Local Search in Selected Crossover Operators

  • Conference paper
  • First Online:
Computational Science – ICCS 2022 (ICCS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13352))

Included in the following conference series:

  • 1404 Accesses

Abstract

The purpose of the paper is to analyze an incorporation of local search mechanisms into five crossover operators (KPoint, AEX, HGreX, HProX and HRndX) used in genetic algorithms, compare the results depending on various parameters and draw the conclusions. The local search is used randomly with some probability instead of the standard crossover procedure in order to generate a new individual. We analyze injecting the local search in two situations: to resolve the conflicts and also without a conflict with a certain probability. The discussed mechanisms improve the obtained results and significantly accelerate the calculations. Moreover, we show that there exists an optimal degree of the local search component, and it depends on the particular crossover operator.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdoun, O., Abouchabaka, J.: A comparative study of adaptive crossover operators for genetic algorithms to resolve the traveling salesman problem. Int. J. Comput. Appl. 31, 49–57 (2011)

    Google Scholar 

  2. Affenzeller, M., Wagner, S., Winkler, S., Beham, A.: Genetic Algorithms and Genetic Programming: Modern Concepts and Practical Applications. CRC Press (2018)

    Google Scholar 

  3. Al-Furhud, M.A., Ahmed, Z.H.: Experimental study of a hybrid genetic algorithm for the multiple travelling salesman problem. Math. Probl. Eng. 20, 3431420 (2020)

    MATH  Google Scholar 

  4. Avdeikins, A., Savrasovs, M.: Making warehouse logistics smart by effective placement strategy based on genetic algorithms. Transp. Telecommun. 20(4), 318–324 (2019)

    Google Scholar 

  5. Bartholdi, J.J., Hackman, S.T.: Warehouse and Distribution Science. https://www.warehouse-science.com/book/index.html (2019)

  6. Zuñiga, J.B., et. al.: Optimization of the storage location assignment and the picker-routing problem by using mathematical programming. Appl. Sci. 10(2), 534 (2020)

    Google Scholar 

  7. Cicirello, V.A.: Non-wrap** order crossover: An order preserving crossover operator that respects absolute position. In: GECCO 2006, p. 1125–1131 (2006)

    Google Scholar 

  8. Ha, Q.M., Deville, Y., Pham, Q.D., Hà, M.H.: A hybrid genetic algorithm for the traveling salesman problem with drone. https://arxiv.org/abs/1812.09351 (2018)

  9. Hassanat, A.B.A., Alkafaween, E.: On enhancing genetic algorithms using new crossovers. Int. J. Comput. Appl. Technol. 55, 202–212 (2017)

    Google Scholar 

  10. Hongxin, Z., guohui, Z., shili, C.: On directed edge recombination crossover for ATSP. In: Jiao, L., Wang, L., Gao, X., Liu, J., Wu, F. (eds.) ICNC 2006. LNCS, vol. 4221, pp. 783–791. Springer, Heidelberg (2006). https://doi.org/10.1007/11881070_104

    Chapter  Google Scholar 

  11. Hwang, H.: An improvement model for vehicle routing problem with time constraint based on genetic algorithm. Comput. Ind. Eng. 42, 361–369 (2002)

    Article  Google Scholar 

  12. Kordos, M., Blachnik, M., Scherer, R.: Fuzzy clustering decomposition of genetic algorithm-based instance selection for regression problems. Inf. Sci. 587, 23–40 (2021)

    Article  Google Scholar 

  13. Kordos, M., Boryczko, J., Blachnik, M., Golak, S.: Optimization of warehouse operations with genetic algorithms. Appl. Sci. 10(14), 4817 (2020)

    Article  Google Scholar 

  14. Lin, B.L., Sun, X., Salous, S.: Solving travelling salesman problem with an improved hybrid genetic algorithm. J. Comput. Commun. 4(15), 98–106 (2016)

    Article  Google Scholar 

  15. Ma, M., Li, H.: A hybrid genetic algorithm for solving bi-objective Traveling Salesman Problems. J. Phys.: Conf. Ser. 887, 012065 (2017)

    Google Scholar 

  16. Puljić, K., Manger, R.: Comparison of eight evolutionary crossover operators for the vehicle routing problem. Math. Commun. 18, 359–375 (2013)

    MathSciNet  MATH  Google Scholar 

  17. Rakesh, V., Kadil, G.: Layout optimization of a three dimensional order picking warehouse. IFAC-PapersOnLine 48, 1155–1160 (2017)

    Article  Google Scholar 

  18. Santos, J., Ferreira, A., Flintsch, G.: An adaptive hybrid genetic algorithm for pavement management. Int. J. Pavement Eng. 20(3) (2019)

    Google Scholar 

  19. Simon, D.: Evolutionary Optimization Algorithms. Wiley (2013)

    Google Scholar 

  20. Singh, K., Sundar, S.: A hybrid genetic algorithm for the degree-constrained minimum spanning tree problem. Soft. Comput. 24(3), 2169–2186 (2019). https://doi.org/10.1007/s00500-019-04051-x

    Article  MATH  Google Scholar 

  21. Tan, H., Lee, L.H., Zhu, Q., Ou, K.: Heuristic methods for vehicle routing problem with time windows. Artif. Intell. Eng. 16, 281–295 (2001)

    Article  Google Scholar 

  22. Ting, C.-K.: Improving edge recombination through alternate inheritance and greedy manner. In: Gottlieb, J., Raidl, G.R. (eds.) EvoCOP 2004. LNCS, vol. 3004, pp. 210–219. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24652-7_21

    Chapter  Google Scholar 

  23. Van Gils, T., Ramaekers, K., Caris, A., De Koster, R.: Designing efficient order picking systems by combining planning problems: state-of-the-art classification and review. Eur. J. Oper. Res. 267, 1–15 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhang, W., Zhu, J., Yuan, R.: Optimization of automated warehouse storage location assignment problem based on improved genetic algorithm. In: The 9th International Conference on Logistics, Informatics and Service Sciences, pp. 297–311 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirosław Kordos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kordos, M., Kulka, R., Steblik, T., Scherer, R. (2022). Local Search in Selected Crossover Operators. In: Groen, D., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2022. ICCS 2022. Lecture Notes in Computer Science, vol 13352. Springer, Cham. https://doi.org/10.1007/978-3-031-08757-8_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08757-8_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08756-1

  • Online ISBN: 978-3-031-08757-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation