An Integrated Methodological Framework to Assess Urban Resilience

  • Chapter
  • First Online:
Urban Resilience: Methodologies, Tools and Evaluation

Abstract

The assessment of the urban resilience should be tackled with a systemic perspective that enables an integrated analysis of the environmental, social, economic and institutional factors and their interactions characterizing urban and other complex socio-ecological systems. Here we propose an integrated framework for such assessment with the following key components: (i) The hierarchical definition of resilience objectives and indicators. (ii) A dynamic system model taking into account the key socio-economic and environment factors and their interactions, in which resilience indicators are integrated. (iii) The assessment of model potential sources of uncertainty and their impact on model outputs. (iv) The analysis of vulnerabilities to exogenous drivers (scenario analysis) and the exploration of available management and planning options (policy assessment). (v) A multi-criteria procedure, in which indicators, resilience thresholds, model outputs and scenario and policy analysis are integrated to guide decisions for an improved urban resilience. The whole framework integrates a participative approach, mainly for the initial and final steps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adriaanse, A. (1993). Environmental policy performance indicators. Nature indicators survey. Ministry of Environment and Energy.

    Google Scholar 

  • AP. (2013). Action plan of the Fuerteventura biosphere reserve. http://gestion.cabildofuer.es/fuerteventurabiosfera/

  • Banos-González, I., Martínez-Fernández, J., & Esteve-Selma, M. A. (2015). Dynamic integration of sustainability indicators in insular socio-ecological systems. Ecological Modelling, 306, 130–144.

    Article  Google Scholar 

  • Banos-González, I., Martínez-Fernández, J., & Esteve-Selma, M. A. (2016). Using dynamic sustainability indicators to assess environmental policy measures in Biosphere Reserves. Ecological Indicators, 67, 565–576.

    Article  Google Scholar 

  • Barlas, Y. (1996). Formal aspects of model validity and validation in system dynamics. System Dynamics Review, 12(3), 183–210.

    Article  Google Scholar 

  • Bell, S., & Morse, S. (2008). Sustainability indicators. Measuring the immeasurable? Earthscan.

    Google Scholar 

  • Cariboni, J., Gatelli, D., Liska, R., & Saltelli, A. (2007). The role of sensitivity analysis in ecological modelling. Ecological Modelling, 203(1), 167–182. https://doi.org/10.1016/j.ecolmodel.2005.10.045

    Article  Google Scholar 

  • Comisión de las Comunidades Europeas. (1992). Programa Comunitario de Política y Actuación en materia de Medio Ambiente y Desarrollo Sostenible. COM (92) 23 FINAL. Instituto de Investigaciones Ecológicas.

    Google Scholar 

  • EC. (2008). European Commission. Communication from the Commission-energy efficiency: Delivering the 20% target. COM 2008, 772 final.

    Google Scholar 

  • EC. (2015). European Commission, Climate action, EU action 2030. Available from: http://ec.europa.eu/clima/policies/2030/index_en.htm

  • Figge, F., & Hahn, T. (2004). Sustainable value added—Measuring corporate contributions to sustainability beyond eco-efficiency. Ecological Economics, 48(2), 173–187. https://doi.org/10.1016/j.ecolecon.2003.08.005

    Article  Google Scholar 

  • Filatova, T., & Polhill, G. (2012). Shocks in coupled socio-ecological Systems: What are they and how can we model them? In International Environmental Modelling and Software Society (iEMSs). International congress on environmental modelling and software managing resources of a limited planet, Sixth Biennial meeting, Leipzig, Germany.

    Google Scholar 

  • Gee, D., & Krayer von Krauss, M. P. (2005). Late lessons from early warnings: Towards precaution and realism in research and policy. Water Science & Technology, 52(6), 25–34.

    Article  Google Scholar 

  • Gonçalves, C., & Marques da Costa, E. (2013). Framework and indicators to measure urban resilience. Communication at: AESOP-ACSP Joint Congress . 15–19 July 2013. Dublin.

    Google Scholar 

  • Government of Canary Islands. (2010). Presidencia de Gobierno. Viceconsejería de Turismo. Observatorio turístico: Estadísticas y Estudios.

    Google Scholar 

  • Granda Leon, M., González Camba, S., & Calvopiña Carvajal, V. (2013). Medición de pobreza en Galápagos. Informe Galápagos 2011–2012. DPNG, CGREG, FCD y GC. Puerto Ayora, Galápagos, Ecuador.

    Google Scholar 

  • Graymore, M. L., Sipe, N. G., & Rickson, R. E. (2010). Sustaining human carrying capacity: A tool for regional sustainability assessment. Ecological Economics, 69(3), 459–468. https://doi.org/10.1016/j.ecolecon.2009.08.016

    Article  Google Scholar 

  • Guyot-Tephany, J. et al. (2013). Usos, percepciones y manejo del agua en Galápagos. pp. 67–75. Informe Galápagos 2011–2012. DPNG, CGREG, FCD y GC. Puerto Ayora, Galápagos, Ecuador.

    Google Scholar 

  • Haag, D., & Kaupenjohann, M. (2001). Parameters, prediction, post-normal science and the precautionary principle – A roadmap for modelling for decision-making. Ecological Modelling, 144, 45–60.

    Article  Google Scholar 

  • Hadian, S., & Madani, K. (2013). The water demand of energy: Implications for sustainable energy policy development. Sustainability, 5(11), 4674–4687.

    Article  Google Scholar 

  • Hanley, N., McGregor, P. G., Swales, J. K., & Turner, K. (2009). Do increases in energy efficiency improve environmental quality and sustainability? Ecological Economics, 68(3), 692–709. https://doi.org/10.1016/j.ecolecon.2008.06.004

    Article  Google Scholar 

  • Hodbod, J., & Adger, W. N. (2014). Integrating social-ecological dynamics and resilience into energy systems research. Energy Research & Social Science, 1, 226–231. https://doi.org/10.1016/j.erss.2014.03.001

    Article  Google Scholar 

  • Holzkämper, A., Klein, T., Seppelt, R., & Fuhrer, J. (2015). Assessing the propagation of uncertainties in multi-objective optimization for agro-ecosystem adaptation to climate change. Environmental Modelling & Software, 66, 27–35. https://doi.org/10.1016/j.envsoft.2014.12.012

    Article  Google Scholar 

  • Jakeman, A. J., & Letcher, R. A. (2003). Integrated assessment and modelling: Features, principles and examples for catchment management. Environmental Modelling & Software, 18(6), 491–501.

    Article  Google Scholar 

  • Johansson, T. B., & Goldemberg, J. (2004). Energy and the challenge of sustainability overview: 2004 update, United Nations Development Programme, United Nations Department of Economic and Social Affairs, and World Energy Council. Available from: http://www.undp.org/seed/eap/activities/wea/

  • Jørgensen, S. E., & Fath, B. (2011). Fundamentals of ecological modelling. Elsevier.

    Google Scholar 

  • Kampmann, C. E., & Oliva, R. (2008). Structural dominance analysis and theory building in system dynamics. Systems Research and Behavioral Science, 25(4), 505–519. https://doi.org/10.1002/sres.909

    Article  Google Scholar 

  • Kelly, R. A., Jakeman, A. J., Barreteau, O., Borsuk, M. E., ElSawah, S., Hamilton, S. H., & Voinov, A. A. (2013). Selecting among five common modelling approaches for integrated environmental assessment and management. Environmental Modelling & Software, 47, 159–181. https://doi.org/10.1016/j.envsoft.2013.05.005

    Article  Google Scholar 

  • Khazai, B., Bendimeard, F., Cardona, O., Carreño, M. L., Barbat, A., & Burton, C. (2015). A guide to measuring urban risk resilience. Principles, tools and practice of urban indicators. Earthquakes and Megacities Initiative (EMI), The Philippines.

    Google Scholar 

  • Kruyt, B., van Vuuren, D. V., De Vries, H. J. M., & Groenenberg, H. (2009). Indicators for energy security. Energy Policy, 37(6), 2166–2181. https://doi.org/10.1016/j.enpol.2009.02.006

    Article  Google Scholar 

  • Lacitignola, D., Petrosillo, I., Cataldi, M., & Zurlini, G. (2007). Modelling socio-ecological tourism-based systems for sustainability. Ecological Modelling, 206(1), 191–204. https://doi.org/10.1016/j.ecolmodel.2007.03.034

    Article  Google Scholar 

  • Lancker, E., & Nijkamp, P. (2000). A policy scenario analysis of sustainable agricultural development options: A case study for Nepal. Impact Assessment and Project Appraisal, 18(2), 111–124. https://doi.org/10.3152/147154600781767493

    Article  Google Scholar 

  • Lattemann, S., & Höpner, T. (2008). Environmental impact and impact assessment of seawater desalination. Desalination, 220(1), 1–15. https://doi.org/10.1016/j.desal.2007.03.009

    Article  Google Scholar 

  • Li, F. J., Dong, S. C., & Li, F. (2012). A system dynamics model for analyzing the ecoagriculture system with policy recommendations. Ecological Modelling, 227, 34–45. https://doi.org/10.1016/j.ecolmodel.2011.12.005

    Article  Google Scholar 

  • Liu, G., Yang, Z., Chen, B., & Ulgiati, S. (2014). Emergy-based dynamic mechanisms of urban development, resource consumption and environmental impacts. Ecological Modelling, 271, 90–102. https://doi.org/10.1016/j.ecolmodel.2013.08.014

    Article  Google Scholar 

  • Madani, K., & Khatami, S. (2015). Water for energy: Inconsistent assessment standards and inability to judge properly. Current Sustainable/Renewable Energy Reports, 2(1), 10–16. https://doi.org/10.1007/s40518-014-0022-5

  • Martínez-Fernández, J., Esteve-Selma, M. A., Baños-González, I., Carreño, F., & Moreno, A. (2013). Sustainability of Mediterranean irrigated agro-landscapes. Ecological Modelling, 248, 11–19. https://doi.org/10.1016/j.ecolmodel.2012.09.018

    Article  Google Scholar 

  • Martínez-Fernández, J., Banos-Gonzalez, I., Esteve-Selma, M. A., & Carrión-Tacuri, J. (2016). IDIS: una metodología de definición de indicadores de sostenibilidad del agua. Aplicación al caso de las Islas Galápagos. Proceedings of the IX Congreso Ibérico de Planificación y Gestión del Agua. Agua, ciudad y salud de los ecosistemas. J. Raúl Navarro García y Laura Sánchez Gallardo (Eds.). Fundación Nueva Cultura del Agua.

    Google Scholar 

  • Martínez-Moyano, I. J., & Richardson, G. P. (2013). Best practices in system dynamics modeling. System Dynamics Review, 29(2), 102–123. https://doi.org/10.1002/sdr.1495

    Article  Google Scholar 

  • Meerganz von Medeazza, G., & Moreau, V. (2007). Modelling of water–energy systems. The case of desalination. Energy, 32(6), 1024–1031. https://doi.org/10.1016/j.energy.2006.10.006

    Article  Google Scholar 

  • Melián-Martel, N., Sadhwani Alonso, J. J., & Pérez Báez, S. O. (2013). Reuse and management of brine in sustainable SWRO desalination plants. Desalination and Water Treatment, 51(1-3), 560–566. https://doi.org/10.1080/19443994.2012.713567

    Article  Google Scholar 

  • Moldan, B., Janoušková, S., & Hák, T. (2012). How to understand and measure environmental sustainability: Indicators and targets. Ecological Indicators, 17, 4–13. https://doi.org/10.1016/j.ecolind.2011.04.033

    Article  Google Scholar 

  • Mori, K., & Christodoulou, A. (2012). Review of sustainability indices and indicators: Towards a new City Sustainability Index (CSI). Environmental Impact Assessment Review, 32(1), 94–106.

    Article  Google Scholar 

  • Perz, S. G., Muñoz-Carpena, R., Kiker, G., & Holt, R. D. (2013). Evaluating ecological resilience with global sensitivity and uncertainty analysis. Ecological Modelling, 263, 174–186. https://doi.org/10.1016/j.ecolmodel.2013.04.024

    Article  Google Scholar 

  • Proelss, A., & Houghton, K. (2012). The EU Common Fisheries Policy in light of the precautionary principle. Ocean & Coastal Management, 70, 22–30. https://doi.org/10.1016/j.ocecoaman.2012.05.015

    Article  Google Scholar 

  • Reed, M. S., Fraser, E. D., & Dougill, A. J. (2006). An adaptive learning process for develo** and applying sustainability indicators with local communities. Ecological Economics, 59(4), 406–418. https://doi.org/10.1016/j.ecolecon.2005.11.008

    Article  Google Scholar 

  • Refsgaard, J. C., van der Sluijs, J. P., Højberg, A. L., & Vanrolleghem, P. A. (2007). Uncertainty in the environmental modelling process–A framework and guidance. Environmental Modelling & Software, 22(11), 1543–1556. https://doi.org/10.1016/j.envsoft.2007.02.004

    Article  Google Scholar 

  • Rodríguez-Rodríguez, D., & Martínez-Vega, J. (2012). Proposal of a system for the integrated and comparative assessment of protected areas. Ecological Indicators, 23, 566–572. https://doi.org/10.1016/j.ecolind.2012.05.009

  • Saltelli, A., Ratto, M., Tarantola, S., & Campolongo, F. (2005). Sensitivity analysis for chemical models. Chemical Reviews, 105(7), 2811–2828.

    Article  Google Scholar 

  • Schouten, M., Verwaart, T., & Heijman, W. (2014). Comparing two sensitivity analysis approaches for two scenarios with a spatially explicit rural agent-based model. Environmental Modelling & Software, 54, 196–210. https://doi.org/10.1016/j.envsoft.2014.01.003

    Article  Google Scholar 

  • Suárez, M., Gómez-Baggethun, E., Benayas, J., & Tilbury, D. (2016). Towards an urban resilience index: A case study in 50 Spanish cities. Sustainability, 8, 774. https://doi.org/10.3390/su8080774

    Article  Google Scholar 

  • Uusitalo, L., Lehikoinen, A., Helle, I., & Myrberg, K. (2015). An overview of methods to evaluate uncertainty of deterministic models in decision support. Environmental Modelling & Software, 63, 24–31. https://doi.org/10.1016/j.envsoft.2014.09.017

    Article  Google Scholar 

  • Van der Sluijs, J. P. (2007). Uncertainty and precaution in environmental management: Insights from the UPEM conference. Environmental Modelling & Software, 22(5), 590–598. https://doi.org/10.1016/j.envsoft.2005.12.020

    Article  Google Scholar 

  • Vidal-Legaz, B., Martínez-Fernández, J., Sánchez Picón, A., & Pugnaire, F. (2013). Trade-offs between maintenance of ecosystem services and socio-economic development in rural mountainous communities in southern Spain: A dynamic simulation approach. Journal of Environmental Management, 131, 280–297. https://doi.org/10.1016/j.jenvman.2013.09.036

    Article  Google Scholar 

  • Voinov, A., & Shugart, H. H. (2013). ‘Integronsters’, integral and integrated modeling. Environmental Modelling & Software, 39, 149–158. https://doi.org/10.1016/j.envsoft.2012.05.014

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia Martínez-Fernández .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Martínez-Fernández, J., Esteve-Selma, M.A., Banos-Gonzalez, I., Guaita-García, N. (2022). An Integrated Methodological Framework to Assess Urban Resilience. In: González Castillo, O.F., Antoniucci, V., Mendieta Márquez, E., Juárez Nájera, M., Cedeño Valdiviezo, A., Osorno Castro, M. (eds) Urban Resilience: Methodologies, Tools and Evaluation. Resilient Cities. Springer, Cham. https://doi.org/10.1007/978-3-031-07586-5_8

Download citation

Publish with us

Policies and ethics

Navigation