Numerical and Experimental Investigation of Wall Effect in Concrete

  • Conference paper
  • First Online:
Numerical Modeling Strategies for Sustainable Concrete Structures (SSCS 2022)

Abstract

This study presents a new numerical approach using tools developed to perform a molecular simulation to investigate the wall effect on aggregates and mortar distribution in concrete. Aggregates are represented by spheres interacting via a generalized truncated Lennard-Jones potential. This approach allows obtaining the particle profiles according to the reference frame of interest (e.g., the confined directions). Then the particle-based distributions are transformed into continuum profiles of volume fractions using a convolution. Based on volume fraction profiles, transport or mechanical properties are estimated by the Mori-Tanaka scheme from classical homogenization. Results are compared to experimental work. The numerical method could be generalized and used for other applications in different fields. In civil engineering, perspectives include using the aggregate distribution to conduct a finer analysis, and the results would be extremely relevant for the prediction of the water content profile and the evolution of pathologies such as carbonation, corrosion, ISR, etc..

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Thailand)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 234.33
Price includes VAT (Thailand)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 279.99
Price excludes VAT (Thailand)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 279.99
Price excludes VAT (Thailand)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kreijger, P.C.: The skin of concrete composition and properties. Mat. Constr. 17(4), 275–283 (1984). https://doi.org/10.1007/BF02479083

    Article  Google Scholar 

  2. Bissonnette, B., Courard, L., Garbacz, A.: Concrete Surface Engineering. CRC Press, Boca Raton (2018)

    Book  Google Scholar 

  3. Bentz, D.P., et al.: Influence of aggregate characteristics on concrete performance. National Institute of Standards and Technology, Gaithersburg, May 2017. NIST TN 1963. https://doi.org/10.6028/NIST.TN.1963

  4. Liu, P., Chen, Y., Sha, F., Yu, Z., Shao, G.: Study on microstructure and composition distribution of concrete surface zone based on fractal theory and XCT technology. Constr. Build. Mater. 263, 120209 (2020). https://doi.org/10.1016/j.conbuildmat.2020.120209

    Article  Google Scholar 

  5. de Larrard, F.: Structures granulaires (1999)

    Google Scholar 

  6. Zheng, J.J., Li, C.Q., Zhao, L.Y.: Simulation of two-dimensional aggregate distribution with wall effect. J. Mater. Civ. Eng. 15(5), 506–510 (2003). https://doi.org/10.1061/(ASCE)0899-1561(2003)15:5(506)

    Article  Google Scholar 

  7. Xu, W.X., Lv, Z., Chen, H.S.: Effects of particle size distribution, shape and volume fraction of aggregates on the wall effect of concrete via random sequential packing of polydispersed ellipsoidal particles. Phys. A 392(3), 416–426 (2013). https://doi.org/10.1016/j.physa.2012.09.014

    Article  Google Scholar 

  8. Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117(1), 1–19 (1995). https://doi.org/10.1006/jcph.1995.1039

    Article  MATH  Google Scholar 

  9. Plimpton, S., Hendrickson, B.: A new parallel method for molecular dynamics simulation of macromolecular systems. J. Comput. Chem. 17(3), 326–337 (1996). https://doi.org/10.1002/(SICI)1096-987X(199602)17:3%3c326::AID-JCC7%3e3.0.CO;2-X

    Article  Google Scholar 

  10. Clark, T.W., McCammon, J.A., Scott, L.R.: Parallel molecular dynamics. In: Proceedings of the Fifth SIAM Conference on Parallel Processing for Scientific Computing, USA, pp. 338–344, March 1991

    Google Scholar 

  11. Pinches, M.R.S., Tildesley, D.J., Smith, W.: Large scale molecular dynamics on parallel computers using the link-cell algorithm. Mol. Simul. 6(1–3), 51–87 (1991). https://doi.org/10.1080/08927029108022139

    Article  Google Scholar 

  12. Plimpton, S.J., Wolf, E.D.: Effect of interatomic potential on simulated grain-boundary and bulk diffusion: a molecular-dynamics study. Phys. Rev. B 41(5), 2712–2721 (1990). https://doi.org/10.1103/PhysRevB.41.2712

    Article  Google Scholar 

  13. Jover, J., Haslam, A.J., Galindo, A., Jackson, G., Müller, E.A.: Pseudo hard-sphere potential for use in continuous molecular-dynamics simulation of spherical and chain molecules. J. Chem. Phys. 14, 144505 (2012)

    Article  Google Scholar 

  14. Frenkel, D., Smit, B.: Understanding Molecular Simulation. 2nd edn. Academic Press, San diego (2002). https://www.elsevier.com/books/understanding-molecular-simulation/frenkel/978-0-12-267351-1. Accessed 11 Oct 2021

  15. Nygård, K., et al.: Anisotropic pair correlations and structure factors of confined hard-sphere fluids: an experimental and theoretical study. Phys. Rev. Lett. 108(3), 037802 (2012). https://doi.org/10.1103/PhysRevLett.108.037802

    Article  Google Scholar 

  16. Mori, T., Tanaka, K.: Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 21(5), 571–574 (1973). https://doi.org/10.1016/0001-6160(73)90064-3

    Article  Google Scholar 

  17. Torquato, S.: Random Heterogeneous Materials: Microstructure and Macroscopic Properties. Springer, New York (2002). https://doi.org/10.1007/978-1-4757-6355-3

    Book  MATH  Google Scholar 

  18. Hashin, Z., Shtrikman, S.: A variational approach to the theory of the elastic behaviour of multiphase materials. J. Mech. Phys. Solids 11(2), 127–140 (1963). https://doi.org/10.1016/0022-5096(63)90060-7

    Article  MathSciNet  MATH  Google Scholar 

  19. Granger, L.: Comportement différé du béton dans les enceintes de centrales nucléaires: analyse et modélisation (1995). https://pastel.archives-ouvertes.fr/tel-00520675. Accessed 13 Nov 2019

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takwa Sayari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sayari, T., Honorio, T., Benboudjema, F., Tabchoury, R., Adia, JL., Clergue, C. (2023). Numerical and Experimental Investigation of Wall Effect in Concrete. In: Rossi, P., Tailhan, JL. (eds) Numerical Modeling Strategies for Sustainable Concrete Structures. SSCS 2022. RILEM Bookseries, vol 38. Springer, Cham. https://doi.org/10.1007/978-3-031-07746-3_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07746-3_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07745-6

  • Online ISBN: 978-3-031-07746-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation