Mechanisms of Lipoproteins and Reverse Cholesterol Transport in Atherosclerotic Cardiovascular Disease

  • Chapter
  • First Online:
Cardiovascular Signaling in Health and Disease

Abstract

Coronary heart disease (CHD) makes up approximately 42.1% of all cardiovascular disease deaths in the United States. Cholesterol deposition in the arteries from LDL-C, or the “bad cholesterol,” increases the risk of CHD, atherosclerosis, myocardial infarction, and stroke. However, increased HDL-C, “good cholesterol,” has been associated with lower risk of CHD and plays an important role in the reverse cholesterol transport (RCT) pathway. The RCT pathway is the process of cholesterol efflux from peripheral cells and tissues by HDL, and transported to the liver for uptake, excretion, and recycling. Pathogenic variants in key players within the RCT pathway, like SCARB1, ApoA-I, ABCA1/ABCG1, are associated with atherosclerosis and coronary artery disease. Thus, understanding RCT mechanisms is of significant scientific interest. In this chapter, we discuss lipoproteins, with particular emphasis on the known mechanisms of RCT, disease-associated variants, and current therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 160.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Virani SS, Alonso A, Aparicio HJ, Benjamin EJ, Bittencourt MS, Callaway CW, et al. Heart disease and stroke statistics - 2021 update. Circulation. 2021;143(8):e254–743.

    Article  PubMed  Google Scholar 

  2. Pencina MJ, D'Agostino RB, Larson MG, Massaro JM, Vasan RS. Predicting the 30-year risk of cardiovascular disease. Circulation. 2009;119(24):3078–84.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Wilson PW, Garrison RJ, Castelli WP, Feinleib M, McNamara PM, Kannel WB. Prevalence of coronary heart disease in the Framingham offspring study: role of lipoprotein cholesterols. Am J Cardiol. 1980;46(4):649–54.

    Article  CAS  PubMed  Google Scholar 

  4. Glomset JA, Janssen ET, Kennedy R, Dobbins J. Role of plasma lecithin:cholesterol acyltransferase in the metabolism of high density lipoproteins. J Lipid Res. 1966;7(5):638–48.

    Article  CAS  PubMed  Google Scholar 

  5. Barter PJ, Caulfield M, Eriksson M, Grundy SM, Kastelein JJ, Komajda M, et al. Effects of torcetrapib in patients at high risk for coronary events. N Engl J Med. 2007;357(21):2109–22.

    Article  CAS  PubMed  Google Scholar 

  6. Cannon CP, Shah S, Dansky HM, Davidson M, Brinton EA, Gotto AM, et al. Safety of Anacetrapib in patients with or at high risk for coronary heart disease. N Engl J Med. 2010;363(25):2406–15.

    Article  CAS  PubMed  Google Scholar 

  7. Nicholls SJ, Brewer HB, Kastelein JJ, Krueger KA, Wang MD, Shao M, et al. Effects of the CETP inhibitor evacetrapib administered as monotherapy or in combination with statins on HDL and LDL cholesterol: a randomized controlled trial. JAMA. 2011;306(19):2099–109.

    Article  CAS  PubMed  Google Scholar 

  8. Schwartz GG, Olsson AG, Abt M, Ballantyne CM, Barter PJ, Brumm J, et al. Effects of Dalcetrapib in patients with a recent acute coronary syndrome. N Engl J Med. 2012;367(22):2089–99.

    Article  CAS  PubMed  Google Scholar 

  9. Torres N, Guevara-Cruz M, Velázquez-Villegas LA, Tovar AR. Nutrition and atherosclerosis. Arch Med Res. 2015;46(5):408–26.

    Article  CAS  PubMed  Google Scholar 

  10. Massaro M, Scoditti E, Carluccio MA, De Caterina R. Nutraceuticals and prevention of atherosclerosis: focus on ω-3 polyunsaturated fatty acids and Mediterranean diet polyphenols. Cardiovasc Ther. 2010;28(4):e13–e9.

    Article  CAS  PubMed  Google Scholar 

  11. Estruch R, Ros E, Salas-Salvadó J, Covas M-I, Corella D, Arós F, et al. Primary prevention of cardiovascular disease with a Mediterranean diet. N Engl J Med. 2013;368(14):1279–90.

    Article  CAS  PubMed  Google Scholar 

  12. de Lorgeril M, Renaud S, Salen P, Monjaud I, Mamelle N, Martin JL, et al. Mediterranean alpha-linolenic acid-rich diet in secondary prevention of coronary heart disease. Lancet. 1994;343(8911):1454–9.

    Article  PubMed  Google Scholar 

  13. Korre M, Tsoukas MA, Frantzeskou E, Yang J, Kales SN. Mediterranean diet and workplace health promotion. Curr Cardiovasc Risk Rep. 2014;8(12):416.

    Article  Google Scholar 

  14. Vilahur G, Badimon L. Antiplatelet properties of natural products. Vasc Pharmacol. 2013;59(3–4):67–75.

    Article  CAS  Google Scholar 

  15. Saita E, Kondo K, Momiyama Y. Anti-inflammatory diet for atherosclerosis and coronary artery disease: antioxidant foods. Clin Med Insights Cardiol. 2015;8(Suppl 3):61–5.

    PubMed  PubMed Central  Google Scholar 

  16. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. Heart disease and stroke statistics--2015 update: a report from the American Heart Association. Circulation. 2015;131(4):e29–322.

    PubMed  Google Scholar 

  17. Mozaffarian D, Katan MB, Ascherio A, Stampfer MJ, Willett WC. Trans fatty acids and cardiovascular disease. N Engl J Med. 2006;354(15):1601–13.

    Article  CAS  PubMed  Google Scholar 

  18. Correction to: 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2019;140(11):e649–e50.

    Google Scholar 

  19. Temple NJ. Fat, sugar, whole grains and heart disease: 50 years of confusion. Nutrients. 2018;10(1):39.

    Article  PubMed Central  CAS  Google Scholar 

  20. Anand SS, Hawkes C, de Souza RJ, Mente A, Dehghan M, Nugent R, et al. Food consumption and its impact on cardiovascular disease: importance of solutions focused on the globalized food system: a report from the workshop convened by the World Heart Federation. J Am Coll Cardiol. 2015;66(14):1590–614.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Narain A, Kwok CS, Mamas MA. Soft drinks and sweetened beverages and the risk of cardiovascular disease and mortality: a systematic review and meta-analysis. Int J Clin Pract. 2016;70(10):791–805.

    Article  CAS  PubMed  Google Scholar 

  22. Yang Q, Zhang Z, Gregg EW, Flanders WD, Merritt R, Hu FB. Added sugar intake and cardiovascular diseases mortality among US adults. JAMA Intern Med. 2014;174(4):516–24.

    Article  CAS  PubMed  Google Scholar 

  23. DiNicolantonio JJ, JH OK. Added sugars drive coronary heart disease via insulin resistance and hyperinsulinaemia: a new paradigm. Open. Heart. 2017;4(2):e000729.

    Google Scholar 

  24. Brown JC, Gerhardt TE, Kwon E. Risk factors for coronary artery disease. StatPearls. Treasure Island (FL): StatPearls Publishing. Copyright © 2021, StatPearls Publishing LLC; 2021.

    Google Scholar 

  25. Yusuf S, Hawken S, Ounpuu S, Dans T, Avezum A, Lanas F, et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet. 2004;364(9438):937–52.

    Article  PubMed  Google Scholar 

  26. Marques LR, Diniz TA, Antunes BM, Rossi FE, Caperuto EC, Lira FS, et al. Reverse cholesterol transport: molecular mechanisms and the non-medical approach to enhance HDL cholesterol. Front Physiol. 2018;9:526.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Helgadottir A, Thorleifsson G, Manolescu A, Gretarsdottir S, Blondal T, Jonasdottir A, et al. A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science. 2007;316(5830):1491–3.

    Article  CAS  PubMed  Google Scholar 

  28. Palomaki GE, Melillo S, Bradley LA. Association between 9p21 genomic markers and heart disease: a meta-analysis. JAMA. 2010;303(7):648–56.

    Article  CAS  PubMed  Google Scholar 

  29. Assimes TL, Knowles JW, Basu A, Iribarren C, Southwick A, Tang H, et al. Susceptibility locus for clinical and subclinical coronary artery disease at chromosome 9p21 in the multi-ethnic ADVANCE study. Hum Mol Genet. 2008;17(15):2320–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nikpay M, Goel A, Won H-H, Hall LM, Willenborg C, Kanoni S, et al. A comprehensive 1000 genomes–based genome-wide association meta-analysis of coronary artery disease. Nat Genet. 2015;47(10):1121–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nelson CP, Goel A, Butterworth AS, Kanoni S, Webb TR, Marouli E, et al. Association analyses based on false discovery rate implicate new loci for coronary artery disease. Nat Genet. 2017;49(9):1385–91.

    Article  CAS  PubMed  Google Scholar 

  32. Ward NC, Watts GF, Eckel RH. Statin toxicity. Circ Res. 2019;124(2):328–50.

    Article  CAS  PubMed  Google Scholar 

  33. Ko DT, Khan AM, Kotrri G, Austin PC, Wijeysundera HC, Koh M, et al. Eligibility, clinical outcomes, and budget impact of PCSK9 inhibitor adoption: the CANHEART PCSK9 study. J Am Heart Assoc. 2018;7(21):e010007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schmidt AF, Carter JP, Pearce LS, Wilkins JT, Overington JP, Hingorani AD, et al. PCSK9 monoclonal antibodies for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2020;10(10):CD011748.

    Google Scholar 

  35. Myers KD, Farboodi N, Mwamburi M, Howard W, Staszak D, Gidding S, et al. Effect of access to prescribed PCSK9 inhibitors on cardiovascular outcomes. Circ Cardiovasc Qual Outcomes. 2019;12(8):e005404.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Koenig SN, Sucharski HC, Jose EM, Dudley EK, Madiai F, Cavus O, et al. Inherited variants in SCARB1 cause severe early-onset coronary artery disease. Circ Res. 2021;129(2):296–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Feingold KR. Introduction to lipids and lipoproteins. In: Feingold KR, Anawalt B, Boyce A, Chrousos G, de Herder WW, Dhatariya K, et al., editors. Endotext. South Dartmouth (MA): MDText.com, Inc. Copyright © 2000–2021, MDText.com, Inc.; 2000.

    Google Scholar 

  38. Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, et al. Tissue-based map of the human proteome. Science. 2015;347(6220):1260419. https://www.proteinatlas.org/ENSG00000130164-LDLR

    Article  CAS  Google Scholar 

  39. Friesen JA, Rodwell VW. The 3-hydroxy-3-methylglutaryl coenzyme-A (HMG-CoA) reductases. Genome Biol. 2004;5(11):248.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Shapiro MD, Tavori H, Fazio S. PCSK9. Circ Res. 2018;122(10):1420–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Poirier S, Mayer G, Benjannet S, Bergeron E, Marcinkiewicz J, Nassoury N, et al. The Proprotein convertase PCSK9 induces the degradation of low density lipoprotein receptor (LDLR) and its closest family members VLDLR and ApoER2*. J Biol Chem. 2008;283(4):2363–72.

    Article  CAS  PubMed  Google Scholar 

  42. Brown MS, Anderson RG, Goldstein JL. Recycling receptors: the round-trip itinerary of migrant membrane proteins. Cell. 1983;32(3):663–7.

    Article  CAS  PubMed  Google Scholar 

  43. Barr DP, Russ EM, Eder HA. Protein-lipid relationships in human plasma. II. In atherosclerosis and related conditions. Am J Med. 1951;11(4):480–93.

    Article  CAS  PubMed  Google Scholar 

  44. Basso F, Freeman L, Knapper CL, Remaley A, Stonik J, Neufeld EB, et al. Role of the hepatic ABCA1 transporter in modulating intrahepatic cholesterol and plasma HDL cholesterol concentrations. J Lipid Res. 2003;44(2):296–302.

    Article  CAS  PubMed  Google Scholar 

  45. Brunham LR, Kruit JK, Iqbal J, Fievet C, Timmins JM, Pape TD, et al. Intestinal ABCA1 directly contributes to HDL biogenesis in vivo. J Clin Investig. 2006;116(4):1052–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Asztalos BF, Tani M, Schaefer EJ. Metabolic and functional relevance of HDL subspecies. Curr Opin Lipidol. 2011;22(3):176–85.

    Article  CAS  PubMed  Google Scholar 

  47. Kulkarni KR, Marcovina SM, Krauss RM, Garber DW, Glasscock AM, Segrest JP. Quantification of HDL2 and HDL3 cholesterol by the Vertical Auto Profile-II (VAP-II) methodology. J Lipid Res. 1997;38(11):2353–64.

    Article  CAS  PubMed  Google Scholar 

  48. Nofer JR, Remaley AT. Tangier disease: still more questions than answers. Cell Mol Life Sci. 2005;62(19–20):2150–60.

    Article  CAS  PubMed  Google Scholar 

  49. Bailey A, Mohiuddin SS. Biochemistry, high density lipoprotein. StatPearls. Treasure Island (FL): StatPearls Publishing Copyright © 2021, StatPearls Publishing LLC; 2021.

    Google Scholar 

  50. Voight BF, Peloso GM, Orho-Melander M, Frikke-Schmidt R, Barbalic M, Jensen MK, et al. Plasma HDL cholesterol and risk of myocardial infarction: a mendelian randomisation study. Lancet. 2012;380(9841):572–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Asztalos BF, Schaefer EJ, Horvath KV, Yamashita S, Miller M, Franceschini G, et al. Role of LCAT in HDL remodeling: investigation of LCAT deficiency states. J Lipid Res. 2007;48(3):592–9.

    Article  CAS  PubMed  Google Scholar 

  52. Oram JF, Vaughan AM. ATP-binding cassette cholesterol transporters and cardiovascular disease. Circ Res. 2006;99(10):1031–43.

    Article  CAS  PubMed  Google Scholar 

  53. Ouimet M, Barrett TJ, Fisher EA. HDL and reverse cholesterol transport. Circ Res. 2019;124(10):1505–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ono K. Current concept of reverse cholesterol transport and novel strategy for atheroprotection. J Cardiol. 2012;60(5):339–43.

    Article  PubMed  Google Scholar 

  55. Remaley AT, Amar M, Sviridov D. HDL-replacement therapy: mechanism of action, types of agents and potential clinical indications. Expert Rev Cardiovasc Ther. 2008;6(9):1203–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Shen WJ, Azhar S, Kraemer FB. SR-B1: a unique multifunctional receptor for cholesterol influx and efflux. Annu Rev Physiol. 2018;80:95–116.

    Article  CAS  PubMed  Google Scholar 

  57. Charles MA, Kane JP. New molecular insights into CETP structure and function: a review. J Lipid Res. 2012;53(8):1451–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Rosenson RS, Brewer HB Jr, Davidson WS, Fayad ZA, Fuster V, Goldstein J, et al. Cholesterol efflux and atheroprotection: advancing the concept of reverse cholesterol transport. Circulation. 2012;125(15):1905–19.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Neculai D, Schwake M, Ravichandran M, Zunke F, Collins RF, Peters J, et al. Structure of LIMP-2 provides functional insights with implications for SR-BI and CD36. Nature. 2013;504(7478):172–6.

    Article  CAS  PubMed  Google Scholar 

  60. Varban ML, Rinninger F, Wang N, Fairchild-Huntress V, Dunmore JH, Fang Q, et al. Targeted mutation reveals a central role for SR-BI in hepatic selective uptake of high density lipoprotein cholesterol. Proc Natl Acad Sci U S A. 1998;95(8):4619–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Rigotti A, Trigatti BL, Penman M, Rayburn H, Herz J, Krieger M. A targeted mutation in the murine gene encoding the high density lipoprotein (HDL) receptor scavenger receptor class B type I reveals its key role in HDL metabolism. Proc Natl Acad Sci U S A. 1997;94(23):12610–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Van Eck M, Twisk J, Hoekstra M, Van Rij BT, Van der Lans CA, Bos IS, et al. Differential effects of scavenger receptor BI deficiency on lipid metabolism in cells of the arterial wall and in the liver. Int J Biol Chem. 2003;278(26):23699–705.

    Article  CAS  Google Scholar 

  63. Kozarsky KF, Donahee MH, Rigotti A, Iqbal SN, Edelman ER, Krieger M. Overexpression of the HDL receptor SR-BI alters plasma HDL and bile cholesterol levels. Nature. 1997;387(6631):414–7.

    Article  CAS  PubMed  Google Scholar 

  64. Ueda Y, Royer L, Gong E, Zhang J, Cooper PN, Francone O, et al. Lower plasma levels and accelerated clearance of high density lipoprotein (HDL) and non-HDL cholesterol in scavenger receptor class B type I transgenic mice. Int J Biol Chem. 1999;274(11):7165–71.

    Article  CAS  Google Scholar 

  65. Wang N, Arai T, Ji Y, Rinninger F, Tall AR. Liver-specific overexpression of scavenger receptor BI decreases levels of very low density lipoprotein ApoB, low density lipoprotein ApoB, and high density lipoprotein in transgenic mice. J Biol Chem. 1998;273(49):32920–6.

    Article  CAS  PubMed  Google Scholar 

  66. Chiang JY. Regulation of bile acid synthesis: pathways, nuclear receptors, and mechanisms. J Hepatol. 2004;40(3):539–51.

    Article  CAS  PubMed  Google Scholar 

  67. Cohen DE. Balancing cholesterol synthesis and absorption in the gastrointestinal tract. J Clin Lipidol. 2008;2(2):S1–3.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Carey MC, Lamont JT. Cholesterol gallstone formation. 1. Physical-chemistry of bile and biliary lipid secretion. Prog Liver Dis. 1992;10:139–63.

    CAS  PubMed  Google Scholar 

  69. Zakim D, Boyer TD. Hepatology: a textbook of liver disease. Saunders; 1990.

    Google Scholar 

  70. Oude Elferink RP, Paulusma CC, Groen AK. Hepatocanalicular transport defects: pathophysiologic mechanisms of rare diseases. Gastroenterol. 2006;130(3):908–25.

    Article  CAS  Google Scholar 

  71. Altmann SW, Davis HR Jr, Zhu LJ, Yao X, Hoos LM, Tetzloff G, et al. Niemann-pick C1 like 1 protein is critical for intestinal cholesterol absorption. Science. 2004;303(5661):1201–4.

    Article  CAS  PubMed  Google Scholar 

  72. Brown JM, Temel RE, Graf GA. Para-bile-osis establishes a role for nonbiliary macrophage to Feces reverse cholesterol transport. Arterioscler Thromb Vasc Biol. 2017;37(5):738–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wang DQ. Regulation of intestinal cholesterol absorption. Annu Rev Physiol. 2007;69:221–48.

    Article  CAS  PubMed  Google Scholar 

  74. Hussain MM. A proposed model for the assembly of chylomicrons. Atherosclerosis. 2000;148(1):1–15.

    Article  CAS  PubMed  Google Scholar 

  75. Rong JX, Shapiro M, Trogan E, Fisher EA. Transdifferentiation of mouse aortic smooth muscle cells to a macrophage-like state after cholesterol loading. Proc Natl Acad Sci U S A. 2003;100(23):13531–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Vengrenyuk Y, Nishi H, Long X, Ouimet M, Savji N, Martinez FO, et al. Cholesterol loading reprograms the microRNA-143/145-myocardin axis to convert aortic smooth muscle cells to a dysfunctional macrophage-like phenotype. Arterioscler Thromb Vasc Biol. 2015;35(3):535–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Shankman LS, Gomez D, Cherepanova OA, Salmon M, Alencar GF, Haskins RM, et al. KLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesis. Nat Med. 2015;21(6):628–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Feil S, Fehrenbacher B, Lukowski R, Essmann F, Schulze-Osthoff K, Schaller M, et al. Transdifferentiation of vascular smooth muscle cells to macrophage-like cells during atherogenesis. Circ Res. 2014;115(7):662–7.

    Article  CAS  PubMed  Google Scholar 

  79. Allahverdian S, Chehroudi AC, McManus BM, Abraham T, Francis GA. Contribution of intimal smooth muscle cells to cholesterol accumulation and macrophage-like cells in human atherosclerosis. Circulation. 2014;129(15):1551–9.

    Article  CAS  PubMed  Google Scholar 

  80. Brown MS, Goldstein JL, Krieger M, Ho YK, Anderson RG. Reversible accumulation of cholesteryl esters in macrophages incubated with acetylated lipoproteins. J Cell Biol. 1979;82(3):597–613.

    Article  CAS  PubMed  Google Scholar 

  81. McGookey DJ, Anderson RG. Morphological characterization of the cholesteryl ester cycle in cultured mouse macrophage foam cells. J Cell Biol. 1983;97(4):1156–68.

    Article  CAS  PubMed  Google Scholar 

  82. Gallino A, Aboyans V, Diehm C, Cosentino F, Stricker H, Falk E, et al. Non-coronary atherosclerosis. Eur Heart J. 2014;35(17):1112–9.

    Article  PubMed  Google Scholar 

  83. Ross R. Atherosclerosis--an inflammatory disease. N Engl J Med. 1999;340(2):115–26.

    Article  CAS  PubMed  Google Scholar 

  84. Tall AR, Rader DJ. Trials and tribulations of CETP inhibitors. Circ Res. 2018;122(1):106–12.

    Article  CAS  PubMed  Google Scholar 

  85. Barter PJ, Rye KA. High density lipoproteins and coronary heart disease. Atherosclerosis. 1996;121(1):1–12.

    Article  CAS  PubMed  Google Scholar 

  86. Barter PJ, Baker PW, Rye K-A. Effect of high-density lipoproteins on the expression of adhesion molecules in endothelial cells. Curr Opin Lipidol. 2002;13(3):285–8.

    Article  CAS  PubMed  Google Scholar 

  87. Barter PJ, Rye KA. Relationship between the concentration and antiatherogenic activity of high-density lipoproteins. Curr Opin Lipidol. 2006;17(4):399–403.

    Article  CAS  PubMed  Google Scholar 

  88. Badimon L, Chiva-Blanch G. Chapter 24 - lipid metabolism in Dyslipidemia and familial hypercholesterolemia. In: Patel VB, editor. The molecular nutrition of fats. Academic Press; 2019. p. 307–22.

    Google Scholar 

  89. Navab M, Ananthramaiah GM, Reddy ST, Van Lenten BJ, Ansell BJ, Fonarow GC, et al. The oxidation hypothesis of atherogenesis: the role of oxidized phospholipids and HDL. J Lipid Res. 2004;45(6):993–1007.

    Article  CAS  PubMed  Google Scholar 

  90. Terasaka N, Wang N, Yvan-Charvet L, Tall AR. High-density lipoprotein protects macrophages from oxidized low-density lipoprotein-induced apoptosis by promoting efflux of 7-ketocholesterol via ABCG1. Proc Natl Acad Sci U S A. 2007;104(38):15093–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Barter PJ, Nicholls S, Rye KA, Anantharamaiah GM, Navab M, Fogelman AM. Antiinflammatory properties of HDL. Circ Res. 2004;95(8):764–72.

    Article  CAS  PubMed  Google Scholar 

  92. Navab M, Anantharamaiah GM, Fogelman AM. The role of high-density lipoprotein in inflammation. Trends Cardiovasc Med. 2005;15(4):158–61.

    Article  CAS  PubMed  Google Scholar 

  93. Ansell BJ, Watson KE, Fogelman AM, Navab M, Fonarow GC. High-density lipoprotein function recent advances. J Am Coll Cardiol. 2005;46(10):1792–8.

    Article  CAS  PubMed  Google Scholar 

  94. Navab M, Ananthramaiah GM, Reddy ST, Van Lenten BJ, Ansell BJ, Hama S, et al. The double jeopardy of HDL. Ann Med. 2005;37(3):173–8.

    Article  CAS  PubMed  Google Scholar 

  95. Webb TR, Erdmann J, Stirrups KE, Stitziel NO, Masca NGD, Jansen H, et al. Systematic evaluation of pleiotropy identifies 6 further loci associated with coronary artery disease. J Am Coll Cardiol. 2017;69(7):823–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Hobbs HH, Russell DW, Brown MS, Goldstein JL. The LDL receptor locus in familial hypercholesterolemia: mutational analysis of a membrane protein. Annu Rev Genet. 1990;24:133–70.

    Article  CAS  PubMed  Google Scholar 

  97. Meshkov A, Ershova A, Kiseleva A, Zotova E, Sotnikova E, Petukhova A, et al. The LDLR, APOB, and PCSK9 variants of index patients with familial hypercholesterolemia in Russia. Genes (Basel). 2021;12(1):66.

    Article  CAS  PubMed Central  Google Scholar 

  98. Inazu A, Brown ML, Hesler CB, Agellon LB, Koizumi J, Takata K, et al. Increased high-density lipoprotein levels caused by a common cholesteryl-ester transfer protein gene mutation. N Engl J Med. 1990;323(18):1234–8.

    Article  CAS  PubMed  Google Scholar 

  99. Goldstein JL, Brown MS. The LDL receptor. Arterioscler Thromb Vasc Biol. 2009;29(4):431–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Lewis MJ, Malik TH, Ehrenstein MR, Boyle JJ, Botto M, Haskard DO. Immunoglobulin M is required for protection against atherosclerosis in low-density lipoprotein receptor-deficient mice. Circulation. 2009;120(5):417–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Wouters K, Shiri-Sverdlov R, van Gorp PJ, van Bilsen M, Hofker MH. Understanding hyperlipidemia and atherosclerosis: lessons from genetically modified apoe and ldlr mice. Clin Chem Lab Med. 2005;43(5):470–9.

    Article  CAS  PubMed  Google Scholar 

  102. Kennedy DJ, Kuchibhotla SD, Guy E, Park YM, Nimako G, Vanegas D, et al. Dietary cholesterol plays a role in CD36-mediated atherogenesis in LDLR-knockout mice. Arterioscler Thromb Vasc Biol. 2009;29(10):1481–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Langheinrich AC, Michniewicz A, Sedding DG, Walker G, Beighley PE, Rau WS, et al. Correlation of Vasa Vasorum neovascularization and plaque progression in aortas of Apolipoprotein E−/− low-density lipoprotein−/− double knockout mice. Arterioscler Thromb Vasc Biol. 2006;26(2):347–52.

    Article  CAS  PubMed  Google Scholar 

  104. Semenova AE, Sergienko IV, García-Giustiniani D, Monserrat L, Popova AB, Nozadze DN, et al. Verification of underlying genetic cause in a Cohort of Russian patients with familial hypercholesterolemia using targeted next generation sequencing. J Cardiovasc Dev Dis. 2020;7(2):16.

    Article  CAS  PubMed Central  Google Scholar 

  105. Pogoda T, Metelskaya V, Perova N, Limborska S. Detection of the apoB-3500 mutation in a Russian family with coronary heart disease. Hum Hered. 1998;48(5):291–2.

    Article  CAS  PubMed  Google Scholar 

  106. Shakhtshneider E, Ivanoshchuk D, Orlov P, Timoshchenko O, Voevoda M. Analysis of the Ldlr, Apob, Pcsk9 and Ldlrap1 genes variability in patients with familial hypercholesterolemia in West Siberia using targeted high throughput resequencing. Atherosclerosis. 2019;287:e285.

    Google Scholar 

  107. Sadananda SN, Foo JN, Toh MT, Cermakova L, Trigueros-Motos L, Chan T, et al. Targeted next-generation sequencing to diagnose disorders of HDL cholesterol. J Lipid Res. 2015;56(10):1993–2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Peloso GM, Nomura A, Khera AV, Chaffin M, Won H-H, Ardissino D, et al. Rare protein-truncating variants in APOB, lower low-density lipoprotein cholesterol, and protection against coronary heart disease. Circ Genom Precis Med. 2019;12(5):e002376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Rabacchi C, Simone ML, Pisciotta L, Di Leo E, Bocchi D, Pietrangelo A, et al. In vitro functional characterization of splicing variants of the APOB gene found in familial hypobetalipoproteinemia. J Clin Lipidol. 2019;13(6):960–9.

    Article  PubMed  Google Scholar 

  110. Leren TP. Mutations in the PCSK9 gene in Norwegian subjects with autosomal dominant hypercholesterolemia. Clin Genet. 2004;65(5):419–22.

    Article  CAS  PubMed  Google Scholar 

  111. Guo Q, Feng X, Zhou Y. PCSK9 variants in familial hypercholesterolemia: a comprehensive synopsis. Front Genet. 2020;11:1020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Di Taranto MD, Giacobbe C, Fortunato G. Familial hypercholesterolemia: a complex genetic disease with variable phenotypes. Eur J Med Genet. 2020;63(4):103831.

    Article  PubMed  Google Scholar 

  113. Ragusa R, Basta G, Neglia D, De Caterina R, Del Turco S, Caselli C. PCSK9 and atherosclerosis: looking beyond LDL regulation. Eur J Clin. 2021;51(4):e13459.

    CAS  Google Scholar 

  114. Kent AP, Stylianou IM. Scavenger receptor class B member 1 protein: hepatic regulation and its effects on lipids, reverse cholesterol transport, and atherosclerosis. Hepat Med. 2011;3:29–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. **e L, Lv X, Sun Y, Tong Y, Zhang S, Deng Y. Association of rs5888 SNP in SCARB1 gene with coronary artery disease. Herz. 2019;44(7):644–50.

    Article  CAS  PubMed  Google Scholar 

  116. Wu DF, Yin RX, Cao XL, Chen WX, Aung LH, Wang W, et al. Scavenger receptor class B type 1 gene rs5888 single nucleotide polymorphism and the risk of coronary artery disease and ischemic stroke: a case-control study. Int J Med Sci. 2013;10(12):1771–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Ayhan H, Gormus U, Isbir S, Yilmaz SG, Isbir T. SCARB1 gene polymorphisms and HDL subfractions in coronary artery disease. In vivo (Athens, Greece). 2017;31(5):873–6.

    CAS  Google Scholar 

  118. Helgadottir A, Sulem P, Thorgeirsson G, Gretarsdottir S, Thorleifsson G, Jensson B, et al. Rare SCARB1 mutations associate with high-density lipoprotein cholesterol but not with coronary artery disease. Eur Heart J. 2018;39(23):2172–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Vergeer M, Korporaal SJ, Franssen R, Meurs I, Out R, Hovingh GK, et al. Genetic variant of the scavenger receptor BI in humans. N Engl J Med. 2011;364(2):136–45.

    Article  CAS  PubMed  Google Scholar 

  120. Ljunggren SA, Levels JH, Hovingh K, Holleboom AG, Vergeer M, Argyri L, et al. Lipoprotein profiles in human heterozygote carriers of a functional mutation P297S in scavenger receptor class B1. Biochim Biophys Acta. 2015;1851(12):1587–95.

    Article  CAS  PubMed  Google Scholar 

  121. Williams DL, Temel RE, Connelly MA. Roles of scavenger receptor BI and APO A-I in selective uptake of HDL cholesterol by adrenal cells. Endocr Res. 2000;26(4):639–51.

    Article  CAS  PubMed  Google Scholar 

  122. Schreyer SA, Wilson DL, LeBoeuf RC. C57BL/6 mice fed high fat diets as models for diabetes-accelerated atherosclerosis. Atherosclerosis. 1998;136(1):17–24.

    Article  CAS  PubMed  Google Scholar 

  123. Ishibashi S, Brown MS, Goldstein JL, Gerard RD, Hammer RE, Herz J. Hypercholesterolemia in low density lipoprotein receptor knockout mice and its reversal by adenovirus-mediated gene delivery. J Clin Investig. 1993;92(2):883–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Lo Sasso G, Schlage WK, Boué S, Veljkovic E, Peitsch MC, Hoeng J. The Apoe(−/−) mouse model: a suitable model to study cardiovascular and respiratory diseases in the context of cigarette smoke exposure and harm reduction. J Transl Med. 2016;14(1):146.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Meir KS, Leitersdorf E. Atherosclerosis in the Apolipoprotein Edeficient mouse. Arterioscler Thromb Vasc Biol. 2004;24(6):1006–14.

    Article  CAS  PubMed  Google Scholar 

  126. Zhang SH, Reddick RL, Piedrahita JA, Maeda N. Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science. 1992;258(5081):468–71.

    Article  CAS  PubMed  Google Scholar 

  127. Plump AS, Smith JD, Hayek T, Aalto-Setälä K, Walsh A, Verstuyft JG, et al. Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. Cell. 1992;71(2):343–53.

    Article  CAS  PubMed  Google Scholar 

  128. Getz GS, Reardon CA. Do the Apoe−/− and Ldlr−/− mice yield the same insight on Atherogenesis? Arterioscler Thromb Vasc Biol. 2016;36(9):1734–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Caligiuri G, Levy B, Pernow J, Thorén P, Hansson GK. Myocardial infarction mediated by endothelin receptor signaling in hypercholesterolemic mice. Proc Natl Acad Sci U S A. 1999;96(12):6920–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Contreras-Duarte S, Santander N, Birner-Gruenberger R, Wadsack C, Rigotti A, Busso D. High density lipoprotein cholesterol and proteome in SR-B1 KO mice: lost in precipitation. J Transl Med. 2018;16(1):309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Trigatti B, Rayburn H, Viñals M, Braun A, Miettinen H, Penman M, et al. Influence of the high density lipoprotein receptor SR-BI on reproductive and cardiovascular pathophysiology. Proc Natl Acad Sci U S A. 1999;96(16):9322–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Tsukamoto K, Mani DR, Shi J, Zhang S, Haagensen DE, Otsuka F, et al. Identification of apolipoprotein D as a cardioprotective gene using a mouse model of lethal atherosclerotic coronary artery disease. Proc Natl Acad Sci U S A. 2013;110(42):17023–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Report of the National Cholesterol Education Program Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. The Expert Panel. Arch Intern Med. 1988;148(1):36–69.

    Google Scholar 

  134. Harrington RA. Statins—Almost 30 years of use in the United States and still not quite there. JAMA Cardiol. 2017;2(1):66.

    Article  Google Scholar 

  135. Stancu C, Sima A. Statins: mechanism of action and effects. J Cell Mol Med. 2001;5(4):378–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Corsini A, Bellosta S, Baetta R, Fumagalli R, Paoletti R, Bernini F. New insights into the pharmacodynamic and pharmacokinetic properties of statins. Pharmacol Ther. 1999;84(3):413–28.

    Article  CAS  PubMed  Google Scholar 

  137. Jayatilaka S, Desai K, Rijal S, Zimmerman D. Statin-induced autoimmune necrotizing myopathy. J Prim Care Community Health. 2021;12:21501327211028714.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Postmus I, Trompet S, Deshmukh HA, Barnes MR, Li X, Warren HR, et al. Pharmacogenetic meta-analysis of genome-wide association studies of LDL cholesterol response to statins. Nat Commun. 2014;5(1):5068.

    Article  CAS  PubMed  Google Scholar 

  139. Thompson PD, Panza G, Zaleski A, Taylor B. Statin-associated side effects. J Am Coll Cardiol. 2016;67(20):2395–410.

    Article  CAS  PubMed  Google Scholar 

  140. Giugliano RP, Sabatine MS. Are PCSK9 inhibitors the next breakthrough in the cardiovascular field? J Am Coll Cardiol. 2015;65(24):2638–51.

    Article  CAS  PubMed  Google Scholar 

  141. Sabatine MS, Giugliano RP, Keech AC, Honarpour N, Wiviott SD, Murphy SA, et al. Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl J Med. 2017;376(18):1713–22.

    Article  CAS  PubMed  Google Scholar 

  142. Shapiro MD, Fazio S. From lipids to inflammation: new approaches to reducing atherosclerotic risk. Circ Res. 2016;118(4):732–49.

    Article  CAS  PubMed  Google Scholar 

  143. Chhabria MT, Suhagia BN, Brahmkshatriya PS. HDL elevation and lipid lowering therapy: current scenario and future perspectives. Recent Adv Cardiovasc Drug Discov. 2007;2(3):214–27.

    Article  CAS  Google Scholar 

  144. Wong NC. Novel therapies to increase apolipoprotein AI and HDL for the treatment of atherosclerosis. Curr Opin Investig Drugs (London, England : 2000). 2007;8(9):718–28.

    Google Scholar 

  145. Sacks FM. The relative role of low-density lipoprotein cholesterol and high-density lipoprotein cholesterol in coronary artery disease: evidence from large-scale statin and fibrate trials. Am J Cardiol. 2001;88(12a):14n–8n.

    Article  CAS  PubMed  Google Scholar 

  146. Baigent C, Keech A, Kearney PM, Blackwell L, Buck G, Pollicino C, et al. Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet (London, England). 2005;366(9493):1267–78.

    Article  CAS  Google Scholar 

  147. Franceschini G, Sirtori CR, Bosisio E, Gualandri V, Orsini GB, Mogavero AM, et al. Relationship of the phenotypic expression of the A-IMilano apoprotein with plasma lipid and lipoprotein patterns. Atherosclerosis. 1985;58(1–3):159–74.

    Article  CAS  PubMed  Google Scholar 

  148. Franceschini G, Sirtori CR, Capurso A 2nd, Weisgraber KH, Mahley RW. A-IMilano apoprotein. Decreased high density lipoprotein cholesterol levels with significant lipoprotein modifications and without clinical atherosclerosis in an Italian family. J Clin Investig. 1980;66(5):892–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Nicholls SJ, Tuzcu EM, Sipahi I, Schoenhagen P, Crowe T, Kapadia S, et al. Relationship between atheroma regression and change in lumen size after infusion of apolipoprotein A-I Milano. J Am Coll Cardiol. 2006;47(5):992–7.

    Article  CAS  PubMed  Google Scholar 

  150. Ibanez B, Vilahur G, Cimmino G, Speidl WS, Pinero A, Choi BG, et al. Rapid change in plaque size, composition, and molecular footprint after recombinant apolipoprotein A-I Milano (ETC-216) administration: magnetic resonance imaging study in an experimental model of atherosclerosis. J Am Coll Cardiol. 2008;51(11):1104–9.

    Article  CAS  PubMed  Google Scholar 

  151. Spieker LE, Sudano I, Hürlimann D, Lerch PG, Lang MG, Binggeli C, et al. High-density lipoprotein restores endothelial function in hypercholesterolemic men. Circulation. 2002;105(12):1399–402.

    Article  CAS  PubMed  Google Scholar 

  152. Nanjee MN, Cooke CJ, Garvin R, Semeria F, Lewis G, Olszewski WL, et al. Intravenous apoA-I/lecithin discs increase pre-beta-HDL concentration in tissue fluid and stimulate reverse cholesterol transport in humans. J Lipid Res. 2001;42(10):1586–93.

    Article  CAS  PubMed  Google Scholar 

  153. Tardif JC, Grégoire J, L'Allier PL, Ibrahim R, Lespérance J, Heinonen TM, et al. Effects of reconstituted high-density lipoprotein infusions on coronary atherosclerosis: a randomized controlled trial. JAMA. 2007;297(15):1675–82.

    Article  PubMed  Google Scholar 

  154. Nicholls SJ, Puri R, Ballantyne CM, Jukema JW, Kastelein JJP, Koenig W, et al. Effect of infusion of high-density lipoprotein mimetic containing recombinant Apolipoprotein A-I Milano on coronary disease in patients with an acute coronary syndrome in the MILANO-PILOT trial: a randomized clinical trial. JAMA Cardiol. 2018;3(9):806–14.

    Article  PubMed  PubMed Central  Google Scholar 

  155. Remaley AT, Thomas F, Stonik JA, Demosky SJ, Bark SE, Neufeld EB, et al. Synthetic amphipathic helical peptides promote lipid efflux from cells by an ABCA1-dependent and an ABCA1-independent pathway. J Lipid Res. 2003;44(4):828–36.

    Article  CAS  PubMed  Google Scholar 

  156. Anantharamaiah G, Navab M, Reddy ST, Garber DW, Datta G, Gupta H, et al. Synthetic peptides: managing lipid disorders. Curr Opin Lipidol. 2006;17(3):233–7.

    Article  CAS  PubMed  Google Scholar 

  157. Watson CE, Weissbach N, Kjems L, Ayalasomayajula S, Zhang Y, Chang I, et al. Treatment of patients with cardiovascular disease with L-4F, an apo-A1 mimetic, did not improve select biomarkers of HDL function. J Lipid Res. 2011;52(2):361–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Sethi AA, Amar M, Shamburek RD, Remaley AT. Apolipoprotein AI mimetic peptides: possible new agents for the treatment of atherosclerosis. Curr Opin Investig Drugs (London, England : 2000). 2007;8(3):201–12.

    Google Scholar 

  159. Graversen JH, Laurberg JM, Andersen MH, Falk E, Nieland J, Christensen J, et al. Trimerization of apolipoprotein A-I retards plasma clearance and preserves antiatherosclerotic properties. J Cardiovasc Pharmacol. 2008;51(2):170–7.

    Article  CAS  PubMed  Google Scholar 

  160. Brewer HBAP, Kostner G, et al. Selective plasma HDL delipidation and reinfusion: a new approach for acute HDL therapy in the treatment of cardiovascular disease. Circulation. 2004;110:51–2.

    CAS  Google Scholar 

  161. Sacks FM, Rudel LL, Conner A, Akeefe H, Kostner G, Baki T, et al. Selective delipidation of plasma HDL enhances reverse cholesterol transport in vivo. J Lipid Res. 2009;50(5):894–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Whitlock ME, Swenson TL, Ramakrishnan R, Leonard MT, Marcel YL, Milne RW, et al. Monoclonal antibody inhibition of cholesteryl ester transfer protein activity in the rabbit. Effects on lipoprotein composition and high density lipoprotein cholesteryl ester metabolism. J Clin Investig. 1989;84(1):129–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Ikewaki K, Rader DJ, Sakamoto T, Nishiwaki M, Wakimoto N, Schaefer JR, et al. Delayed catabolism of high density lipoprotein apolipoproteins A-I and A-II in human cholesteryl ester transfer protein deficiency. J Clin Investig. 1993;92(4):1650–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Simic B, Hermann M, Shaw SG, Bigler L, Stalder U, Dörries C, et al. Torcetrapib impairs endothelial function in hypertension. Eur Heart J. 2012;33(13):1615–24.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara N. Koenig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sucharski, H.C., Koenig, S.N. (2022). Mechanisms of Lipoproteins and Reverse Cholesterol Transport in Atherosclerotic Cardiovascular Disease. In: Parinandi, N.L., Hund, T.J. (eds) Cardiovascular Signaling in Health and Disease. Springer, Cham. https://doi.org/10.1007/978-3-031-08309-9_12

Download citation

Publish with us

Policies and ethics

Navigation