Spontaneous Development of CSD Related to Brain Pathophysiological Conditions

  • Chapter
  • First Online:
Cortical Spreading Depression of Leao

Abstract

In the current chapter, we will present the various pathophysiological that have the potential to induce CSD-like response. The mechanism of coupling between the availability of oxygen and the development of CSD may involve the leakage of potassium from the intracellular to the extracellular compartment in the cerebral cortex tissue. The interaction between the level of carbon dioxide in the breathing mixture in the hyperbaric chamber will be demonstrated. Also, the effects of various pharmacological agents on the development of CSD will be presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Back, T., Kohno, K., & Hossmann, K. A. (1994). Cortical negative DC deflections following middle cerebral artery occlusion and KCl-induced spreading depression: Effect on blood flow, tissue oxygenation, and electroencephalogram. Journal of Cerebral Blood Flow and Metabolism, 14, 12–19.

    Article  CAS  PubMed  Google Scholar 

  • Bardt, T. F., Unterberg, A. W., Hartl, R., Kiening, K. L., Schneider, G. H., & Lanksch, W. R. (1998). Monitoring of brain tissue PO2 in traumatic brain injury: Effect of cerebral hypoxia on outcome. Acta Neurochirurgica. Supplement, 71, 153–156.

    CAS  PubMed  Google Scholar 

  • Barlow, C. H., & Chance, B. (1976). Ischemic areas in perfused rat hearts: Measurement by NADH fluorescence photography. Science, 193, 909–910.

    Article  CAS  PubMed  Google Scholar 

  • Bean, J. W., & Leatherman, N. E. (1969). Cerebral blood flow during convulsions. Alterations induced in animals by high pressure oxygen. Archives of Neurology, 20, 396–405.

    Article  CAS  PubMed  Google Scholar 

  • Bean, J. W., Lignell, J., & Burgess, D. W. (1972). Cerebral O2, CO2, regional cerebral vascular control, and hyperbaric oxygenation. Journal of Applied Physiology, 32, 650–657.

    Article  CAS  PubMed  Google Scholar 

  • Benveniste, H., Jorgensen, M. B., Diemer, N. H., & Hansen, A. J. (1988). Calcium accumulation by glutamate receptor activation is involved in hippocampal cell damage after ischemia. Acta Neurologica Scandinavica, 78, 529–536.

    Article  CAS  PubMed  Google Scholar 

  • Bergsneider, M., Hovda, D. A., Lee, S. M., Kelly, D. F., McArthur, D. L., Vespa, P. M., Lee, J. H., Huang, S. C., Martin, N. A., Phelps, M. E., & Becker, D. P. (2000). Dissociation of cerebral glucose metabolism and level of consciousness during the period of metabolic depression following human traumatic brain injury. Journal of Neurotrauma, 17, 389–401.

    Article  CAS  PubMed  Google Scholar 

  • Bouma, G. J., Muizelaar, J. P., Choi, S. C., Newlon, P. G., & Young, H. F. (1991). Cerebral circulation and metabolism after severe traumatic brain injury: The elusive role of ischemia. Journal of Neurosurgery, 75, 685–693.

    Article  CAS  PubMed  Google Scholar 

  • Brown, J. A., Preul, M. C., & Taha, A. (1988). Hyperbaric oxygen in the treatment of elevated intracranial pressure after head injury. Pediatric Neuroscience, 14, 286–290.

    Article  CAS  PubMed  Google Scholar 

  • Bullock, R., Zauner, A., Woodward, J. J., Myseros, J., Choi, S. C., Ward, J. D., Marmarou, A., & Young, H. F. (1998). Factors affecting excitatory amino acid release following severe human head injury. Journal of Neurosurgery, 89, 507–518.

    Article  CAS  PubMed  Google Scholar 

  • Bures, J. (1957). The effect of anoxia and asphyxia on spreading EEG depression. Physiologia Bohemoslovenica, 6, 447–453.

    Google Scholar 

  • Bures, J., & Buresova, O. (1960). Activation of latent foci of spreading cortical depression in rats. Journal of Neurophysiology, 23, 225–236.

    Article  CAS  PubMed  Google Scholar 

  • Chance, B. (1966). The identification and control of metabolic states. Genootschap ter Bevordering van Natuur-, Genees-, en Heelkunde te Amsterdam, 5–37.

    Google Scholar 

  • Chance, B. (1967). Non-destructive readout of biochemical data. Williams and Wilkins.

    Google Scholar 

  • Chance, B., & Williams, G. R. (1955). Respiratory enzymes in oxidative phosphorylation (I- kinetics of oxygen utilization). The Journal of Biological Chemistry, 217, 383–393.

    Article  CAS  PubMed  Google Scholar 

  • Chance, B., Jamieson, D., & Coles, H. (1965). Energy-linked pyridine nucleotide reduction: Inhibitory effects of hyperbaric oxygen in vitro and in vivo. Nature, 4981, 257–263.

    Article  Google Scholar 

  • Chance, B., Jamieson, D., & Williamson, J. R. (1966). Control of the oxidation-reduction state of reduced pyridine nucleotides in vivo and in vitro by hyperbaric oxygen, Third international conference on hyperbaric medicine (pp. 15–41). National Academy of Sciences.

    Google Scholar 

  • Chance, B., Thurman, R. G., & Gosalvez, M. (1969). Oxygen affinities of cellular respiration. Forvarsmedicin, 5, 235–243.

    Google Scholar 

  • Chance, B., Barlow, C., Haselgrove, J., Nakase, Y., Quistorff, B., Matschinsky, F., & Mayevsky, A. (1978). Microheterogeneities of redox states of perfused and intact organs. In P. Srere (Ed.), Microenvironments and metabolic compartmentation (pp. 131–148). Academic Press.

    Google Scholar 

  • Chapin, J. L. (1955). Anticonvulsant threshold of CO2 in oxygen under high pressure. Proceedings of the Society for Experimental Biology and Medicine, 90, 663–664.

    Article  CAS  PubMed  Google Scholar 

  • Crowe, W., Mayevsky, A., & Mela, L. (1977). Application of a solid membrane ion selective electrode to in vivo measurements. The American Journal of Physiology, 233, C56–C60.

    Article  CAS  PubMed  Google Scholar 

  • Crutchfield, J. S., Narayan, R. K., Robertson, C. S., & Michael, L. H. (1990). Evaluation of a fiberoptic intracranial pressure monitor. Journal of Neurosurgery, 72, 482–487.

    Article  CAS  PubMed  Google Scholar 

  • Czosnyka, M., Guazzo, E., Whitehouse, M., Smielewski, P., Czosnyka, Z., Kirkpatrick, P., Piechnik, S., & Pickard, J. D. (1996). Significance of intracranial pressure waveform analysis after head injury. Acta Neurochirurgica, 138, 531–541. discussion 541-532.

    Article  CAS  PubMed  Google Scholar 

  • Dietrich, W. D., Feng, Z. C., Leistra, H., Watson, B. D., & Rosenthal, M. (1994). Photothrombotic infarction triggers multiple episodes of cortical spreading depression in distant brain regions. Journal of Cerebral Blood Flow and Metabolism, 14, 20–28.

    Article  CAS  PubMed  Google Scholar 

  • Dixon, C. E., Lyeth, B. G., Povlishock, J. T., Findling, R. L., Hamm, R. J., Marmarou, A., Young, H. F., & Hayes, R. L. (1987a). A fluid percussion model of experimental brain injury in the rat. Journal of Neurosurgery, 67, 110–119.

    Article  CAS  PubMed  Google Scholar 

  • Dixon, C. E., Lyeth, B. G., Povlishock, J. T., Findling, R. L., Hamm, R. J., Marmarou, A., Young, H. F., & Hayes, R. L. (1987b). A fluid percussion model of experimental brain injury in the rat. Journal of Neurosurgery, 67, 110–119.

    Article  CAS  PubMed  Google Scholar 

  • Engelborghs, K., Verlooy, J., Van Deuren, B., Van Reempts, J., & Borgers, M. (1997). Intracranial pressure in a modified experimental model of closed head injury. Acta Neurochirurgica. Supplement, 70, 123–125.

    CAS  PubMed  Google Scholar 

  • Fertziger, A. P., & Ranck, J. B., Jr. (1970). Potassium accumulation in interstitial space during epileptiform seizures. Experimental Neurology, 26, 571–585.

    Article  CAS  PubMed  Google Scholar 

  • Friedli, C. M., Sclarsky, D. S., & Mayevsky, A. (1982). Multiprobe monitoring of ionic, metabolic, and electrical activities in the awake brain. The American Journal of Physiology, 243, R462–R469.

    CAS  PubMed  Google Scholar 

  • Gido, G., Kristian, T., Katsura, K., & Siesjo, B. K. (1994a). The influence of repeated spreading depression-induced calcium transients on neuronal viability in moderately hypoglycemic rats. Experimental Brain Research, 97, 397–403.

    Article  CAS  PubMed  Google Scholar 

  • Gido, G., Kristian, T., & Siesjo, B. K. (1994b). Induced spreading depressions in energy-compromised neocortical tissue: Calcium transients and histopathological correlates. Neurobiology of Disease, 1, 31–41.

    Article  CAS  PubMed  Google Scholar 

  • Graham, D. I., Adams, J. H., & Doyle, D. (1978). Ischaemic brain damage in fatal non-missile head injuries. Journal of the Neurological Sciences, 39, 213–234.

    Article  CAS  PubMed  Google Scholar 

  • Graham, D. I., Ford, I., Adams, J. H., Doyle, D., Teasdale, G. M., Lawrence, A. E., & McLellan, D. R. (1989). Ischaemic brain damage is still common in fatal non-missile head injury. Journal of Neurology, Neurosurgery, and Psychiatry, 52, 346–350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansen, A. J. (1985). Effect of anoxia on ion distribution in the brain. Physiological Reviews, 65, 101–148.

    Article  CAS  PubMed  Google Scholar 

  • Harbig, K., Chance, B., Kovach, A. G. B., & Reivich, M. (1976). In vivo measurement of pyridine nucleotide fluorescence from cat brain cortex. Journal of Applied Physiology, 41, 480–488.

    Article  CAS  PubMed  Google Scholar 

  • Heinemann, U., & Lux, H. D. (1975). Undershoots following stimulus-induced rises of extracellular potassium concentration in cerebral cortex of cat. Brain Research, 93, 63–76.

    Article  CAS  PubMed  Google Scholar 

  • Hubschmann, O. R., & Kornhauser, D. (1983). Effects of intraparenchymal hemorrhage on extracellular cortical potassium in experimental head trauma. Journal of Neurosurgery, 59, 289–293.

    Article  CAS  PubMed  Google Scholar 

  • Ishige, N., Pitts, L. H., Pogliani, L., Hashimoto, T., Nishimura, M. C., Bartkowski, H. M., & James, T. L. (1987). Effect of hypoxia on traumatic brain injury in rats: Part 2. Changes in high energy phosphate metabolism. Neurosurgery, 20, 854–858.

    Article  CAS  PubMed  Google Scholar 

  • Izquierdo, I., Nasello, A. G., & Marichich, E. S. (1970). Effects of potassium on rat hippocampus: The dependence of hippocampal evoked and seizure activity on extracellular potassium levels. Archives Internationales de Pharmacodynamie et de Thérapie, 187, 318–328.

    CAS  PubMed  Google Scholar 

  • Janebova, M. (1971). Excitation of Leão’s cortical spreading depression by threshold amounts of electrophoretically applied K+ ions. Physiologia Bohemoslovaca, 20, 447–451.

    CAS  PubMed  Google Scholar 

  • Jobsis, F. F., O’Connor, M., Vitale, A., & Vreman, H. (1971). Intracellular redox changes in functioning cerebral cortex. I. Metabolic effects of epileptiform activity. Journal of Neurophysiology, 3465, 735–749.

    Article  Google Scholar 

  • Kaplan, S. A., & Stein, S. N. (1957). Effects of oxygen at high pressure on the transport of potassium, sodium and glutamate in Guinea pig brain cortex. The American Journal of Physiology, 190, 157–162.

    Article  CAS  PubMed  Google Scholar 

  • Katayama, Y., Becker, D. P., Tamura, T., & Hovda, D. A. (1990). Massive increases in extracellular potassium and the indiscriminate release of glutamate following concussive brain injury. Journal of Neurosurgery, 73, 889–900.

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi, S., Nishiki, K., Kaede, K., & Ogata, E. (1971). Optical consequences of blood substitution on tissue oxidation- reduction state microfluorometry. Journal of Applied Physiology, 31, 93–96.

    Article  CAS  PubMed  Google Scholar 

  • Kochanek, P. M., Marion, D. W., Zhang, W., Schiding, J. K., White, M., Palmer, A. M., Clark, R. S., O’Malley, M. E., Styren, S. D., Ho, C., et al. (1995). Severe controlled cortical impact in rats: Assessment of cerebral edema, blood flow, and contusion volume. Journal of Neurotrauma, 12, 1015–1025.

    Article  CAS  PubMed  Google Scholar 

  • Koroleva, V. I., & Bures, J. (1996). The use of spreading depression waves for acute and long-term monitoring of the penumbra zone of focal ischemic damage in rats. Proceedings. National Academy of Sciences. United States of America, 93, 3710–3714.

    Article  CAS  Google Scholar 

  • Koura, S. S., Doppenberg, E. M., Marmarou, A., Choi, S., Young, H. F., & Bullock, R. (1998). Relationship between excitatory amino acid release and outcome after severe human head injury. Acta Neurochirurgica. Supplement, 71, 244–246.

    CAS  PubMed  Google Scholar 

  • Kreisman, N. R., Hodin, R. A., Brizzee, B. L., Rosenthal, M., Sick, T. J., Busto, R., & Ginsberg, M. D. (1987). Seizure-associated pulmonary edema and cerebral oxygenation in the rat. Journal of Applied Physiology, 62, 658–667.

    Article  CAS  PubMed  Google Scholar 

  • Lang, E. W., & Chesnut, R. M. (1995). Intracranial pressure and cerebral perfusion pressure in severe head injury. New Horizons, 3, 400–409.

    CAS  PubMed  Google Scholar 

  • Lauritzen, M. (1987). Cerebral blood flow in migraine and cortical spreading depression. Acta Neurologica Scandinavica. Supplementum, 113, 1–40.

    Article  CAS  PubMed  Google Scholar 

  • Leão, A. A. P. (1944). Spreading depression of activity in cerebral cortex. Journal of Neurophysiology, 7, 359–390.

    Article  Google Scholar 

  • Leniger-Follert, E., Urbanics, R., Harbig, K., & Lubbers, D. W. (1977). The behavior of local pH and NADH-fluorescence during and after direct activation of the brain cortex. In D. H. Ingvar & N. A. Lassen (Eds.), Acta Neurologica Scandinavica (56th ed., pp. 214–215). Munkgaard.

    Google Scholar 

  • Levy, J. V., & Richards, V. (1962). Effect of oxygen at high pressure (OHP) on asphyxial survival time of rats. Proceedings of the Society for Experimental Biology and Medicine, 109, 941–944.

    Article  CAS  PubMed  Google Scholar 

  • Lewis, D. V., & Schuette, W. H. (1975). NADH fluorescence and [K+]o changes during hippocampal electrical stimulation. Journal of Neurophysiology, 38, 405–417.

    Article  CAS  PubMed  Google Scholar 

  • Lewis, D. V., O’Connor, M. J., & Schuette, W. H. (1974). Oxidative metabolism during recurrent seizures in the penicillin treated hippocampus. Electroencephalography and Clinical Neurophysiology, 36, 347–356.

    Article  CAS  PubMed  Google Scholar 

  • Lothman, E., LaManna, J., Cordingley, G., Rosenthal, M., & Somjen, G. (1975). Responses of electrical potential potassium levels, and oxidative metabolic activity of the cerebral neocortex of cats. Brain Research, 88, 15–36.

    Article  CAS  PubMed  Google Scholar 

  • Manor, T., Rogatsky, G., Zarchin, N., & Mayevsky, A. (2003). Effects of fluid percussion injury on rat brain hemodynamics, ionic, electrical activity, and energy metabolism in vivo. Advances in Experimental Medicine and Biology, 510, 409–414.

    Article  CAS  PubMed  Google Scholar 

  • Marmarou, A., Fatouros, P. P., Barzo, P., Portella, G., Yoshihara, M., Tsuji, O., Yamamoto, T., Laine, F., Signoretti, S., Ward, J. D., Bullock, M. R., & Young, H. F. (2000). Contribution of edema and cerebral blood volume to traumatic brain swelling in head-injured patients. Journal of Neurosurgery, 93, 183–193.

    Article  CAS  PubMed  Google Scholar 

  • Marshall, W. H. (1959). Spreading cortical depression of Leão. Physiological Reviews, 39, 239–279.

    Article  CAS  PubMed  Google Scholar 

  • Marshall, J. R., & Lambertsen, C. J. (1961). Interactions of increased pO2 and pCO2 effects in producing convulsions and death in mice. Journal of Applied Physiology, 16, 1–7.

    Article  CAS  PubMed  Google Scholar 

  • Mayevsky, A. (1975). The effect of trimethadione on brain energy metabolism and EEG activity of the conscious rat exposed to HPO. Journal of Neuroscience Research, 1, 131–142.

    Article  CAS  PubMed  Google Scholar 

  • Mayevsky, A. (1976). Brain energy metabolism of the conscious rat exposed to various physiological and pathological situations. Brain Research, 113, 327–338.

    Article  CAS  PubMed  Google Scholar 

  • Mayevsky, A. (1978a). Ischemia in the brain: The effects of carotid artery ligation and decapitation on the energy state of the awake and anesthetized rat. Brain Research, 140, 217–230.

    Article  CAS  PubMed  Google Scholar 

  • Mayevsky, A. (1978b). Pyridine nucleotide oxidation reduction state of the cerebral cortex in the awake gerbil. Journal of Neuroscience Research, 3, 369–374.

    Article  CAS  PubMed  Google Scholar 

  • Mayevsky, A. (1978c). The responses of an awake brain to HPO under increased CO2 concentration. Advances in Experimental Medicine and Biology, 92, 735–740.

    Article  Google Scholar 

  • Mayevsky, A. (1978d). Shedding light on the awake brain. In P. L. Dutton, J. Leigh, & A. Scarpa (Eds.), Frontiers in bioenergetics: From electrons to tissues (2nd ed., pp. 1467–1476). Academic Press.

    Google Scholar 

  • Mayevsky, A. (1983a). Metabolic, ionic and electrical responses to experimental epilepsy in the awake rat. In M. Baldy, D. H. Moulinier, D. H. Ingvar, & B. S. Meldrum (Eds.), Proceedings of the first international congress of cerebral blood flow, metabolism and epilepsy (pp. 263–270). John Libbey.

    Google Scholar 

  • Mayevsky, A. (1983b). Multiparameter monitoring of the awake brain under hyperbaric oxygenation. Journal of Applied Physiology, 54, 740–748.

    Article  CAS  PubMed  Google Scholar 

  • Mayevsky, A. (1984a). Brain NADH redox state monitored in vivo by fiber optic surface fluorometry. Brain Research Reviews, 7, 49–68.

    Article  CAS  Google Scholar 

  • Mayevsky, A. (1984b). Brain oxygen toxicity. Invited review. In A. J. Bachrach & M. M. Matzen (Eds.), Underwater physiology. 8th symposium (pp. 69–89). Undersea Medical Society Inc.

    Google Scholar 

  • Mayevsky, A. (1992). Cerebral blood flow and brain mitochondrial redox state responses to various perturbations in gerbils. Advances in Experimental Medicine and Biology, 317, 707–716.

    Article  CAS  PubMed  Google Scholar 

  • Mayevsky, A., & Chance, B. (1973). A new long-term method for the measurement of NADH fluorescence in intact rat brain with implanted cannula. Advances in Experimental Medicine and Biology, 37A, 239–244.

    Article  CAS  PubMed  Google Scholar 

  • Mayevsky, A., & Chance, B. (1974). Repetitive patterns of metabolic changes during cortical spreading depression of the awake rat. Brain Research, 65, 529–533.

    Article  CAS  PubMed  Google Scholar 

  • Mayevsky, A., & Chance, B. (1975). Metabolic responses of the awake cerebral cortex to anoxia hypoxia spreading depression and epileptiform activity. Brain Research, 98, 149–165.

    Article  CAS  PubMed  Google Scholar 

  • Mayevsky, A., & Rogatsky, G. (2007). Mitochondrial function in vivo evaluated by NADH fluorescence: From animal models to human studies. American Journal of Physiology. Cell Physiology, 292, C615–C640.

    Article  CAS  PubMed  Google Scholar 

  • Mayevsky, A., & Sclarsky, D. S. (1983). Correlation of brain NADH redox state, K+, PO2 and electrical activity during hypoxia, ischemia and spreading depression. Advances in Experimental Medicine and Biology, 159, 129–141.

    Article  CAS  PubMed  Google Scholar 

  • Mayevsky, A., & Shaya, B. (1980). Factors affecting the development of hyperbaric oxygen toxicity in the awake rat brain. Journal of Applied Physiology, 49, 700–707.

    Article  CAS  PubMed  Google Scholar 

  • Mayevsky, A., & Weiss, H. R. (1991). Cerebral blood flow and oxygen consumption in cortical spreading depression. Journal of Cerebral Blood Flow and Metabolism, 11, 829–836.

    Article  CAS  PubMed  Google Scholar 

  • Mayevsky, A., Jamieson, D., & Chance, B. (1974a). Oxygen poisoning in the unanesthetized brain: Correlation of the oxidation-reduction state of pyridine nucleotide with electrical activity. Brain Research, 76, 481–491.

    Article  CAS  PubMed  Google Scholar 

  • Mayevsky, A., Zeuthen, T., & Chance, B. (1974b). Measurements of extracellular potassium, ECoG and pyridine nucleotide levels during cortical spreading depression in rats. Brain Research, 76, 347–349.

    Article  CAS  PubMed  Google Scholar 

  • Mayevsky, A., Crowe, W., & Mela, L. (1980b). The interrelation between brain oxidative metabolism and extracellular potassium in the unanesthetized gerbil. Neurological Research, 1, 213–226.

    Article  CAS  PubMed  Google Scholar 

  • Mayevsky, A., Lebourdais, S., & Chance, B. (1980a). The interrelation between brain PO2 and NADH oxidation- reduction state in the gerbil. Journal of Neuroscience Research, 5, 173–182.

    Article  CAS  PubMed  Google Scholar 

  • Mayevsky, A., Zarchin, N., & Friedli, C. M. (1982). Factors affecting the oxygen balance in the awake cerebral cortex exposed to spreading depression. Brain Research, 236, 93–105.

    Article  CAS  PubMed  Google Scholar 

  • Mayevsky, A., Kaplan, H., Haveri, J., Haselgrove, J., & Chance, B. (1986b). Three-dimensional metabolic map** of the freeze-trapped brain: Effects of ischemia on the Mongolian gerbil. Brain Research, 367, 63–72.

    Article  CAS  PubMed  Google Scholar 

  • Mayevsky, A., Zarchin, N., Yoles, E., & Tannenbaum, B. (1986a). Oxygen supply to the brain in hypoxic and hyperoxic conditions. In C. Nicolau (Ed.), Advances in the biosciences. “O2-transport in red blood cells” (pp. 119–132). Pergamon Press.

    Google Scholar 

  • Mayevsky, A., Duckrow, R. B., Yoles, E., Zarchin, N., & Kanshansky, D. (1990a). Brain mitochondrial redox state, tissue hemodynamic and extracellular ion responses to four-vessel occlusion and spreading depression in the rat. Neurological Research, 12, 243–248.

    Article  CAS  PubMed  Google Scholar 

  • Mayevsky, A., Frank, K. H., Nioka, S., Kessler, M., & Chance, B. (1990b). Oxygen supply and brain function in vivo: A multiparametric monitoring approach in the Mongolian gerbil. In J. Piper, T. K. Goldstick, & M. Meyer (Eds.), Oxygen transport to tissue XII (pp. 303–313). Plenum Pub.

    Chapter  Google Scholar 

  • Mayevsky, A., Flamm, E. S., Pennie, W., & Chance, B. (1991). A fiber optic based multiprobes system for intraoperative monitoring of brain functions. SPIE, 1431, 303–313.

    Google Scholar 

  • Mayevsky, A., Zarchin, N., & Sonn, J. (1993). Brain redox state and O2 balance in experimental spreading depression and ischemia. In A. Lehmenkuhler, K.-H. Grotemeyer, & F. Tegtmeier (Eds.), Migraine - Basic Mechanisms and Treatment Urban & Schwarzenberg (pp. 379–393). Munchen-Wier.

    Google Scholar 

  • Mayevsky, A., Meilin, S., Rogatsky, G. G., Zarchin, N., & Sonn, J. (1995). Multiparametric monitoring of the awake brain exposed to carbon monoxide. Journal of Applied Physiology, 78, 1188–1196.

    Article  CAS  PubMed  Google Scholar 

  • Mayevsky, A., Doron, A., Manor, T., Meilin, S., Zarchin, N., & Ouaknine, G. E. (1996). Cortical spreading depression recorded from the human brain using a multiparametric monitoring system. Brain Research, 740, 268–274.

    Article  CAS  PubMed  Google Scholar 

  • Mayevsky, A., Manor, T., Meilin, S., Doron, A., & Ouaknine, G. E. (1998). Real-time multiparametric monitoring of the injured human cerebral cortex – A new approach. In R. Marmarou & R. Bullock (Eds.), Acta neurochirurgica supplement (Wien.) (pp. 78–81). ICPX.

    Google Scholar 

  • Mayevsky, A., Doron, A., Meilin, S., Manor, T., Ornstein, E., & Ouaknine, G. E. (1999b). Brain viability and function analyzer: Multiparametric real-time monitoring in neurosurgical patients. Acta Neurochirurgica. Supplementum (Wien), 75, 63–66.

    CAS  Google Scholar 

  • Mayevsky, A., Meilin, S., Manor, T., Zarchin, N., & Sonn, J. (1999a). Optical monitoring of NADH redox state and blood flow as indicators of brain energy balance. Advances in Experimental Medicine and Biology, 471, 133–140.

    Article  CAS  PubMed  Google Scholar 

  • McIntosh, T. K., Vink, R., Noble, L., Yamakami, I., Fernyak, S., Soares, H., & Faden, A. L. (1989). Traumatic brain injury in the rat: Characterization of a lateral fluid-percussion model. Neuroscience, 28, 233–244.

    Article  CAS  PubMed  Google Scholar 

  • McIntosh, T. K., Juhler, M., & Wieloch, T. (1998). Novel pharmacologic strategies in the treatment of experimental traumatic brain injury: 1998. Journal of Neurotrauma, 15, 731–769.

    Article  CAS  PubMed  Google Scholar 

  • Miller, J. D., Becker, D. P., Ward, J. D., Sullivan, H. G., Adams, W. E., & Rosner, M. J. (1977). Significance of intracranial hypertension in severe head injury. Journal of Neurosurgery, 47, 503–516.

    Article  CAS  PubMed  Google Scholar 

  • Miller, J. D., Dearden, N. M., Piper, I. R., & Chan, K. H. (1992). Control of intracranial pressure in patients with severe head injury. Journal of Neurotrauma, 9(Suppl 1), S317–S326.

    PubMed  Google Scholar 

  • Moody, W. J., Futamachi, K. J., & Prince, D. A. (1974). Extracellular potassium activity during epileptogenesis. Experimental Neurology, 42, 248–263.

    Article  CAS  PubMed  Google Scholar 

  • Mutch, W. A., & Hansen, A. J. (1984). Extracellular pH changes during spreading depression and cerebral ischemia: Mechanisms of brain pH regulation. Journal of Cerebral Blood Flow and Metabolism, 4, 17–27.

    Article  CAS  PubMed  Google Scholar 

  • Nedergaard, M., & Hansen, A. J. (1993). Characterization of cortical depolarizations evoked in focal cerebral ischemia. Journal of Cerebral Blood Flow and Metabolism, 13, 568–574.

    Article  CAS  PubMed  Google Scholar 

  • Nilsson, P., Hillered, L., Ponten, U., & Ungerstedt, U. (1990). Changes in cortical extracellular levels of energy-related metabolites and amino acids following concussive brain injury in rats. Journal of Cerebral Blood Flow and Metabolism, 10, 631–637.

    Article  CAS  PubMed  Google Scholar 

  • Nilsson, P., Hillered, L., Olsson, Y., Sheardown, M. J., & Hansen, A. J. (1993). Regional changes in interstitial K+ and Ca2+ levels following cortical compression contusion trauma in rats. Journal of Cerebral Blood Flow and Metabolism, 13, 183–192.

    Article  CAS  PubMed  Google Scholar 

  • Nilsson, P., Gazelius, B., Carlson, H., & Hillered, L. (1996). Continuous measurement of changes in regional cerebral blood flow following cortical compression contusion trauma in the rat. Journal of Neurotrauma, 13, 201–207.

    Article  CAS  PubMed  Google Scholar 

  • Norusis, M. J. (1999). Guide of data analysis. Prentice-Hall.

    Google Scholar 

  • Obrist, W. D., Langfitt, T. W., Jaggi, J. L., Cruz, J., & Gennarelli, T. A. (1984). Cerebral blood flow and metabolism in comatose patients with acute head injury. Relationship to intracranial hypertension. Journal of Neurosurgery, 61, 241–253.

    Article  CAS  PubMed  Google Scholar 

  • O’Connor, M. J., Herman, C. J., Rosenthal, M., & Jobsis, F. (1972). Intracellular redox changes preceding onset of epileptiform activity in intact cat hippocampus. Journal of Neurophysiology, 35, 471–483.

    Article  PubMed  Google Scholar 

  • O’Connor, M. J., Lewis, D. V., & Herman, C. J. (1973). Effects of potassium on oxidative metabolism and seizures. Electroencephalography and Clinical Neurophysiology, 35, 205–208.

    Article  PubMed  Google Scholar 

  • O’Connor, M. J., Welsh, F., Komarnicky, L., Davis, L., Stevens, J., Lewis, D., & Herman, C. (1977). Origin of labile NADH tissue fluorescence (pp. 90–99). Colloquium on Oxygen and Physiological Function. Professional Information Library, Dallas.

    Google Scholar 

  • Ookawa, T., & Bures, J. (1975). Extracellular potassium shifts accompanying epileptic discharge induced in chicken hyperstriatum by systemic injection of Metrazol. Brain Research, 97, 171–176.

    Article  CAS  PubMed  Google Scholar 

  • Otsuka, H., Ueda, K., Heimann, A., & Kempski, O. (2000). Effects of cortical spreading depression on cortical blood flow, impedance, DC potential, and infarct size in a rat venous infarct model. Experimental Neurology, 162, 201–214.

    Article  CAS  PubMed  Google Scholar 

  • Ozawa, Y., Nakamura, T., Sunami, K., Kubota, M., Ito, C., Murai, H., Yamaura, A., & Makino, H. (1991). Study of regional cerebral blood flow in experimental head injury: Changes following cerebral contusion and during spreading depression. Neurologia Medico-Chirurgica (Tokyo), 31, 685–690.

    Article  CAS  Google Scholar 

  • Paton, W. D. (1967). Experiments on the convulsant and anaesthetic effects of oxygen. British Journal of Pharmacology and Chemotherapy, 29, 350–366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Persson, L., & Hillered, L. (1992). Chemical monitoring of neurosurgical intensive care patients using intracerebral microdialysis. Journal of Neurosurgery, 76, 72–80.

    Article  CAS  PubMed  Google Scholar 

  • Pfenninger, J. (1984). Early prediction of outcome after severe head injury in children. Zeitschrift für Kinderchirurgie, 39, 223–228.

    CAS  PubMed  Google Scholar 

  • Piper, I. R., Miller, J. D., Dearden, N. M., Leggate, J. R., & Robertson, I. (1990). Systems analysis of cerebrovascular pressure transmission: An observational study in head-injured patients. Journal of Neurosurgery, 73, 871–880.

    Article  CAS  PubMed  Google Scholar 

  • Puglia, C. D., Glauser, E. M., & Glauser, S. C. (1974). Core temperature response of rats during exposure to oxygen at high pressure. Journal of Applied Physiology, 36, 149–153.

    Article  CAS  PubMed  Google Scholar 

  • Rogatsky, G. G., Mayevsky, A., Zarchin, N., & Doron, A. (1996). Continuous multiparametric monitoring of brain activities following fluid-percussion injury in rats: Preliminary results. Journal of Basic and Clinical Physiology and Pharmacology, 7, 23–43.

    Article  CAS  PubMed  Google Scholar 

  • Rogatsky, G. G., Sonn, J., Kamenir, Y., Zarchin, N., & Mayevsky, A. (2003). Relationship between intracranial pressure and cortical spreading depression following fluid percussion brain injury in rats. Journal of Neurotrauma, 20, 1315–1325.

    Article  CAS  PubMed  Google Scholar 

  • Rosenthal, M., & Jobsis, F. F. (1971). Intracellular redox changes in functioning cerebral cortex. II. Effects of direct cortical stimulation. Journal of Neuropsychology, 34, 750–762.

    CAS  Google Scholar 

  • Rosenthal, M., & Somjen, G. (1973). Spreading depression, sustained potential shifts, and metabolic activity of cerebral cortex of cats. Journal of Neurophysiology, 36, 739–749.

    Article  CAS  PubMed  Google Scholar 

  • Sanders, A. P., Hall, I. H., & Woodhall, B. (1965). Succinate: Protective agent against hyperbaric oxygen toxicity. Science, 150, 1830–1831.

    Article  CAS  PubMed  Google Scholar 

  • Signoretti, S., Marmarou, A., Tavazzi, B., Lazzarino, G., Beaumont, A., & Vagnozzi, R. (2001). N-Acetylaspartate reduction as a measure of injury severity and mitochondrial dysfunction following diffuse traumatic brain injury. Journal of Neurotrauma, 18, 977–991.

    Article  CAS  PubMed  Google Scholar 

  • Signorini, D. F., Andrews, P. J., Jones, P. A., Wardlaw, J. M., & Miller, J. D. (1999). Adding insult to injury: The prognostic value of early secondary insults for survival after traumatic brain injury. Journal of Neurology, Neurosurgery, and Psychiatry, 66, 26–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Somjen, G. G. (2001). Mechanisms of spreading depression and hypoxic spreading depression-like depolarization. Physiological Reviews, 81, 1065–1096.

    Article  CAS  PubMed  Google Scholar 

  • Somjen, G. G., Rosenthal, M., Cordingley, G., LaManna, J., & Lothman, E. (1976). Potassium, neuroglia, and oxidative metabolism in central gray matter. Federation Proceedings, 35, 1266–1271.

    CAS  PubMed  Google Scholar 

  • Sonn, J., & Mayevsky, A. (2000). Effects of brain oxygenation on metabolic, hemodynamic, ionic and electrical responses to spreading depression in the rat. Brain Research, 882, 212–216.

    Article  CAS  PubMed  Google Scholar 

  • Stein, S. N., & Sonnenschein, R. R. (1950). Electrical activity and oxygen tension of brain during hyperoxic convulsions. The Journal of Aviation Medicine, 21, 401–405.

    CAS  PubMed  Google Scholar 

  • Stocchetti, N., Barbagallo, M., Bellini, G. C., Furlan, A., Vezzani, A., & Nizzoli, V. (1991). Arterio-jugular difference of oxygen and intracranial pressure in comatose, head injured patients. II. Clinical correlations. Minerva Anestesiologica, 57, 327–334.

    CAS  PubMed  Google Scholar 

  • Strong, A. J., Fabricius, M., Boutelle, M. G., Hibbins, S. J., Hopwood, S. E., Jones, R., Parkin, M. C., & Lauritzen, M. (2002). Spreading and synchronous depressions of cortical activity in acutely injured human brain. Stroke, 33, 2738–2743.

    Article  PubMed  Google Scholar 

  • Sukoff, M. H., & Ragatz, R. E. (1982). Hyperbaric oxygenation for the treatment of acute cerebral edema. Neurosurgery, 10, 29–38.

    CAS  PubMed  Google Scholar 

  • Sukoff, M. H., Hollin, S. A., Espinosa, O. E., & Jacobson, J. H., 2nd. (1968). The protective effect of hyperbaric oxygenation in experimental cerebral edema. Journal of Neurosurgery, 29, 236–241.

    Article  CAS  PubMed  Google Scholar 

  • Sullivan, H. G., Martinez, J., Becker, D. P., Miller, J. D., Griffith, R., & Wist, A. O. (1976). Fluid-percussion model of mechanical brain injury in the cat. Journal of Neurosurgery, 45, 521–534.

    Article  CAS  PubMed  Google Scholar 

  • Sunami, K., Nakamura, T., Ozawa, Y., Kubota, M., Namba, H., & Yamaura, A. (1989). Hypermetabolic state following experimental head injury. Neurosurgical Review, 12(Suppl 1), 400–411.

    Article  PubMed  Google Scholar 

  • Takano, K., Latour, L. L., Formato, J. E., Carano, R. A., Helmer, K. G., Hasegawa, Y., Sotak, C. H., & Fisher, M. (1996). The role of spreading depression in focal ischemia evaluated by diffusion map**. Annals of Neurology, 39, 308–318.

    Article  CAS  PubMed  Google Scholar 

  • Taylor, H. J. (1949). The role of carbon dioxide in oxygen poisoning. The Journal of Physiology, 109, 272–280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tenny, R. T., Sharbrough, F. W., & Anderson, R. E. (1980). Correlation of intracellular redox states and pH with blood flow in primary and secondary seizure foci. Annals of Neurology, 8, 564–573.

    Article  CAS  PubMed  Google Scholar 

  • Thomas, S., Tabibnia, F., Schuhmann, M. U., Brinker, T., & Samii, M. (2000). ICP and MABP following traumatic subarachnoid hemorrhage in the rat. Acta Neurochirurgica. Supplement, 76, 203–205.

    CAS  PubMed  Google Scholar 

  • Torbati, D., Parolla, D., & Lavy, S. (1977). Changes in local brain tissue PO2 and electrocortical activity of unanesthetized rabbits under high oxygen pressure. Aviation, Space, and Environmental Medicine, 48, 247–250.

    CAS  PubMed  Google Scholar 

  • Vern, B., Schuette, W. H., Whitehouse, W. C., & Mutsuga, N. (1976). Cortical oxygen consumption and NADH fluorescence during metrazole seizures in normotensive and hypotensive cats. Experimental Neurology, 52, 82–99.

    Article  Google Scholar 

  • Vyskocil, F., Kritz, N., & Bures, J. (1972). Potassium-selective microelectrodes used for measuring the extracellular brain potassium during spreading depression and anoxic depolarization in rats. Brain Research, 39, 255–259.

    Article  CAS  PubMed  Google Scholar 

  • Wadhwani, K. C., Rapoport, S. I., Shepherd, A. P., & Oberg, P. A. (1990). Blood flow in the central and peripheral nervous systems. In P. A. Oberg (Ed.), Shephrd, a.P (pp. 265–304). Laser Doppler Blood Flowmetry Kluwer Academic Pub.

    Google Scholar 

  • Wiebers, D. O., Adams, H. P., Jr., & Whisnant, J. P. (1990). Animal models of stroke: Are they relevant to human disease? Stroke, 21, 1–3.

    Article  CAS  PubMed  Google Scholar 

  • Zauner, A., Daugherty, W. P., Bullock, M. R., & Warner, D. S. (2002). Brain oxygenation and energy metabolism: Part I-biological function and pathophysiology. Neurosurgery, 51, 289–301. discussion 302.

    PubMed  Google Scholar 

  • Zeuthen, T., Hiam, R. C., & Silver, I. A. (1974). Microelectrode recording of ion activity in brain. In H. J. Berman & N. C. Hebert (Eds.), Ion-selective microelectrodes. Advances in experimental medicine and biology (pp. 145–156). Springer.

    Chapter  Google Scholar 

  • Zeuthen, T., Dora, E., Silver, I. A., Chance, B., & Kovach, A. G. B. (1979). Mechanism of the cerebrocortical vasodilatation during anoxia. Acta Physiologica Academiae Scientiarum Hungaricae, 54, 305–318.

    CAS  PubMed  Google Scholar 

  • Zuckermann, E. C., & Glaser, G. H. (1968). Hippocampal epileptic activity induced by localized ventricular perfusion with high-potassium cerebrospinal fluid. Experimental Neurology, 20, 87–110.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mayevsky, A., Sonn, J. (2022). Spontaneous Development of CSD Related to Brain Pathophysiological Conditions. In: Cortical Spreading Depression of Leao. Springer, Cham. https://doi.org/10.1007/978-3-031-08068-5_5

Download citation

Publish with us

Policies and ethics

Navigation