Voltage-Gated Calcium Channel Auxiliary β Subunits

  • Chapter
  • First Online:
Voltage-Gated Calcium Channels

Abstract

High-voltage-activated Ca2+ channels (HVACCs) convert information encoded in action potentials into Ca2+ fluxes that control critical biological processes, such as muscle contraction, neurotransmitter or hormone release, and regulation of gene expression. HVACCs are hetero-multimeric proteins comprised minimally of a pore-forming α1 subunit assembled with auxiliary cytosolic β and extracellular α2δ subunits. There are four distinct β subunit isoforms with multiple splice variants that are differentially expressed in different tissues and which exhibit some overlap** as well as unique physiological functions. The different CaVβs share a conserved central src homology 3 (SH3) and catalytically inactive guanylate kinase (GK) domain as well as variable N- and C-termini, and middle HOOK region. The conserved SH3-GK module is shared in common with the membrane-associated guanylate kinase (MAGUK) family of scaffold proteins that organize intracellular signaling pathways. CaVβs are important for surface trafficking of pore-forming α1 subunits, and also regulate distinct aspects of channel gating. Some intracellular proteins, such as RGK proteins and Rab3-interacting molecule (RIM), regulate HVACCs via interacting with CaVβ subunits. CaVβ dysregulation is associated with human diseases, and they have been targeted with small molecules as well as engineered proteins to develop HVACC inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 213.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahern, B. M., Levitan, B. M., Veeranki, S., Shah, M., Ali, N., Sebastian, A., Su, W., Gong, M. C., Li, J., Stelzer, J. E., Andres, D. A., & Satin, J. (2019). Myocardial-restricted ablation of the GTPase RAD results in a pro-adaptive heart response in mice. The Journal of Biological Chemistry, 294, 10913–10927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Altier, C., Dubel, S. J., Barrere, C., Jarvis, S. E., Stotz, S. C., Spaetgens, R. L., Scott, J. D., Cornet, V., De Waard, M., Zamponi, G. W., Nargeot, J., & Bourinet, E. (2002). Trafficking of L-type calcium channels mediated by the postsynaptic scaffolding protein AKAP79. The Journal of Biological Chemistry, 277, 33598–33603.

    Article  CAS  PubMed  Google Scholar 

  • Altier, C., Garcia-Caballero, A., Simms, B., You, H., Chen, L., Walcher, J., Tedford, H. W., Hermosilla, T., & Zamponi, G. W. (2011). The Cavbeta subunit prevents RFP2-mediated ubiquitination and proteasomal degradation of L-type channels. Nature Neuroscience, 14, 173–180.

    Article  CAS  PubMed  Google Scholar 

  • Anderson, J. M. (1996). Cell signalling: MAGUK magic. Current Biology, 6, 382–384.

    Article  CAS  PubMed  Google Scholar 

  • Arias, J. M., Murbartian, J., Vitko, I., Lee, J. H., & Perez-Reyes, E. (2005). Transfer of beta subunit regulation from high to low voltage-gated Ca2+ channels. FEBS Letters, 579, 3907–3912.

    Article  CAS  PubMed  Google Scholar 

  • Ball, S. L., Powers, P. A., Shin, H. S., Morgans, C. W., Peachey, N. S., & Gregg, R. G. (2002). Role of the beta(2) subunit of voltage-dependent calcium channels in the retinal outer plexiform layer. Investigative Ophthalmology & Visual Science, 43, 1595–1603.

    Google Scholar 

  • Bannister, R. A., & Beam, K. G. (2013). Ca(V)1.1: The atypical prototypical voltage-gated Ca(2)(+) channel. Biochimica et Biophysica Acta, 1828, 1587–1597.

    Article  CAS  PubMed  Google Scholar 

  • Bannister, R. A., Colecraft, H. M., & Beam, K. G. (2008). Rem inhibits skeletal muscle EC coupling by reducing the number of functional L-type Ca2+ channels. Biophysical Journal, 94, 2631–2638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bauer, R., Timothy, K. W., & Golden, A. (2021). Update on the molecular genetics of Timothy syndrome. Frontiers in Pediatrics, 9, 668546.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bean, B. P., Nowycky, M. C., & Tsien, R. W. (1984). Beta-adrenergic modulation of calcium channels in frog ventricular heart cells. Nature, 307, 371–375.

    Article  CAS  PubMed  Google Scholar 

  • Beguin, P., Nagashima, K., Gonoi, T., Shibasaki, T., Takahashi, K., Kashima, Y., Ozaki, N., Geering, K., Iwanaga, T., & Seino, S. (2001). Regulation of Ca2+ channel expression at the cell surface by the small G-protein kir/Gem. Nature, 411, 701–706.

    Article  CAS  PubMed  Google Scholar 

  • Beguin, P., Ng, Y. J., Krause, C., Mahalakshmi, R. N., Ng, M. Y., & Hunziker, W. (2007). RGK small GTP-binding proteins interact with the nucleotide kinase domain of Ca2+-channel beta-subunits via an uncommon effector binding domain. The Journal of Biological Chemistry, 282, 11509–11520.

    Article  CAS  PubMed  Google Scholar 

  • Berggren, P. O., Yang, S. N., Murakami, M., Efanov, A. M., Uhles, S., Kohler, M., Moede, T., Fernstrom, A., Appelskog, I. B., Aspinwall, C. A., Zaitsev, S. V., Larsson, O., de Vargas, L. M., Fecher-Trost, C., Weissgerber, P., Ludwig, A., Leibiger, B., Juntti-Berggren, L., Barker, C. J., … Flockerzi, V. (2004). Removal of Ca2+ channel beta3 subunit enhances Ca2+ oscillation frequency and insulin exocytosis. Cell, 119, 273–284.

    Article  CAS  PubMed  Google Scholar 

  • Bers, D. M. (2002). Cardiac excitation-contraction coupling. Nature, 415, 198–205.

    Article  CAS  PubMed  Google Scholar 

  • Bichet, D., Cornet, V., Geib, S., Carlier, E., Volsen, S., Hoshi, T., Mori, Y., & De Waard, M. (2000). The I-II loop of the Ca2+ channel alpha1 subunit contains an endoplasmic reticulum retention signal antagonized by the beta subunit. Neuron, 25, 177–190.

    Article  CAS  PubMed  Google Scholar 

  • Bourdin, B., Marger, F., Wall-Lacelle, S., Schneider, T., Klein, H., Sauve, R., & Parent, L. (2010). Molecular determinants of the CaVbeta-induced plasma membrane targeting of the CaV1.2 channel. The Journal of Biological Chemistry, 285, 22853–22863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brandmayr, J., Poomvanicha, M., Domes, K., Ding, J., Blaich, A., Wegener, J. W., Moosmang, S., & Hofmann, F. (2012). Deletion of the C-terminal phosphorylation sites in the cardiac beta-subunit does not affect the basic beta-adrenergic response of the heart and the Ca(v)1.2 channel. The Journal of Biological Chemistry, 287, 22584–22592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breitenkamp, A. F., Matthes, J., Nass, R. D., Sinzig, J., Lehmkuhl, G., Nurnberg, P., & Herzig, S. (2014). Rare mutations of CACNB2 found in autism spectrum disease-affected families alter calcium channel function. PLoS One, 9, e95579.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bunemann, M., Gerhardstein, B. L., Gao, T., & Hosey, M. M. (1999). Functional regulation of L-type calcium channels via protein kinase A-mediated phosphorylation of the beta(2) subunit. The Journal of Biological Chemistry, 274, 33851–33854.

    Article  CAS  PubMed  Google Scholar 

  • Buraei, Z., & Yang, J. (2010). The {beta} subunit of voltage-gated Ca2+ channels. Physiological Reviews, 90, 1461–1506.

    Article  CAS  PubMed  Google Scholar 

  • Burashnikov, E., Pfeiffer, R., Barajas-Martinez, H., Delpon, E., Hu, D., Desai, M., Borggrefe, M., Haissaguerre, M., Kanter, R., Pollevick, G. D., Guerchicoff, A., Laino, R., Marieb, M., Nademanee, K., Nam, G. B., Robles, R., Schimpf, R., Stapleton, D. D., Viskin, S., … Antzelevitch, C. (2010). Mutations in the cardiac L-type calcium channel associated with inherited J-wave syndromes and sudden cardiac death. Heart Rhythm, 7, 1872–1882.

    Article  PubMed  PubMed Central  Google Scholar 

  • Burgess, D. L., Jones, J. M., Meisler, M. H., & Noebels, J. L. (1997). Mutation of the Ca2+ channel beta subunit gene Cchb4 is associated with ataxia and seizures in the lethargic (lh) mouse. Cell, 88, 385–392.

    Article  CAS  PubMed  Google Scholar 

  • Cachelin, A. B., de Peyer, J. E., Kokubun, S., & Reuter, H. (1983). Ca2+ channel modulation by 8-bromocyclic AMP in cultured heart cells. Nature, 304, 462–464.

    Article  CAS  PubMed  Google Scholar 

  • Canti, C., Bogdanov, Y., & Dolphin, A. C. (2000). Interaction between G proteins and accessory subunits in the regulation of 1B calcium channels in Xenopus oocytes. The Journal of Physiology, 527(Pt 3), 419–432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Canti, C., Davies, A., Berrow, N. S., Butcher, A. J., Page, K. M., & Dolphin, A. C. (2001). Evidence for two concentration-dependent processes for beta-subunit effects on alpha1B calcium channels. Biophysical Journal, 81, 1439–1451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cassidy, J. S., Ferron, L., Kadurin, I., Pratt, W. S., & Dolphin, A. C. (2014). Functional exofacially tagged N-type calcium channels elucidate the interaction with auxiliary alpha2delta-1 subunits. Proceedings of the National Academy of Sciences of the United States of America, 111, 8979–8984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, Y. H., Li, M. H., Zhang, Y., He, L. L., Yamada, Y., Fitzmaurice, A., Shen, Y., Zhang, H., Tong, L., & Yang, J. (2004). Structural basis of the alpha1-beta subunit interaction of voltage-gated Ca2+ channels. Nature, 429, 675–680.

    Article  CAS  PubMed  Google Scholar 

  • Chen, H., Puhl, H. L., 3rd, Niu, S. L., Mitchell, D. C., & Ikeda, S. R. (2005). Expression of Rem2, an RGK family small GTPase, reduces N-type calcium current without affecting channel surface density. The Journal of Neuroscience, 25, 9762–9772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, R. S., Deng, T. C., Garcia, T., Sellers, Z. M., & Best, P. M. (2007). Calcium channel gamma subunits: A functionally diverse protein family. Cell Biochemistry and Biophysics, 47, 178–186.

    Article  CAS  PubMed  Google Scholar 

  • Chen, X., Liu, D., Zhou, D., Si, Y., Xu, D., Stamatkin, C. W., Ghozayel, M. K., Ripsch, M. S., Obukhov, A. G., White, F. A., & Meroueh, S. O. (2018). Small-molecule CaValpha1CaVbeta antagonist suppresses neuronal voltage-gated calcium-channel trafficking. Proceedings of the National Academy of Sciences of the United States of America, 115, E10566–E10575.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chien, A. J., Carr, K. M., Shirokov, R. E., Rios, E., & Hosey, M. M. (1996). Identification of palmitoylation sites within the L-type calcium channel beta2a subunit and effects on channel function. The Journal of Biological Chemistry, 271, 26465–26468.

    Article  CAS  PubMed  Google Scholar 

  • Chien, A. J., Gao, T., Perez-Reyes, E., & Hosey, M. M. (1998). Membrane targeting of L-type calcium channels. Role of palmitoylation in the subcellular localization of the beta2a subunit. The Journal of Biological Chemistry, 273, 23590–23597.

    Article  CAS  PubMed  Google Scholar 

  • Colecraft, H. M. (2020). Designer genetically encoded voltage-dependent calcium channel inhibitors inspired by RGK GTPases. The Journal of Physiology, 598, 1683–1693.

    Article  CAS  PubMed  Google Scholar 

  • Colecraft, H. M., Brody, D. L., & Yue, D. T. (2001). G-protein inhibition of N- and P/Q-type calcium channels: Distinctive elementary mechanisms and their functional impact. The Journal of Neuroscience, 21, 1137–1147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colecraft, H. M., Alseikhan, B., Takahashi, S. X., Chaudhuri, D., Mittman, S., Yegnasubramanian, V., Alvania, R. S., Johns, D. C., Marban, E., & Yue, D. T. (2002). Novel functional properties of Ca(2+) channel beta subunits revealed by their expression in adult rat heart cells. The Journal of Physiology, 541, 435–452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colicelli, J. (2004). Human RAS superfamily proteins and related GTPases. Science’s STKE, 2004, RE13.

    PubMed  PubMed Central  Google Scholar 

  • Craven, S. E., & Bredt, D. S. (1998). PDZ proteins organize synaptic signaling pathways. Cell, 93, 495–498.

    Article  CAS  PubMed  Google Scholar 

  • Curtis, B. M., & Catterall, W. A. (1984). Purification of the calcium antagonist receptor of the voltage-sensitive calcium channel from skeletal muscle transverse tubules. Biochemistry, 23, 2113–2118.

    Google Scholar 

  • De Waard, M., & Campbell, K. P. (1995). Subunit regulation of the neuronal alpha 1A Ca2+ channel expressed in Xenopus oocytes. The Journal of Physiology, 485, 619–634.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dolphin, A. C. (2013). The alpha2delta subunits of voltage-gated calcium channels. Biochimica et Biophysica Acta, 1828, 1541–1549.

    Article  CAS  PubMed  Google Scholar 

  • Dolphin, A. C., & Lee, A. (2020). Presynaptic calcium channels: Specialized control of synaptic neurotransmitter release. Nature Reviews. Neuroscience, 21, 213–229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong, Y., Gao, Y., Xu, S., Wang, Y., Yu, Z., Li, Y., Li, B., Yuan, T., Yang, B., Zhang, X. C., Jiang, D., Huang, Z., & Zhao, Y. (2021). Closed-state inactivation and pore-blocker modulation mechanisms of human CaV2.2. Cell Reports, 37, 109931.

    Article  CAS  PubMed  Google Scholar 

  • Dresviannikov, A. V., Page, K. M., Leroy, J., Pratt, W. S., & Dolphin, A. C. (2009). Determinants of the voltage dependence of G protein modulation within calcium channel beta subunits. Pflügers Archiv, 457, 743–756.

    Article  CAS  PubMed  Google Scholar 

  • Escayg, A., De Waard, M., Lee, D. D., Bichet, D., Wolf, P., Mayer, T., Johnston, J., Baloh, R., Sander, T., & Meisler, M. H. (2000). Coding and noncoding variation of the human calcium-channel beta4-subunit gene CACNB4 in patients with idiopathic generalized epilepsy and episodic ataxia. American Journal of Human Genetics, 66, 1531–1539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang, K., & Colecraft, H. M. (2011). Mechanism of auxiliary beta-subunit-mediated membrane targeting of L-type (Ca(V)1.2) channels. The Journal of Physiology, 589, 4437–4455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Findeisen, F., & Minor, D. L., Jr. (2009). Disruption of the IS6-AID linker affects voltage-gated calcium channel inactivation and facilitation. The Journal of General Physiology, 133, 327–343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Findeisen, F., Campiglio, M., Jo, H., Abderemane-Ali, F., Rumpf, C. H., Pope, L., Rossen, N. D., Flucher, B. E., DeGrado, W. F., & Minor, D. L., Jr. (2017). Stapled voltage-gated calcium channel (CaV) alpha-interaction domain (AID) peptides act as selective protein-protein interaction inhibitors of CaV function. ACS Chemical Neuroscience, 8, 1313–1326.

    Article  CAS  PubMed  Google Scholar 

  • Finlin, B. S., Shao, H., Kadono-Okuda, K., Guo, N., & Andres, D. A. (2000). Rem2, a new member of the Rem/Rad/Gem/Kir family of Ras-related GTPases. The Biochemical Journal, 347(Pt 1), 223–231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finlin, B. S., Crump, S. M., Satin, J., & Andres, D. A. (2003). Regulation of voltage-gated calcium channel activity by the Rem and Rad GTPases. Proceedings of the National Academy of Sciences of the United States of America, 100, 14469–14474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finlin, B. S., Mosley, A. L., Crump, S. M., Correll, R. N., Ozcan, S., Satin, J., & Andres, D. A. (2005). Regulation of L-type Ca2+ channel activity and insulin secretion by the Rem2 GTPase. The Journal of Biological Chemistry, 280, 41864–41871.

    Article  CAS  PubMed  Google Scholar 

  • Flucher, B. E. (2020). Skeletal muscle CaV1.1 channelopathies. Pflügers Archiv, 472, 739–754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flynn, R., Chen, L., Hameed, S., Spafford, J. D., & Zamponi, G. W. (2008). Molecular determinants of Rem2 regulation of N-type calcium channels. Biochemical and Biophysical Research Communications, 368, 827–831.

    Article  CAS  PubMed  Google Scholar 

  • Fu, Y., Westenbroek, R. E., Scheuer, T., & Catterall, W. A. (2014). Basal and beta-adrenergic regulation of the cardiac calcium channel CaV1.2 requires phosphorylation of serine 1700. Proceedings of the National Academy of Sciences of the United States of America, 111, 16598–16603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuller, M. D., Emrick, M. A., Sadilek, M., Scheuer, T., & Catterall, W. A. (2010). Molecular mechanism of calcium channel regulation in the fight-or-flight response. Science Signaling, 3, ra70.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gandini, M. A., & Felix, R. (2012). Functional interactions between voltage-gated Ca(2+) channels and Rab3-interacting molecules (RIMs): New insights into stimulus-secretion coupling. Biochimica et Biophysica Acta, 1818, 551–558.

    Article  PubMed  Google Scholar 

  • Ganesan, A. N., Maack, C., Johns, D. C., Sidor, A., & O’Rourke, B. (2006). Beta-adrenergic stimulation of L-type Ca2+ channels in cardiac myocytes requires the distal carboxyl terminus of alpha1C but not serine 1928. Circulation Research, 98, e11–e18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao, T., Yatani, A., Dell’Acqua, M. L., Sako, H., Green, S. A., Dascal, N., Scott, J. D., & Hosey, M. M. (1997). cAMP-dependent regulation of cardiac L-type Ca2+ channels requires membrane targeting of PKA and phosphorylation of channel subunits. Neuron, 19, 185–196.

    Article  CAS  PubMed  Google Scholar 

  • Gao, T., Bunemann, M., Gerhardstein, B. L., Ma, H., & Hosey, M. M. (2000). Role of the C terminus of the alpha 1C (CaV1.2) subunit in membrane targeting of cardiac L-type calcium channels. The Journal of Biological Chemistry, 275, 25436–25444.

    Article  CAS  PubMed  Google Scholar 

  • Gao, S., Yao, X., & Yan, N. (2021). Structure of human Cav2.2 channel blocked by the painkiller ziconotide. Nature, 596, 143–147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gebhart, M., Juhasz-Vedres, G., Zuccotti, A., Brandt, N., Engel, J., Trockenbacher, A., Kaur, G., Obermair, G. J., Knipper, M., Koschak, A., & Striessnig, J. (2010). Modulation of Cav1.3 Ca2+ channel gating by Rab3 interacting molecule. Molecular and Cellular Neurosciences, 44, 246–259.

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Gutierrez, G., Miranda-Laferte, E., Nothmann, D., Schmidt, S., Neely, A., & Hidalgo, P. (2008). The guanylate kinase domain of the beta-subunit of voltage-gated calcium channels suffices to modulate gating. Proceedings of the National Academy of Sciences of the United States of America, 105, 14198–14203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gregg, R. G., Messing, A., Strube, C., Beurg, M., Moss, R., Behan, M., Sukhareva, M., Haynes, S., Powell, J. A., Coronado, R., & Powers, P. A. (1996). Absence of the beta subunit (cchb1) of the skeletal muscle dihydropyridine receptor alters expression of the alpha 1 subunit and eliminates excitation-contraction coupling. Proceedings of the National Academy of Sciences of the United States of America, 93, 13961–13966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartzell, H. C., Mery, P. F., Fischmeister, R., & Szabo, G. (1991). Sympathetic regulation of cardiac calcium current is due exclusively to cAMP-dependent phosphorylation. Nature, 351, 573–576.

    Article  CAS  PubMed  Google Scholar 

  • He, L. L., Zhang, Y., Chen, Y. H., Yamada, Y., & Yang, J. (2007). Functional modularity of the beta-subunit of voltage-gated Ca2+ channels. Biophysical Journal, 93, 834–845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herzig, S., Khan, I. F., Grundemann, D., Matthes, J., Ludwig, A., Michels, G., Hoppe, U. C., Chaudhuri, D., Schwartz, A., Yue, D. T., & Hullin, R. (2007). Mechanism of Ca(v)1.2 channel modulation by the amino terminus of cardiac beta2-subunits. The FASEB Journal, 21, 1527–1538.

    Article  CAS  PubMed  Google Scholar 

  • Hofmann, F., Flockerzi, V., Kahl, S., & Wegener, J. W. (2014). L-type CaV1.2 calcium channels: From in vitro findings to in vivo function. Physiological Reviews, 94, 303–326.

    Article  CAS  PubMed  Google Scholar 

  • Hohaus, A., Poteser, M., Romanin, C., Klugbauer, N., Hofmann, F., Morano, I., Haase, H., & Groschner, K. (2000). Modulation of the smooth-muscle L-type Ca2+ channel alpha1 subunit (alpha1C-b) by the beta2a subunit: A peptide which inhibits binding of beta to the I-II linker of alpha1 induces functional uncoupling. The Biochemical Journal, 348(Pt 3), 657–665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hullin, R., Khan, I. F., Wirtz, S., Mohacsi, P., Varadi, G., Schwartz, A., & Herzig, S. (2003). Cardiac L-type calcium channel beta-subunits expressed in human heart have differential effects on single channel characteristics. The Journal of Biological Chemistry, 278, 21623–21630.

    Article  CAS  PubMed  Google Scholar 

  • Jeon, D., Song, I., Guido, W., Kim, K., Kim, E., Oh, U., & Shin, H. S. (2008). Ablation of Ca2+ channel beta3 subunit leads to enhanced N-methyl-D-aspartate receptor-dependent long term potentiation and improved long term memory. The Journal of Biological Chemistry, 283, 12093–12101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones, L. P., Wei, S. K., & Yue, D. T. (1998). Mechanism of auxiliary subunit modulation of neuronal alpha1E calcium channels. The Journal of General Physiology, 112, 125–143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamp, T. J., & Hell, J. W. (2000). Regulation of cardiac L-type calcium channels by protein kinase A and protein kinase C. Circulation Research, 87, 1095–1102.

    Article  CAS  PubMed  Google Scholar 

  • Katz, M., Subramaniam, S., Chomsky-Hecht, O., Tsemakhovich, V., Flockerzi, V., Klussmann, E., Hirsch, J. A., Weiss, S., & Dascal, N. (2021). Reconstitution of beta-adrenergic regulation of CaV1.2: Rad-dependent and Rad-independent protein kinase A mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 118(21), e2100021118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khanna, R., Yu, J., Yang, X., Moutal, A., Chefdeville, A., Gokhale, V., Shuja, Z., Chew, L. A., Bellampalli, S. S., Luo, S., Francois-Moutal, L., Serafini, M. J., Ha, T., Perez-Miller, S., Park, K. D., Patwardhan, A. M., Streicher, J. M., Colecraft, H. M., & Khanna, M. (2019). Targeting the CaValpha-CaVbeta interaction yields an antagonist of the N-type CaV2.2 channel with broad antinociceptive efficacy. Pain, 160(7), 1644–1661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, D. I., Kweon, H. J., Park, Y., Jang, D. J., & Suh, B. C. (2016). Ca2+ controls gating of voltage-gated calcium channels by releasing the beta2e subunit from the plasma membrane. Science Signaling, 9, ra67.

    Article  PubMed  Google Scholar 

  • Kiyonaka, S., Wakamori, M., Miki, T., Uriu, Y., Nonaka, M., Bito, H., Beedle, A. M., Mori, E., Hara, Y., De Waard, M., Kanagawa, M., Itakura, M., Takahashi, M., Campbell, K. P., & Mori, Y. (2007). RIM1 confers sustained activity and neurotransmitter vesicle anchoring to presynaptic Ca2+ channels. Nature Neuroscience, 10, 691–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kochegarov, A. A. (2003). Pharmacological modulators of voltage-gated calcium channels and their therapeutical application. Cell Calcium, 33, 145–162.

    Article  CAS  PubMed  Google Scholar 

  • Lemke, T., Welling, A., Christel, C. J., Blaich, A., Bernhard, D., Lenhardt, P., Hofmann, F., & Moosmang, S. (2008). Unchanged beta-adrenergic stimulation of cardiac L-type calcium channels in Ca v 1.2 phosphorylation site S1928A mutant mice. The Journal of Biological Chemistry, 283, 34738–34744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leroy, J., Richards, M. W., Butcher, A. J., Nieto-Rostro, M., Pratt, W. S., Davies, A., & Dolphin, A. C. (2005). Interaction via a key tryptophan in the I-II linker of N-type calcium channels is required for beta1 but not for palmitoylated beta2, implicating an additional binding site in the regulation of channel voltage-dependent properties. The Journal of Neuroscience, 25, 6984–6996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leung, A. T., Imagawa, T., & Campbell, K. P. (1987). Structural characterization of the 1,4-dihydropyridine receptor of the voltage-dependent Ca2+ channel from rabbit skeletal muscle. Evidence for two distinct high molecular weight subunits. The Journal of Biological Chemistry, 262, 7943–7946.

    Article  CAS  PubMed  Google Scholar 

  • Liu, G., Papa, A., Katchman, A. N., Zakharov, S. I., Roybal, D., Hennessey, J. A., Kushner, J., Yang, L., Chen, B. X., Kushnir, A., Dangas, K., Gygi, S. P., Pitt, G. S., Colecraft, H. M., Ben-Johny, M., Kalocsay, M., & Marx, S. O. (2020). Mechanism of adrenergic CaV1.2 stimulation revealed by proximity proteomics. Nature, 577, 695–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luvisetto, S., Fellin, T., Spagnolo, M., Hivert, B., Brust, P. F., Harpold, M. M., Stauderman, K. A., Williams, M. E., & Pietrobon, D. (2004). Modal gating of human CaV2.1 (P/Q-type) calcium channels: I. The slow and the fast gating modes and their modulation by beta subunits. The Journal of General Physiology, 124, 445–461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maltez, J. M., Nunziato, D. A., Kim, J., & Pitt, G. S. (2005). Essential Ca(V)beta modulatory properties are AID-independent. Nature Structural & Molecular Biology, 12, 372–377.

    Article  CAS  Google Scholar 

  • Mansergh, F., Orton, N. C., Vessey, J. P., Lalonde, M. R., Stell, W. K., Tremblay, F., Barnes, S., Rancourt, D. E., & Bech-Hansen, N. T. (2005). Mutation of the calcium channel gene Cacna1f disrupts calcium signaling, synaptic transmission and cellular organization in mouse retina. Human Molecular Genetics, 14, 3035–3046.

    Article  CAS  PubMed  Google Scholar 

  • Marcantoni, A., Vandael, D. H., Mahapatra, S., Carabelli, V., Sinnegger-Brauns, M. J., Striessnig, J., & Carbone, E. (2010). Loss of Cav1.3 channels reveals the critical role of L-type and BK channel coupling in pacemaking mouse adrenal chromaffin cells. The Journal of Neuroscience, 30, 491–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marrion, N. V., & Tavalin, S. J. (1998). Selective activation of Ca2+-activated K+ channels by co-localized Ca2+ channels in hippocampal neurons. Nature, 395, 900–905.

    Article  CAS  PubMed  Google Scholar 

  • McGee, A. W., Dakoji, S. R., Olsen, O., Bredt, D. S., Lim, W. A., & Prehoda, K. E. (2001). Structure of the SH3-guanylate kinase module from PSD-95 suggests a mechanism for regulated assembly of MAGUK scaffolding proteins. Molecular Cell, 8, 1291–1301.

    Article  CAS  PubMed  Google Scholar 

  • Meissner, M., Weissgerber, P., Londono, J. E., Prenen, J., Link, S., Ruppenthal, S., Molkentin, J. D., Lipp, P., Nilius, B., Freichel, M., & Flockerzi, V. (2011). Moderate calcium channel dysfunction in adult mice with inducible cardiomyocyte-specific excision of the cacnb2 gene. The Journal of Biological Chemistry, 286, 15875–15882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miranda-Laferte, E., Ewers, D., Guzman, R. E., Jordan, N., Schmidt, S., & Hidalgo, P. (2014). The N-terminal domain tethers the voltage-gated calcium channel beta2e-subunit to the plasma membrane via electrostatic and hydrophobic interactions. The Journal of Biological Chemistry, 289, 10387–10398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miriyala, J., Nguyen, T., Yue, D. T., & Colecraft, H. M. (2008). Role of CaVbeta subunits, and lack of functional reserve, in protein kinase A modulation of cardiac CaV1.2 channels. Circulation Research, 102, e54–e64.

    Article  CAS  PubMed  Google Scholar 

  • Morgenstern, T. J., Park, J., Fan, Q. R., & Colecraft, H. M. (2019). A potent voltage-gated calcium channel inhibitor engineered from a nanobody targeted to auxiliary CaVbeta subunits. eLife, 8, e49253.

    Article  PubMed  PubMed Central  Google Scholar 

  • Murakami, M., Fleischmann, B., De Felipe, C., Freichel, M., Trost, C., Ludwig, A., Wissenbach, U., Schwegler, H., Hofmann, F., Hescheler, J., Flockerzi, V., & Cavalie, A. (2002). Pain perception in mice lacking the beta3 subunit of voltage-activated calcium channels. The Journal of Biological Chemistry, 277, 40342–40351.

    Article  CAS  PubMed  Google Scholar 

  • Murakami, M., Yamamura, H., Suzuki, T., Kang, M. G., Ohya, S., Murakami, A., Miyoshi, I., Sasano, H., Muraki, K., Hano, T., Kasai, N., Nakayama, S., Campbell, K. P., Flockerzi, V., Imaizumi, Y., Yanagisawa, T., & Iijima, T. (2003). Modified cardiovascular L-type channels in mice lacking the voltage-dependent Ca2+ channel beta3 subunit. The Journal of Biological Chemistry, 278, 43261–43267.

    Article  CAS  PubMed  Google Scholar 

  • Murakami, M., Nakagawasai, O., Yanai, K., Nunoki, K., Tan-No, K., Tadano, T., & Iijima, T. (2007). Modified behavioral characteristics following ablation of the voltage-dependent calcium channel beta3 subunit. Brain Research, 1160, 102–112.

    Article  CAS  PubMed  Google Scholar 

  • Neef, J., Gehrt, A., Bulankina, A. V., Meyer, A. C., Riedel, D., Gregg, R. G., Strenzke, N., & Moser, T. (2009). The Ca2+ channel subunit beta2 regulates Ca2+ channel abundance and function in inner hair cells and is required for hearing. The Journal of Neuroscience, 29, 10730–10740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neely, A., & Hidalgo, P. (2014). Structure-function of proteins interacting with the alpha1 pore-forming subunit of high-voltage-activated calcium channels. Frontiers in Physiology, 5, 209.

    Article  PubMed  PubMed Central  Google Scholar 

  • Neely, A., Wei, X., Olcese, R., Birnbaumer, L., & Stefani, E. (1993). Potentiation by the beta subunit of the ratio of the ionic current to the charge movement in the cardiac calcium channel. Science, 262, 575–578.

    Article  CAS  PubMed  Google Scholar 

  • Olcese, R., Neely, A., Qin, N., Wei, X., Birnbaumer, L., & Stefani, E. (1996). Coupling between charge movement and pore opening in vertebrate neuronal alpha 1E calcium channels. The Journal of Physiology, 497, 675–686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Opatowsky, Y., Chen, C. C., Campbell, K. P., & Hirsch, J. A. (2004). Structural analysis of the voltage-dependent calcium channel beta subunit functional core and its complex with the alpha 1 interaction domain. Neuron, 42, 387–399.

    Article  CAS  PubMed  Google Scholar 

  • Papa, A., Kushner, J., Hennessey, J. A., Katchman, A. N., Zakharov, S. I., Chen, B. X., Yang, L., Lu, R., Leong, S., Diaz, J., Liu, G., Roybal, D., Liao, X., Del Rivero Morfin, P. J., Colecraft, H. M., Pitt, G. S., Clarke, O., Topkara, V., Ben-Johny, M., & Marx, S. O. (2021). Adrenergic CaV1.2 activation via Rad phosphorylation converges at alpha1C I-II loop. Circulation Research, 128, 76–88.

    Article  CAS  PubMed  Google Scholar 

  • Platzer, J., Engel, J., Schrott-Fischer, A., Stephan, K., Bova, S., Chen, H., Zheng, H., & Striessnig, J. (2000). Congenital deafness and sinoatrial node dysfunction in mice lacking class D L-type Ca2+ channels. Cell, 102, 89–97.

    Article  CAS  PubMed  Google Scholar 

  • Pragnell, M., De Waard, M., Mori, Y., Tanabe, T., Snutch, T. P., & Campbell, K. P. (1994). Calcium channel beta-subunit binds to a conserved motif in the I-II cytoplasmic linker of the alpha 1-subunit. Nature, 368, 67–70.

    Article  CAS  PubMed  Google Scholar 

  • Puckerin, A. A., Chang, D. D., Subramanyam, P., & Colecraft, H. M. (2016). Similar molecular determinants on Rem mediate two distinct modes of inhibition of CaV1.2 channels. Channels (Austin, Tex.), 10, 379–394.

    Article  Google Scholar 

  • Puckerin, A. A., Chang, D. D., Shuja, Z., Choudhury, P., Scholz, J., & Colecraft, H. M. (2018). Engineering selectivity into RGK GTPase inhibition of voltage-dependent calcium channels. Proceedings of the National Academy of Sciences of the United States of America, 115, 12051–12056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Restituito, S., Cens, T., Barrere, C., Geib, S., Galas, S., De Waard, M., & Charnet, P. (2000). The [beta]2a subunit is a molecular groom for the Ca2+ channel inactivation gate. The Journal of Neuroscience, 20, 9046–9052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reuter, H., & Scholz, H. (1977). The regulation of the calcium conductance of cardiac muscle by adrenaline. The Journal of Physiology, 264, 49–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schoch, S., Mittelstaedt, T., Kaeser, P. S., Padgett, D., Feldmann, N., Chevaleyre, V., Castillo, P. E., Hammer, R. E., Han, W., Schmitz, F., Lin, W., & Sudhof, T. C. (2006). Redundant functions of RIM1alpha and RIM2alpha in Ca(2+)-triggered neurotransmitter release. The EMBO Journal, 25, 5852–5863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schredelseker, J., Di Biase, V., Obermair, G. J., Felder, E. T., Flucher, B. E., Franzini-Armstrong, C., & Grabner, M. (2005). The beta 1a subunit is essential for the assembly of dihydropyridine-receptor arrays in skeletal muscle. Proceedings of the National Academy of Sciences of the United States of America, 102, 17219–17224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schredelseker, J., Dayal, A., Schwerte, T., Franzini-Armstrong, C., & Grabner, M. (2009). Proper restoration of excitation-contraction coupling in the dihydropyridine receptor beta1-null zebrafish relaxed is an exclusive function of the beta1a subunit. The Journal of Biological Chemistry, 284, 1242–1251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singer, D., Biel, M., Lotan, I., Flockerzi, V., Hofmann, F., & Dascal, N. (1991). The roles of the subunits in the function of the calcium channel. Science, 253, 1553–1557.

    Article  CAS  PubMed  Google Scholar 

  • Splawski, I., Timothy, K. W., Sharpe, L. M., Decher, N., Kumar, P., Bloise, R., Napolitano, C., Schwartz, P. J., Joseph, R. M., Condouris, K., Tager-Flusberg, H., Priori, S. G., Sanguinetti, M. C., & Keating, M. T. (2004). Ca(V)1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell, 119, 19–31.

    Article  CAS  PubMed  Google Scholar 

  • Splawski, I., Timothy, K. W., Decher, N., Kumar, P., Sachse, F. B., Beggs, A. H., Sanguinetti, M. C., & Keating, M. T. (2005). Severe arrhythmia disorder caused by cardiac L-type calcium channel mutations. Proceedings of the National Academy of Sciences of the United States of America, 102, 8089–8096. discussion 8086-8088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Striessnig, J., Bolz, H. J., & Koschak, A. (2010). Channelopathies in Cav1.1, Cav1.3, and Cav1.4 voltage-gated L-type Ca2+ channels. Pflügers Archiv, 460, 361–374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sudhof, T. C. (2004). The synaptic vesicle cycle. Annual Review of Neuroscience, 27, 509–547.

    Article  PubMed  Google Scholar 

  • Sudhof, T. C. (2012). The presynaptic active zone. Neuron, 75, 11–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tadross, M. R., Ben Johny, M., & Yue, D. T. (2010). Molecular endpoints of Ca2+/calmodulin- and voltage-dependent inactivation of Ca(v)1.3 channels. The Journal of General Physiology, 135, 197–215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi, M., Seagar, M. J., Jones, J. F., Reber, B. F., & Catterall, W. A. (1987). Subunit structure of dihydropyridine-sensitive calcium channels from skeletal muscle. Proceedings of the National Academy of Sciences of the United States of America, 84, 5478–5482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi, S. X., Mittman, S., & Colecraft, H. M. (2003). Distinctive modulatory effects of five human auxiliary beta 2 subunit splice variants on L-type calcium channel gating. Biophysical Journal, 84, 3007–3021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi, S. X., Miriyala, J., & Colecraft, H. M. (2004). Membrane-associated guanylate kinase-like properties of beta-subunits required for modulation of voltage-dependent Ca2+ channels. Proceedings of the National Academy of Sciences of the United States of America, 101, 7193–7198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi, S. X., Miriyala, J., Tay, L. H., Yue, D. T., & Colecraft, H. M. (2005). A CaVbeta SH3/guanylate kinase domain interaction regulates multiple properties of voltage-gated Ca2+ channels. The Journal of General Physiology, 126, 365–377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tareilus, E., Roux, M., Qin, N., Olcese, R., Zhou, J., Stefani, E., & Birnbaumer, L. (1997). A Xenopus oocyte beta subunit: Evidence for a role in the assembly/expression of voltage-gated calcium channels that is separate from its role as a regulatory subunit. Proceedings of the National Academy of Sciences of the United States of America, 94, 1703–1708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • tom Dieck, S., Altrock, W. D., Kessels, M. M., Qualmann, B., Regus, H., Brauner, D., Fejtova, A., Bracko, O., Gundelfinger, E. D., & Brandstatter, J. H. (2005). Molecular dissection of the photoreceptor ribbon synapse: Physical interaction of Bassoon and RIBEYE is essential for the assembly of the ribbon complex. The Journal of Cell Biology, 168, 825–836.

    Article  PubMed  PubMed Central  Google Scholar 

  • Triggle, D. J. (2007). Calcium channel antagonists: Clinical uses – Past, present and future. Biochemical Pharmacology, 74, 1–9.

    Article  CAS  PubMed  Google Scholar 

  • Tsien, R. W., Bean, B. P., Hess, P., Lansman, J. B., Nilius, B., & Nowycky, M. C. (1986). Mechanisms of calcium channel modulation by beta-adrenergic agents and dihydropyridine calcium agonists. Journal of Molecular and Cellular Cardiology, 18, 691–710.

    Article  CAS  PubMed  Google Scholar 

  • Van Petegem, F., Clark, K. A., Chatelain, F. C., & Minor, D. L., Jr. (2004). Structure of a complex between a voltage-gated calcium channel beta-subunit and an alpha-subunit domain. Nature, 429, 671–675.

    Article  PubMed  PubMed Central  Google Scholar 

  • Viola, H. M., Jordan, M. C., Roos, K. P., & Hool, L. C. (2014). Decreased myocardial injury and improved contractility after administration of a peptide derived against the alpha-interacting domain of the L-type calcium channel. Journal of the American Heart Association, 3, e000961.

    Article  PubMed  PubMed Central  Google Scholar 

  • Waithe, D., Ferron, L., Page, K. M., Chaggar, K., & Dolphin, A. C. (2011). Beta-subunits promote the expression of Ca(V)2.2 channels by reducing their proteasomal degradation. The Journal of Biological Chemistry, 286, 9598–9611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wakamori, M., Mikala, G., & Mori, Y. (1999). Auxiliary subunits operate as a molecular switch in determining gating behaviour of the unitary N-type Ca2+ channel current in Xenopus oocytes. The Journal of Physiology, 517(Pt 3), 659–672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, H. G., George, M. S., Kim, J., Wang, C., & Pitt, G. S. (2007). Ca2+/calmodulin regulates trafficking of Ca(V)1.2 Ca2+ channels in cultured hippocampal neurons. The Journal of Neuroscience, 27, 9086–9093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, G., Zhu, X., **e, W., Han, P., Li, K., Sun, Z., Wang, Y., Chen, C., Song, R., Cao, C., Zhang, J., Wu, C., Liu, J., & Cheng, H. (2010). Rad as a novel regulator of excitation-contraction coupling and beta-adrenergic signaling in heart. Circulation Research, 106, 317–327.

    Article  CAS  PubMed  Google Scholar 

  • Wang, J., Thio, S. S., Yang, S. S., Yu, D., Yu, C. Y., Wong, Y. P., Liao, P., Li, S., & Soong, T. W. (2011). Splice variant specific modulation of CaV1.2 calcium channel by galectin-1 regulates arterial constriction. Circulation Research, 109, 1250–1258.

    Article  CAS  PubMed  Google Scholar 

  • Weiss, S., Oz, S., Benmocha, A., & Dascal, N. (2013). Regulation of cardiac L-type Ca(2)(+) channel CaV1.2 via the beta-adrenergic-cAMP-protein kinase A pathway: Old dogmas, advances, and new uncertainties. Circulation Research, 113, 617–631.

    Article  CAS  PubMed  Google Scholar 

  • Weissgerber, P., Held, B., Bloch, W., Kaestner, L., Chien, K. R., Fleischmann, B. K., Lipp, P., Flockerzi, V., & Freichel, M. (2006). Reduced cardiac L-type Ca2+ current in Ca(V)beta2−/− embryos impairs cardiac development and contraction with secondary defects in vascular maturation. Circulation Research, 99, 749–757.

    Article  CAS  PubMed  Google Scholar 

  • Wu, J., Yan, Z., Li, Z., Qian, X., Lu, S., Dong, M., Zhou, Q., & Yan, N. (2016). Structure of the voltage-gated calcium channel Ca(v)1.1 at 3.6 A resolution. Nature, 537, 191–196.

    Article  CAS  PubMed  Google Scholar 

  • Xu, X., & Colecraft, H. M. (2009). Engineering proteins for custom inhibition of Ca(V) channels. Physiology (Bethesda), 24, 210–218.

    CAS  Google Scholar 

  • Xu, X., Marx, S. O., & Colecraft, H. M. (2010). Molecular mechanisms, and selective pharmacological rescue, of Rem-inhibited CaV1.2 channels in heart. Circulation Research, 107, 620–630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, S. N., & Berggren, P. O. (2006). The role of voltage-gated calcium channels in pancreatic beta-cell physiology and pathophysiology. Endocrine Reviews, 27, 621–676.

    Article  CAS  PubMed  Google Scholar 

  • Yang, T., & Colecraft, H. M. (2013). Regulation of voltage-dependent calcium channels by RGK proteins. Biochimica et Biophysica Acta, 1828, 1644–1654.

    Article  CAS  PubMed  Google Scholar 

  • Yang, T., Suhail, Y., Dalton, S., Kernan, T., & Colecraft, H. M. (2007). Genetically encoded molecules for inducibly inactivating CaV channels. Nature Chemical Biology, 3, 795–804.

    Article  CAS  PubMed  Google Scholar 

  • Yang, T., Xu, X., Kernan, T., Wu, V., & Colecraft, H. M. (2010). Rem, a member of the RGK GTPases, inhibits recombinant CaV1.2 channels using multiple mechanisms that require distinct conformations of the GTPase. The Journal of Physiology, 588, 1665–1681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, T., Puckerin, A., & Colecraft, H. M. (2012). Distinct RGK GTPases differentially use alpha(1)- and auxiliary beta-binding-dependent mechanisms to inhibit Ca(V)1.2/Ca(V)2.2 channels. PLoS One, 7, e37079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, T., He, L. L., Chen, M., Fang, K., & Colecraft, H. M. (2013). Bio-inspired voltage-dependent calcium channel blockers. Nature Communications, 4, 2540.

    Article  PubMed  Google Scholar 

  • Yang, L., Katchman, A., Kushner, J., Kushnir, A., Zakharov, S. I., Chen, B. X., Shuja, Z., Subramanyam, P., Liu, G., Papa, A., Roybal, D., Pitt, G. S., Colecraft, H. M., & Marx, S. O. (2019). Cardiac CaV1.2 channels require beta subunits for beta-adrenergic-mediated modulation but not trafficking. The Journal of Clinical Investigation, 129, 647–658.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yuen, R. K., Thiruvahindrapuram, B., Merico, D., Walker, S., Tammimies, K., Hoang, N., Chrysler, C., Nalpathamkalam, T., Pellecchia, G., Liu, Y., Gazzellone, M. J., D’Abate, L., Deneault, E., Howe, J. L., Liu, R. S., Thompson, A., Zarrei, M., Uddin, M., Marshall, C. R., … Scherer, S. W. (2015). Whole-genome sequencing of quartet families with autism spectrum disorder. Nature Medicine, 21, 185–191.

    Article  CAS  PubMed  Google Scholar 

  • Zamponi, G. W., Striessnig, J., Koschak, A., & Dolphin, A. C. (2015). The physiology, pathology, and pharmacology of voltage-gated calcium channels and their future therapeutic potential. Pharmacological Reviews, 67, 821–870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Y., Chen, Y. H., Bangaru, S. D., He, L., Abele, K., Tanabe, S., Kozasa, T., & Yang, J. (2008). Origin of the voltage dependence of G-protein regulation of P/Q-type Ca2+ channels. The Journal of Neuroscience, 28, 14176–14188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Q., Chen, J., Qin, Y., Wang, J., & Zhou, L. (2018). Mutations in voltage-gated L-type calcium channel: Implications in cardiac arrhythmia. Channels (Austin, Tex.), 12, 201–218.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grants R01 HL121253 and R01 HL122421 (to H.M.C.) and an American Heart Association predoctoral fellowship award (S.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry M. Colecraft .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Borowik, S., Colecraft, H.M. (2022). Voltage-Gated Calcium Channel Auxiliary β Subunits. In: Zamponi, G.W., Weiss, N. (eds) Voltage-Gated Calcium Channels . Springer, Cham. https://doi.org/10.1007/978-3-031-08881-0_4

Download citation

Publish with us

Policies and ethics

Navigation