Scoring for Hemorrhage Severity in Traumatic Injury

  • Reference work entry
  • First Online:
Biomarkers in Trauma, Injury and Critical Care

Abstract

Severity scores have long been used for the classification or stratification of patients for clinical care and in the evaluation of outcomes. Such scores find highest utility as a standardization instrument in the study of large cohorts of patients. The advent of pervasive tools and capabilities of Artificial Intelligence (AI) and Machine Learning (ML) increases the value of applying such scores to personalized bedside decisions regarding single patients, in which case the score has the data richness of a biomarker of disease. While not molecular biomarkers, such scores are often informed by molecular indicators of pathophysiology and find utility similar to that of traditional biomarkers. This chapter explores the use of severity scores such as the Injury Severity Score (ISS) and New Injury Severity Score (NISS), an internationally recognized scoring system which correlates with mortality, morbidity, and other measures of severity. We also highlight recently introduced scores that capture the rich pathophysiological data of the Emergency Department (ED) and the Intensive Care Unit (ICU).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AI:

Artificial Intelligence

HISS:

Hemorrhage Intensive Severity and Survivability Score

ML:

Machine Learning

MODS:

Multiple Organ Dysfunction Syndrome

MOF:

Multiple Organ Failure

SOFA:

Sequential Organ Failure Assessment

START:

Simple Triage and Rapid Treatment

References

  • Adhikari L, Ozrazgat-Baslanti T, Ruppert M, Madushani R, Paliwal S, Hashemighouchani H, Zheng F, Tao M, Lopes JM, Li X, Rashidi P, Bihorac A. Improved predictive models for acute kidney injury with IDEA: intraoperative data embedded analytics. PLoS One. 2019;14:e0214904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aggas JR, Sánchez-Sinencio E, Guiseppi-Elie A. Wien oscillator using organic enzyme-chemiresistors for fused measurement of glucose and lactate. Adv Intell Syst. 2020;2:2000004.

    Article  Google Scholar 

  • Ali AM, Willett K. What is the effect of the weather on trauma workload? A systematic review of the literature. Injury. 2015;46:945–53.

    Article  CAS  PubMed  Google Scholar 

  • Amar AB, Kouki AB, Cao H. Power approaches for implantable medical devices. Sensors. 2015;15:28889–914.

    Article  PubMed  PubMed Central  Google Scholar 

  • Baker SP, O’Neill B, Haddon W Jr, Long WB. The injury severity score: a method for describing patients with multiple injuries and evaluating emergency care. J Trauma. 1974;14:187–96.

    Article  CAS  PubMed  Google Scholar 

  • Bakkes T, Montree RJH, Mischi M, Mojoli F, Turco S. A machine learning method for automatic detection and classification of patient-ventilator asynchrony. Annu Int Conf IEEE Eng Med Biol Soc. 2020;2020:150–3.

    CAS  PubMed  Google Scholar 

  • Bal M, Amasyali MF, Sever H, Kose G, Demirhan A. Performance evaluation of the machine learning algorithms used in inference mechanism of a medical decision support system. Sci World J. 2014;2014:15.

    Article  Google Scholar 

  • Barton C, Chettipally U, Zhou Y, Jiang Z, Lynn-Palevsky A, Le S, Calvert J, Das R. Evaluation of a machine learning algorithm for up to 48-hour advance prediction of sepsis using six vital signs. Comput Biol Med. 2019;109:79–84.

    Article  PubMed  PubMed Central  Google Scholar 

  • Benson M, Koenig KL, Schultz CH. Disaster triage: START, then SAVE--a new method of dynamic triage for victims of a catastrophic earthquake. Prehosp Disaster Med. 1996;11:117–24.

    Article  PubMed  Google Scholar 

  • Bertsimas D, Dunn J, Velmahos GC, Kaafarani HMA. Surgical risk is not linear: derivation and validation of a novel, user-friendly, and machine-learning-based predictive OpTimal trees in emergency surgery risk (POTTER) calculator. Ann Surg. 2018;268:574–83.

    Article  PubMed  Google Scholar 

  • Bhat A, Podstawczyk D, Walther BK, Aggas JR, Machado-Aranda D, Ward KR, Guiseppi-Elie A. Toward a hemorrhagic trauma severity score: fusing five physiological biomarkers. J Transl Med. 2020;18:348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bihorac A, Ozrazgat-Baslanti T, Ebadi A, Motaei A, Madkour M, Pardalos PM, Lipori G, Hogan WR, Efron PA, Moore F, Moldawer LL, Wang DZ, Hobson CE, Rashidi P, Li X, Momcilovic P. MySurgeryRisk: development and validation of a machine-learning risk algorithm for major complications and death after surgery. Ann Surg. 2019;269:652–62.

    Article  PubMed  Google Scholar 

  • Brasel KJ, Guse C, Gentilello LM, Nirula R. Heart rate: is it truly a vital sign? J Trauma Acute Care Surg. 2007;62:812–7.

    Article  Google Scholar 

  • Burch VC, Tarr G, Morroni C. Modified early warning score predicts the need for hospital admission and inhospital mortality. Emerg Med J. 2008;25:674–8.

    Article  CAS  PubMed  Google Scholar 

  • Burdick H, Lam C, Mataraso S, Siefkas A, Braden G, Dellinger RP, Mccoy A, Vincent JL, Green-Saxena A, Barnes G, Hoffman J, Calvert J, Pellegrini E, Das R. Prediction of respiratory decompensation in Covid-19 patients using machine learning: the READY trial. Comput Biol Med. 2020;124:103949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Capuzzo M, Valpondi V, Sgarbi A, Bortolazzi S, Pavoni V, Gilli G, Candini G, Gritti G, Alvisi R. Validation of severity scoring systems SAPS II and APACHE II in a single-center population. Intensive Care Med. 2000;26:1779–85.

    Article  CAS  PubMed  Google Scholar 

  • Castelvecchi D. Can we open the black box of AI? Nature. 2016;538:20–3.

    Article  CAS  PubMed  Google Scholar 

  • Char DS, Shah NH, Magnus D. Implementing machine learning in health care – addressing ethical challenges. N Engl J Med. 2018;378:981–3.

    Article  PubMed  PubMed Central  Google Scholar 

  • Christie SA, Hubbard AE, Callcut RA, Hameed M, Dissak-Delon FN, Mekolo D, Saidou A, Mefire AC, Nsongoo P, Dicker RA, Cohen MJ, Juillard C. Machine learning without borders? An adaptable tool to optimize mortality prediction in diverse clinical settings. J Trauma Acute Care Surg. 2018;85:921–7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Clark DE, Fitzgerald TL, Dibbins AW. Procedure-based postoperative risk prediction using NSQIP data. J Surg Res. 2018;221:322–7.

    Article  PubMed  Google Scholar 

  • Cocchi MN, Kimlin E, Walsh M, Donnino MW. Identification and resuscitation of the trauma patient in shock. Emerg Med Clin North Am. 2007;25:623–42. vii

    Article  PubMed  Google Scholar 

  • Davoudi A, Malhotra KR, Shickel B, Siegel S, Williams S, Ruppert M, Bihorac E, Ozrazgat-Baslanti T, Tighe PJ, Bihorac A, Rashidi P. Intelligent ICU for autonomous patient monitoring using pervasive sensing and deep learning. Sci Rep. 2019;9:8020.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dennis BM, Stonko DP, Callcut RA, Sidwell RA, Stassen NA, Cohen MJ, Cotton BA, Guillamondegui OD. Artificial neural networks can predict trauma volume and acuity regardless of center size and geography: a multicenter study. J Trauma Acute Care Surg. 2019;87:181–7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dincer C, Bruch R, Kling A, Dittrich PS, Urban GA. Multiplexed point-of-care testing – xPOCT. Trends Biotechnol. 2017;35:728–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dirusso SM, Chahine AA, Sullivan T, Risucci D, Nealon P, Cuff S, Savino J, Slim M. Development of a model for prediction of survival in pediatric trauma patients: comparison of artificial neural networks and logistic regression. J Pediatr Surg. 2002;37:1098–104. discussion 1098–104

    Article  PubMed  Google Scholar 

  • Dybowski R, Weller P, Chang R, Gant V. Prediction of outcome in critically ill patients using artificial neural network synthesised by genetic algorithm. Lancet. 1996;347:1146–50.

    Article  CAS  PubMed  Google Scholar 

  • Edwards DF, Hollingsworth H, Zazulia AR, Diringer MN. Artificial neural networks improve the prediction of mortality in intracerebral hemorrhage. Neurology. 1999;53:351–7.

    Article  CAS  PubMed  Google Scholar 

  • Eftekhar B, Mohammad K, Ardebili HE, Ghodsi M, Ketabchi E. Comparison of artificial neural network and logistic regression models for prediction of mortality in head trauma based on initial clinical data. BMC Med Inform Decis Mak. 2005;5:3.

    Article  PubMed  PubMed Central  Google Scholar 

  • Eid HO, Abu-Zidan FM. New Injury Severity Score is a better predictor of mortality for blunt trauma patients than the Injury Severity Score. World J Surg. 2015;39:165–71.

    Article  PubMed  Google Scholar 

  • Estahbanati HK, Bouduhi N. Role of artificial neural networks in prediction of survival of burn patients-a new approach. Burns. 2002;28:579–86.

    Article  PubMed  Google Scholar 

  • Fluss R, Faraggi D, Reiser B. Estimation of the Youden Index and its associated cutoff point. Biom J. 2005;47:458–72.

    Article  PubMed  Google Scholar 

  • Gardner-Thorpe J, Love N, Wrightson J, Walsh S, Keeling N. The value of Modified Early Warning Score (MEWS) in surgical in-patients: a prospective observational study. Ann R Coll Surg Engl. 2006;88:571–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garner A, Lee A, Harrison K, Schultz CH. Comparative analysis of multiple-casualty incident triage algorithms. Ann Emerg Med. 2001;38:541–8.

    Article  CAS  PubMed  Google Scholar 

  • Gianfrancesco MA, Tamang S, Yazdany J, Schmajuk G. Potential biases in machine learning algorithms using electronic health record data. JAMA Intern Med. 2018;178:1544–7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gray M, Meehan J, Ward C, Langdon SP, Kunkler IH, Murray A, Argyle D. Implantable biosensors and their contribution to the future of precision medicine. Vet J. 2018;239:21–9.

    Article  CAS  PubMed  Google Scholar 

  • Guiseppi-Elie A. An implantable biochip to influence patient outcomes following trauma-induced hemorrhage. Anal Bioanal Chem. 2011;399:403–19.

    Article  CAS  PubMed  Google Scholar 

  • Guiseppi-Elie A. Implantable biochip for managing trauma--induced hemorrhage, Patent No. US2012 0088997 A1, Apr. 12, 2012 USA patent application 13/317,236; 2012.

    Google Scholar 

  • Hadzikadic M, Hakenewerth A, Bohren B, Norton J, Mehta B, Andrews C. Concept formation vs. logistic regression: predicting death in trauma patients. Artif Intell Med. 1996;8:493–504.

    Article  CAS  PubMed  Google Scholar 

  • Hague DC. Benefits, pitfalls, and potential bias in health care AI. N C Med J. 2019;80:219–23.

    PubMed  Google Scholar 

  • Hale AT, Stonko DP, Brown A, Lim J, Voce DJ, Gannon SR, Le TM, Shannon CN. Machine-learning analysis outperforms conventional statistical models and CT classification systems in predicting 6-month outcomes in pediatric patients sustaining traumatic brain injury. Neurosurg Focus. 2018;45:E2.

    Article  PubMed  Google Scholar 

  • Hardt M, Chin MH. It is time for bioethicists to enter the arena of machine learning ethics. Am J Bioeth. 2020;20:18–20.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hasegawa D, Yamakawa K, Nishida K, Okada N, Murao S, Nishida O. Comparative analysis of three machine-learning techniques and conventional techniques for predicting sepsis-induced coagulopathy progression. J Clin Med. 2020;9:2113.

    Article  PubMed  PubMed Central  Google Scholar 

  • Headley J, Theriault R, Smith TL. Independent validation of APACHE II severity of illness score for predicting mortality in patients with breast cancer admitted to the intensive care unit. Cancer. 1992;70:497–503.

    Article  CAS  PubMed  Google Scholar 

  • Hezarjaribi N, Dutta R, **ng T, Murdoch GK, Mazrouee S, Mortazavi BJ, Ghasemzadeh H. Monitoring lung mechanics during mechanical ventilation using machine learning algorithms. Annu Int Conf IEEE Eng Med Biol Soc. 2018;2018:1160–3.

    PubMed  Google Scholar 

  • Hou N, Li M, He L, **e B, Wang L, Zhang R, Yu Y, Sun X, Pan Z, Wang K. Predicting 30-days mortality for MIMIC-III patients with sepsis-3: a machine learning approach using XGboost. J Transl Med. 2020;18:462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsieh MH, Hsieh MJ, Chen CM, Hsieh CC, Chao CM, Lai CC. Comparison of machine learning models for the prediction of mortality of patients with unplanned extubation in intensive care units. Sci Rep. 2018;8:17116.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu T, Lv H, Jiang Y. The association between four scoring systems and 30-day mortality among intensive care patients with sepsis: a cohort study. Sci Rep. 2021;11:1–9.

    Google Scholar 

  • Husum H, Strada G. Injury severity score versus new injury severity score for penetrating injuries. Prehosp Disaster Med. 2002;17:27–32.

    Article  PubMed  Google Scholar 

  • Islam MM, Nasrin T, Walther BA, Wu CC, Yang HC, Li YC. Prediction of sepsis patients using machine learning approach: a meta-analysis. Comput Methods Prog Biomed. 2019;170:1–9.

    Article  Google Scholar 

  • Jenkins JL, Mccarthy ML, Sauer LM, Green GB, Stuart S, Thomas TL, Hsu EB. Mass-casualty triage: time for an evidence-based approach. Prehosp Disaster Med. 2008;23:3–8.

    Article  PubMed  Google Scholar 

  • Ji SY, Smith R, Huynh T, Najarian K. A comparative analysis of multi-level computer-assisted decision making systems for traumatic injuries. BMC Med Inform Decis Mak. 2009;9:2.

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnson A, Sharma R, Anis J, Kaminski S, Kanard R. Towards a more intelligent model of providing pediatric trauma care: identifying temporal variations in trauma team activations. Trauma Surg Acute Care Open. 2020;5:e000448.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kang MW, Kim J, Kim DK, Oh KH, Joo KW, Kim YS, Han SS. Machine learning algorithm to predict mortality in patients undergoing continuous renal replacement therapy. Crit Care. 2020;24:42.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kashyap R, Sherani KM, Dutt T, Gnanapandithan K, Sagar M, Vallabhajosyula S, Vakil AP, Surani S. Current utility of sequential organ failure assessment score: a literature review and future directions. Open Respir Med J. 2021;15:1–6.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kia A, Timsina P, Joshi HN, Klang E, Gupta RR, Freeman RM, Reich DL, Tomlinson MS, Dudley JT, Kohli-Seth R, Mazumdar M, Levin MA. MEWS++: enhancing the prediction of clinical deterioration in admitted patients through a machine learning model. J Clin Med. 2020;9:343.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kohli M, Dreyer KJ, Geis JR. Rethinking radiology informatics. AJR Am J Roentgenol. 2015;204:716–20.

    Article  PubMed  Google Scholar 

  • Kong G, Lin K, Hu Y. Using machine learning methods to predict in-hospital mortality of sepsis patients in the ICU. BMC Med Inform Decis Mak. 2020;20:251.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kulshrestha S, Dligach D, Joyce C, Gonzalez R, O’Rourke AP, Glazer JM, Stey A, Kruser JM, Churpek MM, Afshar M. Comparison and interpretability of machine learning models to predict severity of chest injury. JAMIA Open. 2021;4:ooab015.

    Article  PubMed  PubMed Central  Google Scholar 

  • Larvin M, Mcmahon MJ. APACHE-II score for assessment and monitoring of acute pancreatitis. Lancet. 1989;2:201–5.

    Article  CAS  PubMed  Google Scholar 

  • Le Gall JR, Lemeshow S, Saulnier F. A new Simplified Acute Physiology Score (SAPS II) based on a European/North American multicenter study. JAMA. 1993;270:2957–63.

    Article  PubMed  Google Scholar 

  • Le Gall JR, Klar J, Lemeshow S, Saulnier F, Alberti C, Artigas A, Teres D. The Logistic Organ Dysfunction system. A new way to assess organ dysfunction in the intensive care unit. ICU Scoring Group. JAMA. 1996;276:802–10.

    Article  PubMed  Google Scholar 

  • Lecky F, Woodford M, Edwards A, Bouamra O, Coats T. Trauma scoring systems and databases. Br J Anaesth. 2014;113:286–94.

    Article  CAS  PubMed  Google Scholar 

  • Lecun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436–44.

    Article  CAS  PubMed  Google Scholar 

  • Lin G, Becker A, Lynn M. Do pre-hospital trauma alert criteria predict the severity of injury and a need for an emergent surgical intervention? Injury. 2012;43:1381–5.

    Article  PubMed  Google Scholar 

  • Liu NT, Salinas J. Machine learning for predicting outcomes in trauma. Shock. 2017;48:504–10.

    Article  PubMed  Google Scholar 

  • Loftus TJ, Tighe PJ, Filiberto AC, Efron PA, Brakenridge SC, Mohr AM, Rashidi P, Upchurch GR Jr, Bihorac A. Artificial intelligence and surgical decision-making. JAMA Surg. 2020;155:148–58.

    Article  PubMed  PubMed Central  Google Scholar 

  • Marshall JC, Cook DJ, Christou NV, Bernard GR, Sprung CL, Sibbald WJ. Multiple organ dysfunction score: a reliable descriptor of a complex clinical outcome. Crit Care Med. 1995;23:1638–52.

    Article  CAS  PubMed  Google Scholar 

  • Mccradden MD, Joshi S, Anderson JA, Mazwi M, Goldenberg A, Zlotnik Shaul R. Patient safety and quality improvement: ethical principles for a regulatory approach to bias in healthcare machine learning. J Am Med Inform Assoc. 2020;27:2024–7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Miotto R, Wang F, Wang S, Jiang X, Dudley JT. Deep learning for healthcare: review, opportunities and challenges. Brief Bioinform. 2018;19:1236–46.

    Article  PubMed  Google Scholar 

  • Niggli C, Pape H-C, Mica L. IBM WATSON trauma pathway explorer outperforms the TRISS score to predict early death after polytrauma. Br J Surg. 2021a;108(znab202):052.

    Google Scholar 

  • Niggli C, Pape HC, Niggli P, Mica L. Validation of a visual-based analytics tool for outcome prediction in polytrauma patients (WATSON trauma pathway explorer) and comparison with the predictive values of TRISS. J Clin Med. 2021b;10:2115.

    Article  PubMed  PubMed Central  Google Scholar 

  • Obermeyer Z, Emanuel EJ. Predicting the future – big data, machine learning, and clinical medicine. N Engl J Med. 2016;375:1216–9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ong ME, Lee Ng CH, Goh K, Liu N, Koh ZX, Shahidah N, Zhang TT, Fook-Chong S, Lin Z. Prediction of cardiac arrest in critically ill patients presenting to the emergency department using a machine learning score incorporating heart rate variability compared with the modified early warning score. Crit Care. 2012;16:R108.

    Article  PubMed  PubMed Central  Google Scholar 

  • Panch T, Mattie H, Atun R. Artificial intelligence and algorithmic bias: implications for health systems. J Glob Health. 2019;9:010318.

    Article  PubMed  Google Scholar 

  • Parikh RB, Teeple S, Navathe AS. Addressing bias in artificial intelligence in health care. JAMA. 2019;322:2377–8.

    Article  PubMed  Google Scholar 

  • Patil BM, Joshi RC, Toshniwal D, Biradar S. A new approach: role of data mining in prediction of survival of burn patients. J Med Syst. 2011;35:1531–42.

    Article  PubMed  Google Scholar 

  • Rajkomar A, Hardt M, Howell MD, Corrado G, Chin MH. Ensuring fairness in machine learning to advance health equity. Ann Intern Med. 2018;169:866–72.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rau C-S, Wu S-C, Chuang J-F, Huang C-Y, Liu H-T, Chien P-C, Hsieh C-H. Machine learning models of survival prediction in trauma patients. J Clin Med. 2019;8:799.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rendy L, Sapan HB, Kalesaran LTB. Multiple organ dysfunction syndrome (MODS) prediction score in multi-trauma patients. Int J Surg Open. 2017;8:1–6.

    Article  Google Scholar 

  • Rodrigues D, Barbosa AI, Rebelo R, Kwon IK, Reis RL, Correlo VM. Skin-integrated wearable systems and implantable biosensors: a comprehensive review. Biosensors. 2020;10:79.

    Article  PubMed  PubMed Central  Google Scholar 

  • Romig LE. Pediatric triage. A system to JumpSTART your triage of young patients at MCIs. JEMS. 2002;27:52–8. 60-3

    PubMed  Google Scholar 

  • Rughani AI, Dumont TM, Lu Z, Bongard J, Horgan MA, Penar PL, Tranmer BI. Use of an artificial neural network to predict head injury outcome. J Neurosurg. 2010;113:585–90.

    Article  PubMed  Google Scholar 

  • Sacco WJ, Navin DM, Fiedler KE, Waddell RK 2nd, Long WB, Buckman RF Jr. Precise formulation and evidence-based application of resource-constrained triage. Acad Emerg Med. 2005;12:759–70.

    Article  PubMed  Google Scholar 

  • Sasser SM, Hunt RC, Faul M, Sugerman D, Pearson WS, Dulski T, Wald MM, Jurkovich GJ, Newgard CD, Lerner EB. Guidelines for field triage of injured patients: recommendations of the National Expert Panel on Field Triage, 2011. Morb Mortal Wkly Rep Recomm Rep. 2012;61:1–20.

    Google Scholar 

  • Shi HY, Hwang SL, Lee KT, Lin CL. In-hospital mortality after traumatic brain injury surgery: a nationwide population-based comparison of mortality predictors used in artificial neural network and logistic regression models. J Neurosurg. 2013;118:746–52.

    Article  PubMed  Google Scholar 

  • Shickel B, Tighe PJ, Bihorac A, Rashidi P. Deep EHR: a survey of recent advances in deep learning techniques for electronic health record (EHR) analysis. IEEE J Biomed Health Inform. 2018;22:1589–604.

    Article  PubMed  Google Scholar 

  • Shickel B, Loftus TJ, Adhikari L, Ozrazgat-Baslanti T, Bihorac A, Rashidi P. DeepSOFA: a continuous acuity score for critically ill patients using clinically interpretable deep learning. Sci Rep. 2019;9:1879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimabukuro DW, Barton CW, Feldman MD, Mataraso SJ, Das R. Effect of a machine learning-based severe sepsis prediction algorithm on patient survival and hospital length of stay: a randomised clinical trial. BMJ Open Respir Res. 2017;4:e000234.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stojadinovic A, Eberhardt J, Brown TS, Hawksworth JS, Gage F, Tadaki DK, Forsberg JA, Davis TA, Potter BK, Dunne JR, Elster EA. Development of a Bayesian model to estimate health care outcomes in the severely wounded. J Multidiscip Healthc. 2010;3:125–35.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stonko DP, Dennis BM, Callcut RA, Betzold RD, Smith MC, Medvecz AJ, Guillamondegui OD. Identifying temporal patterns in trauma admissions: informing resource allocation. PLoS One. 2018;13:e0207766.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stonko DP, Guillamondegui OD, Fischer PE, Dennis BM. Artificial intelligence in trauma systems. Surgery. 2021;169:1295–9.

    Article  PubMed  Google Scholar 

  • Stylianou N, Akbarov A, Kontopantelis E, Buchan I, Dunn KW. Mortality risk prediction in burn injury: comparison of logistic regression with machine learning approaches. Burns. 2015;41:925–34.

    Article  PubMed  Google Scholar 

  • Su L, Xu Z, Chang F, Ma Y, Liu S, Jiang H, Wang H, Li D, Chen H, Zhou X, Hong N, Zhu W, Long Y. Early prediction of mortality, severity, and length of stay in the intensive care unit of sepsis patients based on sepsis 3.0 by machine learning models. Front Med (Lausanne). 2021;8:664966.

    Article  PubMed  Google Scholar 

  • Teasdale G, Jennett B. Assessment of coma and impaired consciousness: a practical scale. Lancet. 1974;304:81–4.

    Article  Google Scholar 

  • Teasdale G, Jennett B. Assessment and prognosis of coma after head injury. Acta Neurochir. 1976;34:45–55.

    Article  CAS  PubMed  Google Scholar 

  • Thorsen-Meyer HC, Nielsen AB, Nielsen AP, Kaas-Hansen BS, Toft P, Schierbeck J, Strøm T, Chmura PJ, Heimann M, Dybdahl L, Spangsege L, Hulsen P, Belling K, Brunak S, Perner A. Dynamic and explainable machine learning prediction of mortality in patients in the intensive care unit: a retrospective study of high-frequency data in electronic patient records. Lancet Digit Health. 2020;2:e179–91.

    Article  PubMed  Google Scholar 

  • Vandromme MJ, Griffin RL, Weinberg JA, Rue LW 3rd, Kerby JD. Lactate is a better predictor than systolic blood pressure for determining blood requirement and mortality: could prehospital measures improve trauma triage? J Am Coll Surg. 2010;210(861–7):867–9.

    Google Scholar 

  • Vaziri K, Roland JC, Robinson L, Fakhry SM. Optimizing physician staffing and resource allocation: sine-wave variation in hourly trauma admission volume. J Trauma. 2007;62:610–4.

    PubMed  Google Scholar 

  • Vincent JL, Moreno R, Takala J, Willatts S, De Mendonça A, Bruining H, Reinhart CK, Suter PM, Thijs LG. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med. 1996;22:707–10.

    Article  CAS  PubMed  Google Scholar 

  • Vincent J-L, De Mendonca A, Cantraine F, Moreno R, Takala J, Suter PM, Sprung CL, Colardyn F, Blecher S. Use of the SOFA score to assess the incidence of organ dysfunction/failure in intensive care units: results of a multicenter, prospective study. Crit Care Med. 1998;26:1793–800.

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Vaddiraju S, Gu B, Papadimitrakopoulos F, Burgess DJ. Foreign body reaction to implantable biosensors: effects of tissue trauma and implant size. J Diabetes Sci Technol. 2015;9:966–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Wang D, Fu J, Liu Y. Predictive value of SOFA, qSOFA score and traditional evaluation index on sepsis prognosis. Zhonghua wei zhong bing ji jiu yi xue. 2017;29:700–4.

    PubMed  Google Scholar 

  • Wu KH, Cheng FJ, Tai HL, Wang JC, Huang YT, Su CM, Chang YN. Predicting in-hospital mortality in adult non-traumatic emergency department patients: a retrospective comparison of the Modified Early Warning Score (MEWS) and machine learning approach. PeerJ. 2021;9:e11988.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu C, Liu J, Zhao H. Inverse reinforcement learning for intelligent mechanical ventilation and sedative dosing in intensive care units. BMC Med Inform Decis Mak. 2019;19:57.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhai Q, Lin Z, Ge H, Liang Y, Li N, Ma Q, Ye C. Using machine learning tools to predict outcomes for emergency department intensive care unit patients. Sci Rep. 2020;10:20919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Ho KM, Hong Y. Machine learning for the prediction of volume responsiveness in patients with oliguric acute kidney injury in critical care. Crit Care. 2019;23:112.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao J, Ghannam R, Htet KO, Liu Y, Law M-K, Roy VAL, Michel B, Imran MA, Heidari H. Self-powered implantable medical devices: photovoltaic energy harvesting review. Adv Healthc Mater. 2020a;9:2000779.

    Article  CAS  Google Scholar 

  • Zhao QY, Liu LP, Luo JC, Luo YW, Wang H, Zhang YJ, Gui R, Tu GW, Luo Z. A machine-learning approach for dynamic prediction of sepsis-induced coagulopathy in critically ill patients with sepsis. Front Med (Lausanne). 2020b;7:637434.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Support provided by the Center for Bioelectronics, Biosensors, and Biochips (C3B®) and from ABTECH Scientific, Inc. Professor Guiseppi-Elie acknowledges support via a TEES Research Professorship. Professor Rashidi was supported by National Science Foundation CAREER award 1750192 and 1R01EB029699 from the National Institute of Biomedical Imaging and Bioengineering (NIH/NIBIB).

Declarations

Conflicts of Interest

A. G.-E. is founder and scientific director of ABTECH Scientific, Inc., manufacturer of microfabricated biochip devices.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony Guiseppi-Elie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Shickel, B. et al. (2023). Scoring for Hemorrhage Severity in Traumatic Injury. In: Rajendram, R., Preedy, V.R., Patel, V.B. (eds) Biomarkers in Trauma, Injury and Critical Care. Biomarkers in Disease: Methods, Discoveries and Applications. Springer, Cham. https://doi.org/10.1007/978-3-031-07395-3_58

Download citation

Publish with us

Policies and ethics

Navigation