Towards the Smart Filter

  • Chapter
  • First Online:
Lightweight Energy

Part of the book series: Research for Development ((REDE))

  • 202 Accesses

Abstract

The chapter aims to introduce the reader and the designer in the field of membrane architecture, presenting its potential and future challenges. In particular, the chapter presents some innovative applications of membranes in facades and roofs, in order to suggest scenarios of further developments of the building skin, such as light and heat filters, active and reactive systems. The chapter continues with an investigation into the potentialities of the various materials available today to filter light into membrane skins and to optimise the overall efficiency of an architecture built with membrane-based tensile structures. Eventually, promising ideas on how to increase the user’s interactivity with a new concept of soft, membranous building envelopes are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Afrin S, Chilton J, Lau B (2015) Evaluation and comparison of thermal environment of atria enclosed with ETFE foil cushion envelope. Energy Procedia 78:477–482

    Article  Google Scholar 

  • Afrin S (2015) Measurement and simulation of summer thermal environment of an atrium enclosed with EFTE foil cushion roof. In: Textiles composites and inflatable structures VII: proceedings of the VII international conference on textile composites and inflatable structures, Barcelona, Spain, pp 223–232.

    Google Scholar 

  • Alongi A, Angelotti A, Rizzo A, Zanelli A (2021) Measuring the thermal resistance of double and triple layer pneumatic cushions for textile architectures. Architect Eng Des Manage 17(3–4):334–346. https://doi.org/10.1080/17452007.2020.1740152

    Article  Google Scholar 

  • Campanella P (2010) Involucro Tessile e Comfort Ambientale. Potenzialità e Limiti Delle Chiusure a Membrana Pretesa, Ph.D Thesis in Technology of Architecture, University of studies of Napoli Federico II, 2010–2011, http://www.fedoa.unina.it/7976/1/Campanella_Paola_23.pdf (Last access: February the 4th 2022)

  • Campioli A, Zanelli A (2009) Architettura tessile. Progettare e costruire membrane e scocche. Milano: Il Sole-24-Ore

    Google Scholar 

  • Chang JR (2018) HyperCell. A bio-inspired design framework for real-time interactive architectures, Ph.D. Dissertation, Delft University of Technology, Faculty of Architecture and the Built Environment, Department of Architectural Engineering and Technology, ISBN 978–94–6366–004–4

    Google Scholar 

  • Cortés A, Aguilar JL, Cosola A, Fernández Sanchez-Romate XX, Jiménez-Suárez A, Sangermano M, Campo M, Prolongo SG (2021) 4D-printed resins and nanocomposites thermally stimulated by conventional heating and IR radiation. ACS Appl Polymer Mater 3(10):5207-5215. https://doi.org/10.1021/acsapm.1c00970

  • Cremers J, Lausch F (2008) Translucent high-performance silica-aerogel insulation for membrane structures. DETAIL English Edition 2008:4

    Google Scholar 

  • Cremers J, Marx H (2016) Comparative study of a new IR-absorbing film to improve solar shading and thermal comfort for ETFE structures. Procedia Eng 155:113–120

    Article  Google Scholar 

  • Cremers J, Palla N, Buck D, Beck A, Biesinger A, Brodkorb S (2016) Analysis of a translucent insulated triple-layer membrane roof for a sport centre in Germany. Procedia Eng 155:38–46. https://doi.org/10.1016/j.proeng.2016.08.005

    Article  Google Scholar 

  • Cremers J (2009) Designing the light—new textile architecture. The future envelope 3—facades, the making of proceedings. TU Delft 2009

    Google Scholar 

  • Cremers J (2010a) Textiles for insulation systems, control of solar gains and thermal losses and solar systems. Textiles, polymers and composites for buildings, Elsevier, pp 351–374

    Google Scholar 

  • Cremers J (2010b) Membranes vs. glass. Recent innovations from the world of foils and textiles’ engineered transparency, in: International conference glasstec, Düsseldorf, 29.- 30.9.2010b, Proceedings, pp 535–544

    Google Scholar 

  • Devulder T, Wilson R, Chilton J (2007) The thermal behaviour of buildings incorporating single skin tensile membrane structures. Int J Low-Carbon Technol 2(2):195–213

    Article  Google Scholar 

  • ElNokaly A, Chilton J, Wilson R (2002) Environmental behaviour of tensile membrane structures. World conference on technology advances for sustainable development (energy, water, and environment)

    Google Scholar 

  • Engelhardt S, Sarsour J (2015) Solar heat harvesting and transparent insulation in textile architecture inspired by polar bear fur. Energy Build 103:96–106

    Article  Google Scholar 

  • Fioriani E (2003) La nuova condizione di vita. Lavoro, Corpo, Territorio, Lupetti, Milano

    Google Scholar 

  • Flor JF, Wu Y, Beccarelli P, Chilton J (2017) Dynamic environmental control mechanisms for pneumatic foil constructions. In E3S web of conferences, vol 22, EDP Sciences, p 48

    Google Scholar 

  • Forster B, Mollaert M (2004a) European design guide for tensile surface structures, TensiNet, Brussel

    Google Scholar 

  • Forster B, Mollaert M (2004b) “Engineering Fabric Architecture”, in European Design Guide for Tensile Surface Structures, TensiNet, Brussel, available at: https://www.tensinet.com/files/Inspiring/Engineering%20Fabric%20Architecture%20-%20Chapter%202%20-%20TensiNet%20European%20Design%20Guide%20Tensile%20Structures.pdf

  • Gan G (2009) CFD modelling of transparent bubble cavity envelopes for energy efficient greenhouses. Build Environ 44(12):2486–2500

    Article  Google Scholar 

  • Gómez-González A, Neila J, Monjo J (2011) Pneumatic skins in architecture. Sustainable trends in low positive pressure inflatable systems. Procedia Eng 21:125–132

    Article  Google Scholar 

  • Göppert K, Paech C (2015) High-performance materials in façade design: Structural membranes used in the building envelope. Steel Construct 8(4):237–243

    Article  Google Scholar 

  • Groenendaal B, Virgo V, Buyle G, De Vilder I, Roekens J, Viscuso S, Gijsbers R, de Haas T (2015) Novel membranes for shelters Deliverable 2.2 (M34). Deliverable S(P)EEDKITS Rapid deployable kits as seeds for self-recovery: unpublished

    Google Scholar 

  • Gürlich D, Reber A, Biesinger A, Eicker U (2018) Daylight performance of a translucent textile membrane roof with thermal insulation. Buildings 8(9):118

    Article  Google Scholar 

  • Harvie GN (1996) An investigation into the thermal behaviour of spaces enclosed by fabric membranes, Ph.D. thesis, Cardiff University of Wales

    Google Scholar 

  • He J, Hoyano A (2010) Measurement and evaluation of the summer microclimate in the semi-enclosed space under a membrane structure. Build Environ 45(1):230–242

    Article  Google Scholar 

  • ITKE (2012) Flectofin® A Hinge-less Flap** Mechanism Inspired by Nature, ITKE and BIONA, bruchure of the project, available at: http://www.simonschleicher.com/flectofin_brochure.pdf

  • Jeska S (2007) Transparent plastics: design and technology Walter de Gruyter

    Google Scholar 

  • Kelly K (1994) Out of control: the new biology of machines, social systems, and the economic World. New York, Basic Books, available at: https://library.uniteddiversity.coop/More_Books_and_Reports/OutOfControlNewBiologyOfMachinesSocialSystemsAndEconomicWorld.pdf

  • Knippers J, Cremers J, Lienhard J, Gabler M (2011) Construction manual for polymers + membranes: materials, semi-finished products, form-finding, design. Birkhäuser Verlag, Basel

    Book  Google Scholar 

  • Kronenburg R (2007) Flexible. architecture that responds to change, Laurence King Publishing Ltd, London

    Google Scholar 

  • Lamnatou C, Moreno A, Chemisana D, Reitsma F, Clariá F (2018) Ethylene tetrafluoroethylene (ETFE) material: critical issues and applications with emphasis on buildings. Renew Sustain Energy Rev 82:2186–2201

    Article  Google Scholar 

  • Lau B, Masih DAA, Ademakinwa AA, Low SW, Chilton J (2016) Understanding light in lightweight fabric (ETFE foil) structures through field studies. Procedia Eng 155:479–485

    Article  Google Scholar 

  • Li Q, Zanelli A (2021) A review on fabrication and applications of textile envelope integrated flexible photovoltaic systems. Renew Sustain Energy Rev 139:1–17. https://doi.org/10.1016/j.rser.2020.110678

    Article  Google Scholar 

  • Llorens J (2015) Fabric structures in architecture, woodhead publishing series in textiles, Elsevier, first edition

    Google Scholar 

  • Lombardi S, Canobbio R (2016) Textile structures for climate control. Procedia Eng 155:163–172

    Article  Google Scholar 

  • Mainini AG, Speroni A, Zani A, Poli T (2016) The effect of water spray systems on thermal and solar performance of an ETFE panel for building envelope. Procedia Eng 155:352–360

    Article  Google Scholar 

  • Masih DAA, Lau B, Chilton J (2015) Daylighting performance in an atrium with ETFE cushion roof and in an ETFE-encapsulated panel structure. Energy Procedia 78:483–488

    Article  Google Scholar 

  • Mazzola C (2020) Ultra-lightweight temporary architecture. Defining new minimal mass and efficiency-oriented design strategies through an experimental approach. PhD Thesis in Technology of Architecture, Politecnico di Milano, Architecture, Built environment and Construction Engineering Department, XXXII cycle; supervisor: Alessandra Zanelli, Final defense: March 2020

    Google Scholar 

  • Meng H, Li G (2013) Reversible switching transitions of stimuli-responsive shape changing polymers. J Mater Chem A 1:7838–7865. https://doi.org/10.1039/C3TA10716G

  • Menges A, Reichert S, Krieg OD (2014) Meteorosensitive architecture. In: KM, Hovestadt L (eds), ALIVE: advancements in adaptive architecture. Basel, Birkhäuser, pp 39–42

    Google Scholar 

  • Mikavica D (2018) NIMBL—interactive architectural system, Master of Science of Architecture, Politecnico di Milano, 2017–2018

    Google Scholar 

  • Monticelli C (2015) Acciaio e performative architecture. Enric Ruiz Geli e Vloud 9, Edificio media TIC, Barcellona, Spagna, 2007–2010. Costruzioni Metalliche 2:15–27

    Google Scholar 

  • Monticelli C (2019) Junior Practice Hall for Töölō Football Field. Arketipo 128:94–101

    Google Scholar 

  • Mulder H (2018) Enactive architecture. Considering the role of architectural movement in building cognition. PhD Thesis, IT University of Copenhagen, https://pure.itu.dk/portal/files/83965862/PhD_Thesis_Final_Version_Hugo_Mulder.pdf

  • Oosterhuis K (2003) HyperBodies: Towards an E-motive Architecture, Basel, Birkhäuser

    Google Scholar 

  • Ottone F, Zanelli A, Riera D (2019) Textile architecture, dressing the aurelian walls. In: Proceedings of the tensinet symposium 2019. Softening the habitats. Sustainable innovation in minimal mass structures and lightweight architectures, pp 514–525. Maggioli, Rimini. Available at: https://www.ediltecnico.it/88770/softening-the-habitats-volume-scaricabile/

  • Prestinenza Puglisi L (1988) HyperArchitettura. Spazi nell’età dell’elettronica, Universale di Architettura n.38, Testo & Immagine, Torino 1988, ISBN 88–86498–46–2; open access at: https://www.prestinenza.it/2014/03/free-download-hyperarchitettura-spazi-nelleta-dellelettronica/

  • Schiemann L, Moritz K (2010) Polymer foils used in construction. Textiles, polymers and composites for buildings, Elsevier, pp 189–226

    Google Scholar 

  • Schmid FC, Haase W, Sobek W (2015) Textile and film based building envelopes–Lightweight and adaptive. J Int Assoc Shell Spatial Struct 56(1):61–74

    Google Scholar 

  • Sobek W (2016) Ultra-lightweight construction. Int J Space Struct 31:74–80

    Article  Google Scholar 

  • Stegmaier T, Linke M, Planck H (2009) Bionics in textiles: flexible and translucent thermal insulations for solar thermal applications. Philos Trans Royal Soc London a: Math Phys Eng Sci 367:1749–1758

    Google Scholar 

  • Suo H, Angelotti A, Zanelli A (2015) Thermal-physical behavior and energy performance of air-supported membranes for sports halls: a comparison among traditional and advanced building envelopes. Energy Build 109:35–46

    Article  Google Scholar 

  • Toniolo P, Carella S (2016) Halar® high clarity ECTFE film—an highly transparent film for new building structures. In: International symposium on novel structural skins, procedia engineering, Elsevier, 2016: available at: https://doi.org/10.1016/j.proeng.2016.08.004

  • **e F (2011) A novel clear foil cushion construction incorporating an additional water layer. Ph.D. thesis, University of Nottingham

    Google Scholar 

  • Zanelli A (2015) Architectural fabric structures in the refurbishment of archaeological and cultural heritage areas. In: Fabric structures in architecture. Woodhead Publishing, pp 481–527

    Google Scholar 

  • Zhang L, Herzog T, Hauser G (2006) Transparent thermal insulating multi-layer membrane structure for building envelope. In: Adaptables 2006. International conference on adaptable building structures, TU/e Eindhoven, the Netherlands

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandra Zanelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zanelli, A., Mazzola, C. (2023). Towards the Smart Filter. In: Zanelli, A., Monticelli, C., Jakica, N., Fan, Z. (eds) Lightweight Energy. Research for Development. Springer, Cham. https://doi.org/10.1007/978-3-031-08154-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08154-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08153-8

  • Online ISBN: 978-3-031-08154-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation