB, Najnin F, Rahman MM, Uddin MJ (2013) Photocatalytic degradation of different dyes using TiO2 with high surface area: a kinetic study. J Sci Res 5(2):301–314

    Article  Google Scholar 

  • Nagaraja R, Nagaraju KCRG, Nagabhushana BM (2012) Photocatalytic degradation of Rhodamine B dye under UV/solar light using ZnO nano powder synthesized by solution combustion route. Powder Technol 215:91–97

    Article  Google Scholar 

  • Narde SB, Lanjewar RB, Gadegone SM, Lanjewar MR (2017) Photocatalytic degradation of azo dye congo red using Ni0.6Co0.4Fe2O4 as photocatalyst. Pharma Chem 9:115–120

    CAS  Google Scholar 

  • Neppolian B, Sakthivel S, Arabindo B, Palanichamy M, Murugesan V (1999) Degradation of textile dye by solar light using TiO2 and ZnO photocatalysts. J Environ Sci Health Part A Tox Hazard Subst Environ Eng 34:1829–1838

    Article  Google Scholar 

  • Nguyen-Phan TD, Kim EJ, Hahn SH, Kim W-J, Shin EW (2011) Synthesis of hierarchical rose bridal bouquet- and humming-top like TiO2 nanostructures and their shape-dependent degradation efficiency of dye. J Colloid Interface Sci 356:138–144

    Article  CAS  Google Scholar 

  • Nosaka Y, Nosaka AY (2017) Generation and detection of reactive oxygen species in photocatalysis. Chem Rev 117:11302–11336

    Article  CAS  Google Scholar 

  • Odling G, Robertson N (2017) Silar BiOI-sensitized TiO2 films for visible-light photocatalytic degradation of Rhodamine B and 4- cholophenol. Chem Phys Chem 18:728–735

    Article  CAS  Google Scholar 

  • Ohno T, Tsubota T, Toyofuku M, Inaba R (2004) Photocatalytic activity of a TiO2 photo-catalyst doped with C4++ and S4++ ions having a rutile phase under visible light. Catal Lett 98:255–258

    Article  CAS  Google Scholar 

  • Ohtani B, Ogawa Y, Nishimoto S-I (1997) Photocatalytic activity of amorphous-anatase mixture of titanium (IV) oxide particles suspended in aqueous solutions. J Phys Chem 101:19

    Article  Google Scholar 

  • Pandit VK, Arbuj SS, Pandit YB, Naik SD, Rane SB, Mulik UP, Gosavic SW, Kale BB (2015) Solar light driven dye degradation using novel organic-inorganic (6,13-pentacenequinone/TiO2) nanocomposite. RSC Adv 5:10326–10331

    Article  CAS  Google Scholar 

  • Paridwala JM, Patel FJ, Patel SS (2017) Photocatalytic degradation of RB21 dye by TiO2 and ZnO under natural sunlight: microwave irradiation and UV reactor. Int J Adv Res Engineer Technol 8:8–16

    Google Scholar 

  • Poulios I, Aetopoulou I (1999) Photocatalytic degradation of the textile dye reactive orange 16 in the presence of TiO2 suspensions. Environ Technol 20:479–487

    Article  CAS  Google Scholar 

  • Poulios I, Avrans A, Rekliti E, Zouboulis A (2000) Photocatalytic oxidation of Auramine O in the presence of semiconducting oxides. J. Chem. Biotechnol. 75:205–212

    Article  CAS  Google Scholar 

  • Qamar M, Yoon CR, Oh HJ, Lee NH, Park K, Kim DH (2008) Preparation and photocatalytic activity of nanotubes obtained from titanium dioxide. Catal Today 131:3–14

    Article  CAS  Google Scholar 

  • Quang MD, Nguyen ND, Nguyen QH (2017) Photocatalytic degradation of azo dye (Methyl Red) in water under visible light using AgNi/TiO2 synthesized by and ɣ-irradiation method. Int J Environ Agric Biotechnol 2:529–538

    Google Scholar 

  • Raheem Z, Hameed AM (2015) Photocatalytic degradation for methylene blue dye using magnesium oxide. Int J Basic Appl Sci 4:81–83

    Google Scholar 

  • Rajesh JT, Praveen KS, Ramachandra GK, Raksh VJ (2007) Photocatalytic degradation of dyes and organic contaminants in water using nanocrystalline anatase and rutile TiO2. Sci Technol Adv Mater 8:455–462

    Article  Google Scholar 

  • Raji J, Palanivelu K (2016) Semiconductor coupled solar photo-Fenton’s treatment of dyes and textile effluent. Adv Environ Res 5:61–77

    Article  Google Scholar 

  • Rauf MA, Meetani MA, Hisaidee S (2011) An overview on the photocatalytic degradation of azo dyes in the presence of TiO2 doped with selective transition metals. Desalination 276:13–27

    Article  CAS  Google Scholar 

  • Rauf MA, Salman A S Fundamental principles and application of heterogenous photocatalytic degradation of dyes in solution. Chem Engineer J 151:10–18

    Google Scholar 

  • Reutergarth LB, Iangpashuk M (1997) Photocatalytic decolorization of reactive azo dye: a comparison between TiO2 and CdS photocatalysts. Chemosphere 35:585–596

    Article  Google Scholar 

  • Rochkind M, Pasternak S, Paz Y (2014) Using dyes for evaluating photocatalytic properties: a critical review. Molecules 20:88–110

    Article  Google Scholar 

  • Rong X, Qiu F, Zhao H, Yan J, Zhu X, Yang D (2015) Fabrication of single-layer graphitic carbon nitride and coupled systems for the phot-catalytic degradation of dyes under visible-light irradiation. Eur J Inorg Chem 8:1359–1367

    Article  Google Scholar 

  • Rupa AV, Manikandan D, Divakar D, Revathi S, Preethi ME, Shanthi K, Sivakumar T (2015) Photocatalytic degradation of tetrazine dye using TiO2 catalyst: salt effect kinetic studies. Indian J Chem Technol 14:71–78

    Google Scholar 

  • Saber A, Rasul MG, Wayde M, Richard B, Hashib MA (2011) Advances in heterogeneous photocatalytic degradation of phenols and dyes in waste water: a review. Water Air Soil Pollut 215:3–29

    Article  Google Scholar 

  • Sacco O, Stoller M, Vincenzo V, Ciambelli P, Chianese A, Sannino D (2012) Photocatalytic degradation of organic dyes under visible light on N-doped TiO2 photo-catalysts. Int J Photoenergy 2012:1–8

    Google Scholar 

  • Salem MA, Shaban SY, Ismail SM (2015) Photocatalytic degradation of acid green 25 using ZnO and natural sunlight. Int J Energy Technol Adv Eng 5:439–443

    Google Scholar 

  • Sarkhanpour R, Tavakoli O, Ghiyasi S, Saeb MR, Borja R (2017) Photocatalytic degradation of a chemical industry wastewater: search for higher efficiency. J Residuals Sci Technol 14:44–58

    CAS  Google Scholar 

  • Sclafani A, Herrmann JM (1996) Comparison of the photoelectronic and photocatalytic activities of various anatase and rutile forms of titania in pure liquid organic phases and in aqueous solutions. J Phys Chem 100:13655–13661

    Article  CAS  Google Scholar 

  • Sharma S, Ameta RRKM, Suresh CA (2013) Photocatalytic degradation of rose Bengal using semiconducting zinc sulphide as the photocatalyst. J Serb Chem Soc 78:897–905

    Article  CAS  Google Scholar 

  • Simovic B, Poleti D, Golubovic A, Matkovic A, Scepanovic M, Babic B, Brankovic G (2017) Enhanced photocatalytic degradation of RO16 dye using Ag modified ZnO nano-powders prepared by the solvothermal method Process. Appl Ceramics 11:27–38

    CAS  Google Scholar 

  • Singh P, Mondal K, Sharma A (2013) Reusable electrospun mesoporous ZnO nanofiber mats for photocatalytic degradation of polycyclic aromatic hydrocarbon dyes in wastewater. J Colloid Interface Sci 394:208–215

    Article  CAS  Google Scholar 

  • Sun J, Wang X, Sun R, Sun S, Qiao L (2006) Photocatalytic degradation and kinetics of orange G using nano-sized Sn (IV)/TiO2/AC photocatalyst. J Mol Catal Chem 260:241–246

    Article  CAS  Google Scholar 

  • Sun J, Qiao L, Sun S, Wang G (2008) Photocatalytic degradation of orange G on nitrogen-doped TiO2 catalysts under visible light and sunlight irradiation. J Hazard Mater 155:312–319

    Article  CAS  Google Scholar 

  • Tang WZ, An H (1995) UV/TiO2 photocatalytic oxidation of commercial dyes in aqueous solutions. Chemosphere 31:4158–4170

    Article  Google Scholar 

  • Tesfay WG, Manjunatha P, Rani MP (2015) Review on the photocatalytic degradation of dyes and antibacterial activities of pure and doped-ZnO. Int J Sci Res 4:2252–2264

    Google Scholar 

  • Thuy-Duong Nguyen P, Eui Jung K, Sung Hong H, Woo Jae K, Eun Woo S (2011) Synthesis of hierarchical rose bridal bouquet- and humming-top-like TiO2 nanostructures and their shape-dependent degradation efficiency of dye. J Colloid Interface Sci 356:138–144

    Article  Google Scholar 

  • Tiwari B, Ram S (2019) Biogenic synthesis of graphitic carbon nitride for photocatalytic degradation of organic dyes. ACS Omega 6:16298–16307

    Google Scholar 

  • Tiwari B, Ram S, Banerji P (2018) Biogenic synthesis of tunable core-shell C-CaIn2O4, interface bonding, conductive network channels and tailored dielectric properties. ACS Sustain Chem Eng 6:16298–16307

    Article  CAS  Google Scholar 

  • Tunesi S, Anderson M (1991) Influence of chemisorption on the photodecomposition of salicylic acid and related compounds using suspended titania ceramic membranes. J Phys Chem 95:3399–3405

    Article  CAS  Google Scholar 

  • Wang K-H, Hsieh Y-H, Wu C-H, Chang C-Y (2000) The pH and anion effects on the heterogeneous photocatalytic degradation of omethylbenzoic acid in TiO2 aqueous suspension. Chemosphere 40:389–394

    Article  CAS  Google Scholar 

  • Wei C-H, Tang X-H, Liang J-R, Tan SY (2007) Preparation, characterization and photocatalytic activities of boron and cerium codoped TiO2. J Environ Sci (china) 19:90–96

    Article  CAS  Google Scholar 

  • **aoqing C, Zhansheng W, Dandan L, Zhenzhen G (2017) Preparation of ZnO photocatalyst for the efficient and rapid photo-catalytic degradation of azo dyes. Nanoscale Res Lett 12:143

    Article  Google Scholar 

  • **e YB, Li XZ (2006) Interactive oxidation of photo-electro catalysis and electro-Fenton for azo dye degradation using TiO2-Ti mesh and reticulated vitreous carbon electrode. Mater Chem Phys 95:39–50

    Article  CAS  Google Scholar 

  • **ong Z, Zhang LL, Ma J, Zhao XS (2010) Photocatalytic degradation of dyes over graphene-gold nanocomposites under visible light irradiation. Chem Commun (camb) 46(33):6099–6101

    Article  CAS  Google Scholar 

  • Ye M, Zhang Q, Hu Y, GE j, Lu Z, He L, Chen Z, Yin Y (2010) Magnetically recoverable core-shell nanocomposites with enhanced photocatalytic activity. Chemistry 16:6243–6250

    Google Scholar 

  • Zangi ZM, Ganjidoust H, Ayati B (2017) Analysis of photocatalytic degradation of zao dyes under sunlight with response surfsce method. Desalination Water Treat 63:262–274

    Article  CAS  Google Scholar 

  • Zhang T, Oyama T, Horikoshi S, Hidaka H, Zhao J, Serpone N (2001) Photocatalysed N-demethylation and degradation of methylene blue in titania dispersions exposed to concentrated sunlight, solar energy. Mater Solar Cells 73:287–303

    Article  Google Scholar 

  • Zhiyong Y, Bensimon M, Sarria V, Stolitchnov I, Jardim W, Laub D, Mielczarski E, Mielczarski J, Kiwi-Minsker L, Kiwi J (2007) ZnSO4-TiO2 doped catalyst with higher activity in photocatalytic processes. Appl Catal B 76:185–195

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barkha Tiwari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tiwari, B., Park, H.J. (2022). Recent Developments in Photocatalytic Techniques of Dye Degradation in Effluents. In: Dave, S., Das, J. (eds) Trends and Contemporary Technologies for Photocatalytic Degradation of Dyes. Environmental Science and Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-08991-6_3

Download citation

Publish with us

Policies and ethics

Navigation