A Data Processing Architecture for Intelligent Hierarchical Air Quality Monitoring Networks in Urban Innovation and Citizen Science Applications

  • Chapter
  • First Online:
Air Quality Networks

Abstract

The last decade has seen a growth of lowcost chemical and particulate, multisensory-based air quality (AQ) monitoring capacity, mostly driven by the needs of overcoming the limitations of regulatory air quality monitoring facilities [1–3]. Their costs and cumbersome dimensions actually limits their deployment density in a number of different situations including towns, historical centres or even low income countries [4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 128.39
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 171.19
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 171.19
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    VISUM is a macroscopic transport modelling and planning software package available by PTV S.A. (www.ptvgroup.com).

  2. 2.

    COPERT 4 is a software tool used world-wide to calculate air pollutant and greenhouse gas emissions from road transport available via EMISIA S.A. (www.emisia.om).

  3. 3.

    https://www.ncei.noaa.gov/products/weather-climate-models/global-forecast.

  4. 4.

    https://www.arpacampania.it/.

  5. 5.

    https://atmosphere.copernicus.eu/.

References

  1. Borrego C et al (2016) Assessment of air quality microsensors versus reference methods: The EuNetAir joint exercise. Atmos Environ 147:246–263. https://doi.org/10.1016/j.atmosenv.2016.09.050. ISSN 1352–2310

  2. Castell N, Viana M, Minguillon MC, Guerreiro C, Querol X (2013) Real-world application of new sensor technologies for air quality monitoring. ETC/ACM Technical Paper 2013/16. Copenhagen. http://acm.eionet.europa.eu/reports/ETCACM_TP_2013_16_new_AQ_SensorTechn

  3. Mead MI, Popoola OAM, Stewart GB, Landshoff P, Calleja M, Hayes M, Baldovi JJ, McLeod MW, Hodgson TF, Dicks J, Lewis A, Cohen J, Baron R, Saffell JR, Jones RL (2013) The use of electrochemical sensors for monitoring urban air quality in lowcost, high-density networks. Atmos Environ 70:186–203

    Article  CAS  Google Scholar 

  4. Morawska L et al (2018) Applications of low-cost sensing technologies for air quality monitoring and exposure assessment: How far have they gone? Environ Int 116:286–299. Cited 189 times. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85046162925&doi=10.1016%2fj.envint.2018.04.018&partnerID=40&md5=cb489b3f86c14f79dc4a65ba51c7f03a

  5. EU Directive 2008/50/EC of the European Parliament and the Council of 21 May 2008 on Ambient Air Quality and Cleaner Air for Europe (2008)

    Google Scholar 

  6. Kumar P, Morawska L, Martani C, Biskos G, Neophytou M, Sabatino S, Bell M, Norford L, Britter R (2015) The rise of low-cost sensing for managing air pollution in cities. Environ Int 75:199–205

    Article  Google Scholar 

  7. Vito SV, Esposito E, Castell N, Schneider P, Bartonova A (2020) On the robustness of field calibration for smart air quality monitors. Sens Actuators B: Chem 310:127869. https://doi.org/10.1016/j.snb.2020.127869. ISSN 0925-4005

  8. Castell N, Dauge FR, Schneider P, Vogt M, Lerner U, Fishbain B, Broday D, Bartonova A (2017) Can commercial low-cost sensor platforms contribute to air quality monitoring and exposure estimates? Environ Int 99:293–302. https://doi.org/10.1016/j.envint.2016.12.007

    Article  CAS  Google Scholar 

  9. Kizel F, Etzion Y, Shafran-Nathan R, Levy I, Fishbain B, Bartonova A, Broday DM (2018) Node-to-node field calibration of wireless distributed air pollution sensor network. Environ Pollut 233:900–909. https://doi.org/10.1016/j.envpol.2017.09.042. ISSN 0269–7491

  10. Miskell G, Alberti K, Feenstra B, Henshaw GS, Papapostolou V, Patel H, Polidori A, Salmond JA, Weissert L, Williams DE (2019) Reliable data from low cost ozone sensors in a hierarchical network. Atmos Environ 214:116870. https://doi.org/10.1016/j.atmosenv.2019.116870. ISSN 1352-2310

  11. Esposito E, De Vito S, Salvato M, Fattoruso G, Di Francia G (2017) Computational intelligence for smart air quality monitors calibration. In: Gervasi O et al. (eds) Computational science and its applications – ICCSA 2017. ICCSA 2017. Lecture Notes in Computer Science, vol 10406. Springer, Cham. https://doi.org/10.1007/978-3-319-62398-6_31

  12. Andreu-Perez J, Poon CCY, Merrifield RD, Wong STC, Yang G (2015) Big data for health. IEEE J Biomed Health Inf 19(4):1193–1208. https://doi.org/10.1109/JBHI.2015.2450362

    Article  Google Scholar 

  13. Greco L, Percannella G, Ritrovato P, Tortorella F, Vento M (2020) Trends in IoT based solutions for health care: moving AI to the edge, Pattern Recognit Lett 135:346–353. https://doi.org/10.1016/j.patrec.2020.05.016. ISSN 0167-8655

  14. Schneider P, Castell N, Vallejo I, Vogt M, Lahoz, W, Bartonova A, CITI-Sense contributors, 2016. Data fusion of crowdsourced observations and model data for high-resolution map** of urban air quality. 10th International conference on air quality—science and application, At Milan, Italy, 978-1-909291-76-8

    Google Scholar 

  15. de Medrano R, de Buen Remiro V, Aznarte JL (2021) SOCAIRE: forecasting and monitoring urban air quality in Madrid. Environ Model Softw 143:105084. https://doi.org/10.1016/j.envsoft.2021.105084. ISSN 1364–8152; Wang et al. (2020) Inverse modeling of SO2 and NOx emissions over China using multisensor satellite data—Part 2: Downscaling techniques for air quality analysis and forecasts, Atmos Chem Phys 20:6651–6670. https://doi.org/10.5194/acp-20-6651-2020

  16. Viana M, de Leeuw F, Bartonova A, Castell N, Ozturk E, González Ortiz A (2020) Air quality mitigation in European cities: Status and challenges ahead. Environ Int 143, art. no. 105907.

    Google Scholar 

  17. Schneider P, Bartonova A, Castell N, Dauge FR, Gerboles M (2019) Toward a unified terminology of processing levels for low-cost air-quality sensors. Environ Sci Technol 53(15):8485–8487

    Google Scholar 

  18. Wang et al (2020) Inverse modeling of SO2 and NOx emissions over China using multisensor satellite data—Part 2: downscaling techniques for air quality analysis and forecasts. Atmos Chem Phys 20:6651–6670. https://doi.org/10.5194/acp-20-6651-2020

    Article  CAS  Google Scholar 

  19. Schneider P, Castell N, Vallejo I, Vogt M, Lahoz W, Bartonova A (2016) CITI-Sense contributors, 2016. Data Fusion of Crowdsourced Observations and Model Data for High-resolution Map** of Urban Air Quality. 10th International Conference on Air Quality—Science and Application, At Milan, Italy, 978-1-909291-76-8

    Google Scholar 

  20. Kelly KE, Whitaker J, Petty A, Widmer C, Dybwad A, Sleeth D, Martin R, Butterfield A (2017) Ambient and laboratory evaluation of a low-cost particulate matter sensor, Environ Pollut 221:491–500. https://doi.org/10.1016/j.envpol.2016.12.039. ISSN 0269–7491

  21. De Vito S, Massera E, Piga M, Martinotto L, Di Francia G (2008) On field calibration of an electronic nose for benzene estimation in an urban pollution monitoring scenario. Sensors Actuators B Chem 129:750–757

    Article  Google Scholar 

  22. Jiao W, Hagler G, Williams R, Sharpe R, Brown R, Garver D, Judge R, Caudill M, Rickard J, Davis M, Weinstock L, Zimmer-Dauphinee S, Buckley K (2016) Community air sensor network (CAIRSENSE) project: evaluation of low-cost sensor performance in a suburban environment in the southeastern United States. Atmos Meas Tech 9(11):5281–5292

    Google Scholar 

  23. Liang Y, Wu C, Jiang S, Li YJ, Wu D, Li M, Cheng P, Yang W, Cheng C, Li L, Deng T, Sun JY, He G, Liu B, Yao T, Wu M, Zhou Z (2021) Field comparison of electrochemical gas sensor data correction algorithms for ambient air measurements. SensS Actuators, B: Chem 327, art. no. 128897. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85091223815&doi=10.1016%2fj.snb.2020.128897&partnerID=40&md5=cd93154a3cb772e0227f5a2ac7b1fb55

  24. De Vito S, Di Francia G, Esposito E, Ferlito S, Formisano F, Massera E (2020) Adaptive machine learning strategies for network calibration of IoT smart air quality monitoring devices. Pattern Recognit Lett 136:264–271. https://doi.org/10.1016/j.patrec.2020.04.032. ISSN 0167-8655

  25. Borrego C, Ginja J, Coutinho M, Ribeiro C, Karatzas K, Sioumis T, Katsifarakis N, Konstantinidis K, De Vito S, Esposito E, Salvato M, Smith P, André N, Gérard P, Francis LA, Castell N, Schneider P, Viana M, Minguillón MC, Reimringer W, Otjes RP, von Sicard O, Pohle R, Elen B, Suriano D, Pfister V, Prato M, Dipinto S, Penza M (2018) Assessment of air quality microsensors versus reference methods: The EuNetAir Joint Exercise—Part II. Atmos Environ 193:127–142. ISSN 1352-2310

    Google Scholar 

  26. Zimmerman N et al (2018) A machine learning calibration model using random forests to improve sensor performance for lower-cost air quality monitoring. Atmos Meas Technol 11:291–313

    Article  Google Scholar 

  27. Kassandros T, Karatzas K (2020) Towards a robust ensemble modelling approach to improve low-cost air quality sensors performance, 2021/2, Enviroinfo 2020, 154–164. In: Kamilaris A, Wohlgemuth V, Karatzas KD, Athanasiadis IN (eds) Environmental informatics: new perspectives in environmental information systems: transport, sensors, recycling. ISBN 978-3-8440-7628-8

    Google Scholar 

  28. Hagan et al (2018) Atmos Meas Tech 11:315–328. https://doi.org/10.5194/amt-11-315-2018

    Article  CAS  Google Scholar 

  29. Spinelle L, Gerboles M, Villani MG, Aleixandre M, Bonavitacola F (2017) Field calibration of a cluster of low-cost commercially available sensors for air quality monitoring. Part B: NO, CO and CO2. Sens Actuators B Chem. 238:706–715

    Google Scholar 

  30. Cross S, Williams LR, Lewis DK, Magoon GR, Onasch TB, Kaminsky ML, Worsnop DR, Jayne JT (2017) Use of electrochemical sensors for measurement of air pollution: correcting interference response and validating measurements. Atmos Meas Technol 10:3575–3588

    Article  CAS  Google Scholar 

  31. Cheng Y, He X, Zhou Z et al. (2020) MapTransfer: urban air quality map generation for downscaled sensor deployments. In: ACM International Conference on Internet of Things Design and Implementation

    Google Scholar 

  32. Du Y, Sailhan F, Issarny V (2020) IAM—interpolation and aggregation on the move: collaborative crowdsensing for spatio-temporal phenomena. In: MobiQuitous 2020—EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services. Virtual, Germany. ffhal-03035035

    Google Scholar 

  33. Shepard D (1968) A two-dimensional interpolation function for irregularly-spaced data”. In: Proceedings of the 1968 ACM National Conference. pp 517–524. https://doi.org/10.1145/800186.810616

  34. De Vito S, Esposito E, Salvato M, Popoola O, Formisano F, Jones R, Di Francia G (2018) Calibrating chemical multisensory devices for real world applications: ain-depth comparison of quantitative machine learning approaches. SensS Actuators B: Chem 255(2):1191–1210. https://doi.org/10.1016/j.snb.2017.07.155. ISSN 0925-4005

  35. Cheng et al. (2019) ICT: In-field calibration transfer for air quality sensor deployments. In: Proceedings of the ACM on interactive, mobile, wearable and ubiquitous technologies, vol 3, Issue 1, Article No.: 6, pp 1–19. https://doi.org/10.1145/3314393

  36. Ferrer-Cid P, Barcelo-Ordinas JM, Garcia-Vidal J (2021) Graph learning techniques using structured data for IoT Air Pollution Monitoring Platforms. In IEEE Internet of Things Journal. https://doi.org/10.1109/JIOT.2021.3067717

  37. UIA AirHeritage Project pagehttps://www.uia-initiative.eu/en/uia-cities/portici. Accessed June 2021

  38. WHO (2013) Health risks of air pollution in Europe—HRAPIE project. Recommendations for concentration–response functions for cost–benefit analysis of particulate matter, ozone and nitrogen dioxide. https://www.euro.who.int/en/health-Topics/environment-and-health/air-quality/publications/2013/

  39. Bagkis E, Kassandros T, Karteris M, Karteris A, Karatzas K (2021) Analyzing and improving the performance of a particulate matter low cost air quality monitoring device. Atmosphere 12:251. https://doi.org/10.3390/atmos12020251

    Article  CAS  Google Scholar 

  40. http://www.NGNX.com-NGNX website

    Google Scholar 

  41. http://Nodejs.org-Node.Js website

    Google Scholar 

  42. http://Mongodb.com-MongoDB. website

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saverio De Vito .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

De Vito, S. et al. (2023). A Data Processing Architecture for Intelligent Hierarchical Air Quality Monitoring Networks in Urban Innovation and Citizen Science Applications. In: De Vito, S., Karatzas, K., Bartonova, A., Fattoruso, G. (eds) Air Quality Networks. Environmental Informatics and Modeling. Springer, Cham. https://doi.org/10.1007/978-3-031-08476-8_2

Download citation

Publish with us

Policies and ethics

Navigation