Advances in Methods and Techniques in Pharmacovigilance for Herbal and Traditional Medicines and Other Natural Health Products

  • Chapter
  • First Online:
Pharmacovigilance for Herbal and Traditional Medicines
  • 467 Accesses

Abstract

Many herbal and traditional medicines and other natural health products (HTMs/NHPs) are complex mixtures of chemical constituents and, like other substances used in medicine, these can cause adverse reactions. This, alongside the extensive use of HTMs/NHPs, and the ways in which these products/preparations are regulated, accessed, used, and perceived, explains the need for safety monitoring for these products.

Pharmacovigilance for HTMs/NHPs continues to rely on the analysis of spontaneous reports of suspected adverse drug reactions submitted by health professionals and, increasingly, patients. This approach has resulted in the identification of signals of several safety concerns associated with certain HTMs/NHPs, such as products containing extracts of black cohosh (Actaea racemosa L.) root/rhizome. Such signals are typically identified at a national level through manual review of reports identified following, for example, an increase in the number of reports, or another change in the reporting pattern for the herbal-product-suspected ADR combination. Few countries use statistical signal detection techniques for identifying HTM/NHP safety signals. Signal detection techniques, namely disproportionality analysis, are applied to HTM/NHP reports held in VigiBase, the World Health Organization’s (WHO) global database of individual case safety reports, maintained by the Uppsala Monitoring Centre on behalf of WHO.

Recent developments in spontaneous reporting include the implementation of direct patient reporting (which may be important for HTMs/NHPs, since these products are often used in self-treatment), changes to spontaneous reporting forms to include references to HTMs/NHPs, and the provision of public access to information on reports of suspected ADRs held by national pharmacovigilance centres and/or medicines’ regulatory authorities. Despite these initiatives, challenges in spontaneous reporting of suspected ADRs associated with HTMs/NHPs remain, particularly under-identification and under-reporting of suspected ADRs associated with these products by users and health professionals. Other developments in pharmacovigilance for HTMs/NHPs include the application of active surveillance methods, such as intensive monitoring, although this has mainly been in a research context. Other methods, such as registries, and real-world health data, including electronic medical/health records, and ‘patient-experience’ data, are at early stages in their evolution with respect to use in pharmacovigilance for HTMs/NHPs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 106.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 139.09
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Regulation and Prequalification. World Health Organization. https://www.who.int/teams/regulation-prequalification/regulation-and-safety/pharmacovigilance/health-professionals-info/pidm. Accessed 7 Sept 2021

  2. European Medicines Agency (2014) Guidelines on good pharmacovigilance practices (GVP). Introductory cover note, last updated with final definition annex revision 2. EMA/781168/2013, London

    Google Scholar 

  3. Arlett P, Straus S, Rasi G (2020) Pharmacovigilance 2030: invited commentary for the January 2020 “futures” edition of clinical pharmacology and therapeutics. Clin Pharmacol Ther 107(1):89–91. https://doi.org/10.1002/cpt.1689

    Article  PubMed  Google Scholar 

  4. Shakir SA, Layton D (2002) Causal association in pharmacovigilance and pharmacoepidemiology: thoughts on the application of the Austin Bradford-Hill criteria. Drug Saf 25(6):467–471. https://doi.org/10.2165/00002018-200225060-00012

    Article  PubMed  Google Scholar 

  5. Sardella M, Belcher G, Lungu C et al (2021) Monitoring the manufacturing and quality of medicines: a fundamental task of pharmacovigilance. Ther Adv Drug Saf 12:1–17. https://doi.org/10.1177/20420986211038436

    Article  Google Scholar 

  6. de Smet PAGM (1997) An introduction to herbal pharmacovigilance. In: De Smet PAGM, Keller K, Hansel R, Chandler R (eds) Adverse effects of herbal drugs, vol 3. Springer-Verlag, Berlin, pp 1–13

    Chapter  Google Scholar 

  7. Barnes J (2003) Pharmacovigilance of herbal medicines: a UK perspective. Drug Saf 26(12):829–851. https://doi.org/10.2165/00002018-200326120-00001

    Article  PubMed  Google Scholar 

  8. World Health Organization (2013) WHO traditional medicine strategy: 2014–2023. World Health Organization. https://www.who.int/medicines/publications/traditional/trm_strategy14_23/en/. Accessed 16 Mar 2020

    Google Scholar 

  9. Barnes J (2012) Adverse drug reactions and pharmacovigilance of herbal medicines. In: Talbot J, Aronson J (eds) Stephens’ detection and evaluation of adverse drug reactions, 6th edn. Wiley, Chichester, pp 645–683

    Chapter  Google Scholar 

  10. Herbal Medicines. Medicines complete. Pharmaceutical Press. https://about.medicinescomplete.com/publication/herbal-medicines/. Accessed 16 Mar 2021

  11. Natural Medicines Database. https://naturalmedicines.therapeuticresearch.com/. Accessed 16 Mar 2021

  12. Hartigan-Go K (2002) Develo** a pharmacovigilance system in the Philippines, a country of diverse culture and strong traditional medicine background. Toxicology 181–182:103–107. https://doi.org/10.1016/s0300-483x(02)00263-9

    Article  PubMed  Google Scholar 

  13. Giveon SM, Liberman N, Klang S et al (2004) Are people who use “natural drugs” aware of their potentially harmful side effects and reporting to family physician? Patient Educ Couns 53(1):5–11. https://doi.org/10.1016/s0738-3991(03)00241-6

    Article  PubMed  Google Scholar 

  14. Dodoo ANO, Appiah-Danquah A, Gyansa-Lutterodt M et al (2006) Safety monitoring of herbal medicines in Ghana: challenges and opportunities. In: Abstracts of the Pharmacovigilance of herbal medicines: current state and future directions, London, UK, 26–28 April 2006

    Google Scholar 

  15. Dodoo A, Appiah-Danquah A (2006) Safety of herbal medicines: the practitioners’ view. In: Abstracts of the pharmacovigilance of herbal medicines: current state and future directions, London, UK, 26–28 April 2006

    Google Scholar 

  16. Teng L, Shaw D, Barnes J (2008) Practice of traditional Chinese herbal medicine shops in central London. Phytochem Lett 1(2):94–98. https://doi.org/10.1016/j.phytol.2008.04.001

    Article  Google Scholar 

  17. Bensoussan A, Myers SP, Carlton AL (2000) Risks associated with the practice of traditional Chinese medicine: an Australian study. Arch Fam Med 9(10):1071–1078. https://doi.org/10.1001/archfami.9.10.1071

    Article  CAS  PubMed  Google Scholar 

  18. Farah MH, Edwards R, Lindquist M et al (2000) International monitoring of adverse health effects associated with herbal medicines. Pharmacoepidemiol Drug Saf 9(2):105–112. https://doi.org/10.1002/(SICI)1099-1557(200003/04)9:2<105::AID-PDS486>3.0.CO;2-2

    Article  CAS  PubMed  Google Scholar 

  19. Barnes J (2020) The International Society of Pharmacovigilance (ISoP) special interest group on herbal and traditional medicines: towards progress in pharmacovigilance for herbal and traditional medicines and other “natural health” products. Drug Saf 43(7):619–622. https://doi.org/10.1007/s40264-020-00937-0

    Article  PubMed  Google Scholar 

  20. Schmitz SM, Lopez HL, MacKay D (2014) Nutravigilance: principles and practices to enhance adverse event reporting in the dietary supplement and natural products industry. Int J Food Sci Nutr 65(2):129–134. https://doi.org/10.3109/09637486.2013.836743

    Article  CAS  PubMed  Google Scholar 

  21. Mills SY (2006) The ESCOP perpsective on ADRs and ADR reporting. In: Abstracts of the Pharmacovigilance of herbal medicines: current state and future directions, London, UK, 26–28 April 2006

    Google Scholar 

  22. World Health Organization (2004) WHO guidelines on safety monitoring of herbal medicines in pharmacovigilance systems. World Health Organization. https://apps.who.int/medicinedocs/documents/s7148e/s7148e.pdf. Accessed 16 Mar 2020

    Google Scholar 

  23. World Health Organization Regional Office for South-East Asia (2018) Pharmacovigilance for traditional medicine products: why and how? World Health Organization Regional Office for South-East Asia. https://apps.who.int/iris/handle/10665/259854. Accessed 24 Aug 2021

    Google Scholar 

  24. Council for International Organizations of Medical Sciences (CIOMS) (2020) Drug-induced liver injury (DILI): Current status and future directions for drug development and the post-market setting. A consensus by a CIOMS Working Group. Council for International Organizations of Medical Sciences (CIOMS), Geneva

    Google Scholar 

  25. European Medicines Agency (2017) Traditional herbal medicine products and simplified registrations for homeopathic medicinal products: pharmacovigilance requirements and EudraVigilance access. Note for clarification. EMA/80556/2017. Inspections, Human Medicines, Pharmacovigilance and Committees Division, London

    Google Scholar 

  26. Larter C (2019) Pharmacovigilance and complementary medicines. Regulatory requirements. Therapeutic Goods Administration, Department of Health, Australia

    Google Scholar 

  27. Therapeutic Goods Administration (2021) Pharmacovigilance responsibilities of medicine sponsors. Australian recommendations and requirements Version 2.2. Therapeutic Goods Administration, Department of Health, Australia

    Google Scholar 

  28. Barnes J (2001) An examination of the role of the pharmacist in the safe, effective and appropriate use of complementary medicines. Dissertation. University of London, London

    Google Scholar 

  29. Barnes J, Mills SY, Abbot NC et al (1998) Different standards for reporting ADRs to herbal remedies and conventional OTC medicines: face-to-face interviews with 515 users of herbal remedies. Br J Clin Pharmacol 45(5):496–500. https://doi.org/10.1046/j.1365-2125.1998.00715.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. MacPherson H, Liu B (2005) The safety of Chinese herbal medicine: a pilot study for a national survey. J Altern Complement Med 11(4):617–626. https://doi.org/10.1089/acm.2005.11.617

    Article  PubMed  Google Scholar 

  31. Broughton AL (2006) Adverse event reporting by herbal practitioners: The National Institute of Medical Herbalists yellow card reporting scheme. In: Abstracts of the Pharmacovigilance of herbal medicines: current state and future directions, London, UK, 26–28 April 2006

    Google Scholar 

  32. Booker AJ (2006) The register of Chinese herbal medicine card scheme. In: Abstracts of the Pharmacovigilance of herbal medicines: current state and future directions, London, UK, 26–28 April 2006

    Google Scholar 

  33. Howie JA (2006) Adverse events and aromatherapy practice: a UK initiative on reporting. In: Abstracts of the Pharmacovigilance of herbal medicines: current state and future directions, London, UK, 26–28 April 2006

    Google Scholar 

  34. Chinese Medicine Board of Australia (2015) Guidelines for safe Chinese herbal medicine practice, Melbourne

    Google Scholar 

  35. Therapeutic Goods Administration (2018) Medicines and vaccines postmarket vigilance. Statistics for 2017 Version 1.0. Therapeutic Goods Administration, Department of Health, Australia

    Google Scholar 

  36. Kim M, Woo Y, Han C-H (2021) Current status of the spontaneous reporting and classification/coding system for herbal and traditional medicine in pharmacovigilance. Integr Med Res 10(1):100467–100467. https://doi.org/10.1016/j.imr.2020.100467

    Article  PubMed  Google Scholar 

  37. Anonymous (1996) Extension of the yellow card scheme to unlicensed herbal remedies. Curr Prob Pharmacovig 22:10

    Google Scholar 

  38. Davis S, Coulson R (1999) Community pharmacist reporting of suspected ADRs: (1) the first year of the yellow card demonstration scheme. Pharm J 263:786–788

    Google Scholar 

  39. de Boer A, Geboers L, van de Koppel S et al (2021) Governance of nutrivigilance in the Netherlands: reporting adverse events of nonregistered products. Health Policy [first published online] https://doi.org/10.1016/j.healthpol.2022.05.011

    Article  PubMed Central  Google Scholar 

  40. World Health Organization (2019) WHO Global report on traditional and complementary medicine 2019. World Health Organization. https://www.who.int/traditional-complementary-integrative-medicine/WhoGlobalReportOnTraditionalAndComplementaryMedicine2019.pdf?ua=1. Accessed 24 Apr 2020

    Google Scholar 

  41. World Health Organization (2019) Pharmacovigilance and traditional and complementary medicine in South-East Asia: a situation review. World Health Organization. https://apps.who.int/iris/bitstream/handle/10665/325982/9789290227250-eng.pdf. Accessed 24 Apr 2020

    Google Scholar 

  42. Anderson C, Krska J, Murphy E et al (2011) The importance of direct patient reporting of suspected adverse drug reactions: a patient perspective. Br J Clin Pharmacol 72(5):806–822. https://doi.org/10.1111/j.1365-2125.2011.03990.x

    Article  PubMed  PubMed Central  Google Scholar 

  43. Avery AJ, Anderson C, Bond CM et al (2011) Evaluation of patient reporting of adverse drug reactions to the UK ‘Yellow Card Scheme’: literature review, descriptive and qualitative analyses, and questionnaire surveys. Health Technol Assess 15(20):1–234. https://doi.org/10.3310/hta15200

    Article  CAS  PubMed  Google Scholar 

  44. Bracchi RC, Tseliou F, Copeland L et al (2021) Public awareness in Wales of the UK Yellow Card scheme for reporting suspected adverse drug reactions. Br J Clin Pharmacol 87(8):3344–3348. https://doi.org/10.1111/bcp.14726

    Article  PubMed  Google Scholar 

  45. de Vries ST, Harrison J, Revelle P et al (2019) Use of a patient-friendly terms list in the adverse drug reaction report form: a database study. Drug Saf 42(7):881–886. https://doi.org/10.1007/s40264-019-00800-x

    Article  PubMed  PubMed Central  Google Scholar 

  46. MedDRA. Medical Dictionary for Regulatory Activities. https://www.meddra.org/. Accessed 7 Sept 2021

  47. Barnes J, Sheridan JL, Dong CY et al (2020) Evaluation of a web-based, ‘purchase event’ intensive monitoring method for pharmacovigilance of natural health products: lessons and insights from development work in New Zealand. Drug Saf 43(10):981–998. https://doi.org/10.1007/s40264-020-00963-y

    Article  PubMed  Google Scholar 

  48. Castillon G, Salvo F, Moride Y (2019) The social impact of suspected adverse drug reactions: an analysis of the Canada vigilance spontaneous reporting database. Drug Saf 42(1):27–34. https://doi.org/10.1007/s40264-018-0713-8

    Article  PubMed  Google Scholar 

  49. Riera-Arnau J, Alvarado Aguirre LA, Garcia Doladé N et al (2021) Patients' contribution to drug safety in Catalonia: the interest of personal feelings on adverse drug reactions. Eur J Clin Pharmacol 77(4):637–642. https://doi.org/10.1007/s00228-020-03033-5

    Article  CAS  PubMed  Google Scholar 

  50. Rolfes L, Haaksman M, van Hunsel F et al (2020) Insight into the severity of adverse drug reactions as experienced by patients. Drug Saf 43(3):291–293. https://doi.org/10.1007/s40264-019-00890-7

    Article  PubMed  Google Scholar 

  51. Green G, Bradby H, Chan A et al (2006) “We are not completely Westernised”: dual medical systems and pathways to health care among Chinese migrant women in England. Soc Sci Med 62(6):1498–1509. https://doi.org/10.1016/j.socscimed.2005.08.014

    Article  PubMed  Google Scholar 

  52. van Hunsel F, Skalli S, Barnes J (2018) Consumers’ contributions to pharmacovigilance for herbal medicines: analyses of global reports in Vigibase. In: Abstracts of the 18th ISoP Annual Meeting “Pharmacovigilance without borders”, Geneva

    Google Scholar 

  53. Database of Adverse Event Notifications (DAEN). Therapeutic Goods Administration, Department of Health, Australian Government. https://www.tga.gov.au/database-adverse-event-notifications-daen. Accessed 30 Jul 2021

  54. Canada Vigilance Adverse Reaction Online Database. Health Canada. https://www.canada.ca/en/health-canada/services/drugs-health-products/medeffect-canada/adverse-reaction-database.html. Accessed 30 Jul 2021

  55. Interactive Drug Analysis Profiles. Medicines and Healthcare products Regulatory Agency. https://yellowcard.mhra.gov.uk/iDAP/. Accessed 30 Jul 2021

  56. Eudravigilance—the European database of suspected adverse drug reaction reports. European Medicines Agency. https://www.adrreports.eu/en/index.html. Accessed 30 Jul 2021

  57. VigiAccess. Uppsala Monitoring Centre and World Health Organization. http://www.vigiaccess.org/. Accessed 30 Jul 2021

  58. Loughlin L (2017) Strengthening collaborations for operating pharmacovigilance in Europe joint action. In: 11th stakeholder forum on the pharmacovigilance legislation. https://www.ema.europa.eu/en/documents/presentation/presentation-strengthening-collaborations-operating-pharmacovigilance-europe-joint-action-l-loughlin_en.pdf. Accessed 23 Apr 2021

  59. MHRA Campaigns. https://yellowcard.mhra.gov.uk/campaigns/. Accessed 23 Apr 2021

  60. Getting patients involved in medicines safety. Uppsala Monitoring Centre. https://www.who-umc.org/global-pharmacovigilance/pharmacovigilance-communications/taketell/. Accessed 23 Apr 2021

  61. Raising pharmacovigilance awareness on social media. Uppsala Monitoring Centre. https://www.who-umc.org/global-pharmacovigilance/pharmacovigilance-communications/medsafetyweek/. Accessed 25 Aug 2021

  62. Announcing World Patient Safety Day 2021. World Health Organization. https://cdn.who.int/media/docs/default-source/world-patient-safety-day/announcing-world-patient-safety-day-2021.pdf?sfvrsn=a5e55c4a_32. Accessed 25 Aug 2021

  63. Patient Safety. World Health Organization. https://www.who.int/news-room/fact-sheets/detail/patient-safety. Accessed 25 Aug 2021

  64. Park JH, Choi SM, Moon S et al (2017) Development of an adverse events reporting form for Korean folk medicine. Pharmacoepidemiol Drug Saf 26(5):498–508. https://doi.org/10.1002/pds.4077

    Article  PubMed  Google Scholar 

  65. Medicines and Healthcare products Regulatory Agency Healthcare professional yellow card reporting form. https://yellowcard.mhra.gov.uk/_assets/files/Healthcare-Professional-Yellow-Card-Reporting-Form-(July-2019).pdf. Accessed 23 Apr 2021

  66. Medicines and Healthcare products Regulatory Agency Patient yellow card form. https://yellowcard.mhra.gov.uk/_assets/files/Patient-YC-form.pdf. Accessed 23 Apr 2021

  67. New Zealand Pharmacovigilance Centre. https://nzphvc.otago.ac.nz/. Accessed 25 Aug 2021

  68. CARM Reporting card. https://nzphvc.otago.ac.nz/wp-content/uploads/2013/12/Report.pdf. Accessed 25 Aug 2021

  69. Menniti-Ippolito F, Mazzanti G, Santuccio C et al (2008) Surveillance of suspected adverse reactions to natural health products in Italy. Pharmacoepidemiol Drug Saf 17(6):626–635. https://doi.org/10.1002/pds.1566

    Article  PubMed  Google Scholar 

  70. Svedlund E, Larsson M, Hägerkvist R (2017) Spontaneously reported adverse reactions for herbal medicinal products and natural remedies in Sweden 2007–15: report from the Medical Products Agency. Drugs Real World Outcomes 4(2):119–125. https://doi.org/10.1007/s40801-017-0104-y

    Article  PubMed  PubMed Central  Google Scholar 

  71. Rahman S, Aziz S (2020) Complementary and alternative medicine: Pharmacovigilance in Malaysia and predictors of serious adverse reactions. J Clin Pharm Ther 45(5):946–958. https://doi.org/10.1111/jcpt.13106

    Article  Google Scholar 

  72. Patel DN, Low WL, Tan LL et al (2012) Adverse events associated with the use of complementary medicine and health supplements: an analysis of reports in the Singapore Pharmacovigilance database from 1998 to 2009. Clin Toxicol (Phila) 50(6):481–489. https://doi.org/10.3109/15563650.2012.700402

    Article  Google Scholar 

  73. Kalaiselvan V, Saurabh A, Kumar R et al (2015) Adverse reactions to herbal products: an analysis ofspontaneous reports in the database of the pharmacovigilance programme of India. J Herbal Med 5(1):48–54. https://doi.org/10.1016/j.hermed.2015.01.006

    Article  Google Scholar 

  74. Timbo BB, Chirtel SJ, Ihrie J et al (2018) Dietary supplement adverse event report data from the FDA Center for Food Safety and applied nutrition adverse event reporting system (CAERS), 2004–2013. Ann Pharmacother 52(5):431–438. https://doi.org/10.1177/1060028017744316

    Article  PubMed  Google Scholar 

  75. Schmitz SM, Hl L, Mackay D et al (2020) Serious adverse events reported with dietary supplement use in the United States: a 2.5 year experience. J Diet Suppl 17(2):227–248. https://doi.org/10.1080/19390211.2018.1513109

    Article  Google Scholar 

  76. Zhang L, Yan J, Liu X et al (2012) Pharmacovigilance practice and risk control of Traditional Chinese Medicine drugs in China: current status and future perspective. J Ethnopharmacol 140(3):519–525. https://doi.org/10.1016/j.jep.2012.01.058

    Article  PubMed  Google Scholar 

  77. Li H, Wang S, Yue Z et al (2018) Traditional Chinese herbal injection: current status and future perspectives. Fitoterapia 129:249–256. https://doi.org/10.1016/j.fitote.2018.07.009

    Article  PubMed  Google Scholar 

  78. Uppsala Monitoring Centre WHO Programme for International Drug Monitoring. https://www.who-umc.org/global-pharmacovigilance/who-programme-for-international-drug-monitoring/ Accessed 27 Apr 2021

  79. Shaw D, Leon C, Kolev S et al (1997) Traditional remedies and food supplements. A 5-year toxicological study (1991–1995). Drug Saf 17(5):342–356. https://doi.org/10.2165/00002018-199717050-00006

    Article  CAS  PubMed  Google Scholar 

  80. Dennehy CE, Tsourounis C, Horn AJ (2005) Dietary supplement-related adverse events reported to the California Poison Control System. Am J Health Syst Pharm 62(14):1476–1482. https://doi.org/10.2146/ajhp040412

    Article  PubMed  Google Scholar 

  81. Gardiner P, Sarma DN, Dog TL et al (2008) The state of dietary supplement adverse event reporting in the United States. Pharmacoepidemiol Drug Saf 17(10):962–970. https://doi.org/10.1002/pds.1627

    Article  PubMed  Google Scholar 

  82. Chan TY (2016) Herbal medicines induced anticholinergic poisoning in Hong Kong. Toxins (Basel) 8(3). https://doi.org/10.3390/toxins8030080

  83. Mann R, Andrews EB (2014) Introduction: updated from second edition. In: Andrews EB, Moore N (eds) Mann’s pharmacovigilance, 3rd edn. John Wiley & Sons, Chichester, pp 1–10

    Google Scholar 

  84. Shaw D, Graeme L, Pierre D et al (2012) Pharmacovigilance of herbal medicine. J Ethnopharmacol 140(3):513–518. https://doi.org/10.1016/j.jep.2012.01.051

    Article  PubMed  Google Scholar 

  85. Hazell L, Shakir SA (2006) Under-reporting of adverse drug reactions: a systematic review. Drug Saf 29(5):385–396. https://doi.org/10.2165/00002018-200629050-00003

    Article  PubMed  Google Scholar 

  86. Jacobs TG, Hilda Ampadu H, Hoekman J et al (2018) The contribution of Ghanaian patients to the reporting of adverse drug reactions: a quantitative and qualitative study. BMC Public Health 18(1):1384. https://doi.org/10.1186/s12889-018-6285-9

    Article  PubMed  PubMed Central  Google Scholar 

  87. Hartigan-Go K (2015) Empowering consumers as contributors for health product safety: lessons from the Philippines. Drug Saf 38(4):329–335. https://doi.org/10.1007/s40264-015-0274-z

    Article  PubMed  Google Scholar 

  88. Walji R, Boon H, Barnes J et al (2010) Consumers of natural health products: natural-born pharmacovigilantes? BMC Complement Altern Med 10:8. https://doi.org/10.1186/1472-6882-10-8

    Article  PubMed  PubMed Central  Google Scholar 

  89. Chiba T, Sato Y, Kobayashi E et al (2017) Behaviors of consumers, physicians and pharmacists in response to adverse events associated with dietary supplement use. Nutr J 16(1):18. https://doi.org/10.1186/s12937-017-0239-4

    Article  PubMed  PubMed Central  Google Scholar 

  90. Walji R, Boon H, Barnes J et al (2009) Adverse event reporting for herbal medicines: a result of market forces. Healthc Policy 4(4):77–90

    PubMed  PubMed Central  Google Scholar 

  91. Barnes J, Abbot NC (2007) Professional practices and experiences with complementary medicines: a cross-sectional study involving community pharmacists in England. Int J Pharm Pract 15(3):167–175. https://doi.org/10.1211/ijpp.15.3.0003

    Article  Google Scholar 

  92. Barnes J, Butler R (2020) Community pharmacists’ views and experiences with ADR reporting for complementary medicines: a qualitative study in New Zealand. Drug Saf 43(11):1157–1170. https://doi.org/10.1007/s40264-020-00980-x

    Article  PubMed  Google Scholar 

  93. Green CF, Mottram DR, Raval D et al (1999) Community pharmacists' attitudes to adverse drug reaction reporting. Int J Pharm Pract 7(2):92–99. https://doi.org/10.1111/j.2042-7174.1999.tb00955.x

    Article  Google Scholar 

  94. Walji R, Boon H, Barnes J et al (2011) Reporting natural health product related adverse drug reactions: is it the pharmacist's responsibility? Int J Pharm Pract 19(6):383–391. https://doi.org/10.1111/j.2042-7174.2011.00150.x

    Article  PubMed  Google Scholar 

  95. Kanjanarach T, Krass I, Cumming RG (2006) Exploratory study of factors influencing practice of pharmacists in Australia and Thailand with respect to dietary supplements and complementary medicines. Int J Pharm Pract 14(2):123–128. https://doi.org/10.1211/ijpp.14.2.0006

    Article  Google Scholar 

  96. Charrois TL, Hill RL, Vu D et al (2007) Community identification of natural health product-drug interactions. Ann Pharmacother 41(7):1124–1129. https://doi.org/10.1345/aph.1H463

    Article  PubMed  Google Scholar 

  97. Kheir N, Gad HY, Abu-Yousef SE (2014) Pharmacists' knowledge and attitudes about natural health products: a mixed-methods study. Drug Healthc Patient Saf 6:7–14. https://doi.org/10.2147/DHPS.S57756

    Article  PubMed  PubMed Central  Google Scholar 

  98. Elkalmi RM, Hassali MA, Ibrahim MIM et al (2011) A qualitative study exploring barriers and facilitators for reporting of adverse drug reactions (ADRs) among community pharmacists in Malaysia. J Pharm Health Serv Res 2(2):71–78. https://doi.org/10.1111/j.1759-8893.2011.00037.x

    Article  Google Scholar 

  99. Li R, Curtain C, Bereznicki L et al (2018) Community pharmacists’ knowledge and perspectives of reporting adverse drug reactions in Australia: a cross-sectional survey. Int J Clin Pharm 40(4):878–889. https://doi.org/10.1007/s11096-018-0700-2

    Article  PubMed  PubMed Central  Google Scholar 

  100. Tabali M, Jeschke E, Bockelbrink A et al (2009) Educational intervention to improve physician reporting of adverse drug reactions (ADRs) in a primary care setting in complementary and alternative medicine. BMC Public Health 9:274. https://doi.org/10.1186/1471-2458-9-274

    Article  PubMed  PubMed Central  Google Scholar 

  101. Inman WH (1996) Attitudes to adverse drug reaction reporting. Br J Clin Pharmacol 41(5):434–435

    Article  CAS  Google Scholar 

  102. Kelly WN, Arellano FM, Barnes J et al (2007) Guidelines for submitting adverse event reports for publication. Drug Saf 30(5):367–373. https://doi.org/10.2165/00002018-200730050-00001

    Article  PubMed  Google Scholar 

  103. Hung SK, Hillier S, Ernst E (2011) Case reports of adverse effects of herbal medicinal products (HMPs): a quality assessment. Phytomedicine 18(5):335–343. https://doi.org/10.1016/j.phymed.2010.07.007

    Article  PubMed  Google Scholar 

  104. Gagnier JJ, Boon H, Rochon P et al (2006) Recommendations for reporting randomized controlled trials of herbal interventions: explanation and elaboration. J Clin Epidemiol 59(11):1134–1149. https://doi.org/10.1016/j.jclinepi.2005.12.020

    Article  PubMed  Google Scholar 

  105. Gagnier JJ, Boon H, Rochon P et al (2006) Reporting randomized, controlled trials of herbal interventions: an elaborated CONSORT statement. Ann Intern Med 144(5):364–367. https://doi.org/10.7326/0003-4819-144-5-200603070-00013

    Article  PubMed  Google Scholar 

  106. Cheng CW, Wu TX, Shang HC et al (2017) CONSORT extension for Chinese herbal medicine formulas 2017: recommendations, explanation, and elaboration (traditional Chinese version). Ann Intern Med 167(2):W7–W20. https://doi.org/10.7326/IsTranslatedFrom_M17-2977_1

    Article  PubMed  Google Scholar 

  107. Schulz V, Hänsel R, Tyler VE (2001) Rational phytotherapy: a physicians’ guide to herbal medicine, 4th edn. Springer-Verlag, Berlin, Heidelberg

    Book  Google Scholar 

  108. Linde K, Knüppel L (2005) Large-scale observational studies of hypericum extracts in patients with depressive disorders: a systematic review. Phytomedicine 12(1–2):148–157. https://doi.org/10.1016/j.phymed.2004.02.004

    Article  CAS  PubMed  Google Scholar 

  109. Hamre HJ, Glockmann A, Heckenbach K et al (2017) Use and safety of anthroposophic medicinal products: an analysis of 44,662 patients from the EvaMed pharmacovigilance network. Drugs Real World Outcomes 4(4):199–213. https://doi.org/10.1007/s40801-017-0118-5

    Article  PubMed  PubMed Central  Google Scholar 

  110. Jeschke E, Ostermann T, Luke C et al (2009) Remedies containing Asteraceae extracts: a prospective observational study of prescribing patterns and adverse drug reactions in German primary care. Drug Saf 32(8):691–706. https://doi.org/10.2165/00002018-200932080-00007

    Article  PubMed  Google Scholar 

  111. Hsieh S-C, Lai J-N, Chen P-C et al (2006) Development of active safety surveillance system for traditional Chinese medicine: an empirical study in treating climacteric women. Pharmacoepidemiol Drug Saf 15(12):889–899. https://doi.org/10.1002/pds.1340

    Article  PubMed  Google Scholar 

  112. Vohra S, Cvijovic K, Boon H et al (2012) Study of natural health product adverse reactions (SONAR): active surveillance of adverse events following concurrent natural health product and prescription drug use in community pharmacies. PLoS One 7(9):e45196. https://doi.org/10.1371/journal.pone.0045196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Sparks E, Zorzela L, Necyk C et al (2020) Study of Natural products Adverse Reactions (SONAR) in children seen in mental health clinics: a cross-sectional study. BMJ Paediatr Open 4(1):e000674. https://doi.org/10.1136/bmjpo-2020-000674

    Article  PubMed  PubMed Central  Google Scholar 

  114. Zorzela L, Khamba B, Sparks E et al (2021) Study of Natural Products Adverse Reactions (SONAR) in adults with mental health conditions: a cross-sectional study. Drug Saf 44(9):999–1006. https://doi.org/10.1007/s40264-021-01092-w

    Article  PubMed  Google Scholar 

  115. Harrison-Woolrych M, Coulter DM (2007) PEM in New Zealand. In: Mann R, Andrews EB (eds) Pharmacovigilance, 2nd edn. John Wiley & Sons, Chichester, pp 317–332

    Google Scholar 

  116. Layton D, Hazell L, Shakir SA (2011) Modified prescription-event monitoring studies: a tool for pharmacovigilance and risk management. Drug Saf 34(12):e1–e9. https://doi.org/10.2165/11593830-000000000-00000

    Article  PubMed  Google Scholar 

  117. Layton D, Shakir SA (2015) Specialist cohort event monitoring studies: a new study method for risk management in pharmacovigilance. Drug Saf 38(2):153–163. https://doi.org/10.1007/s40264-014-0260-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. New Zealand Pharmacovigilance Centre: About—IMMP. New Zealand Pharmacovigilance Centre. https://nzphvc.otago.ac.nz/about/. Accessed 16 Mar 2020

  119. Ernst E, De Smet PAGM, Shaw D et al (1998) Traditional remedies and the “test of time”. Eur J Clin Pharmacol 54(2):99–100. https://doi.org/10.1007/s002280050428

    Article  CAS  PubMed  Google Scholar 

  120. Layton D, Denham A, Whitelegg ME et al (2006) Methodology of a feasibility study to assess the application of prescription event monitoring (PEM) to monitor the safety of herbal medicines. In: Abstracts of the Pharmacovigilance of herbal medicines: current state and future directions, London, UK, 26–28 April 2006

    Google Scholar 

  121. Gauld NJ, Shaw JP, Emmerton LM et al (2000) Surveillance of a recently switched non-prescription medicine (Diclofenac) using a pharmacy-based approach. Pharmacoepidemiol Drug Saf 9(3):207–214. https://doi.org/10.1002/1099-1557(200005/06)9:3<207::AID-PDS483>3.0.CO;2-S

    Article  CAS  PubMed  Google Scholar 

  122. Sinclair HK, Bond CM, Hannaford PC (2000) Over-the-counter ibuprofen: how and why is it used? Int J Pharm Pract 8(2):121–127. https://doi.org/10.1111/j.2042-7174.2000.tb00996.x

    Article  Google Scholar 

  123. Layton D, Sinclair HK, Bond CM et al (2002) Pharmacovigilance of over-the-counter products based in community pharmacy: methodological issues from pilot work conducted in Hampshire and Grampian. UK Pharmacoepidemiol Drug Saf 11(6):503–513. https://doi.org/10.1002/pds.734

    Article  CAS  PubMed  Google Scholar 

  124. Borden EK, Lee JG (1982) A methodologic study of post-marketing drug evaluation using a pharmacy-based approach. J Chron Dis 35(10):803–816. https://doi.org/10.1016/0021-9681(82)90092-3

    Article  CAS  PubMed  Google Scholar 

  125. Bond C, Hannaford P (2003) Issues related to monitoring the safety of over-the-counter (OTC) medicines. Drug Saf 26(15):1065–1074. https://doi.org/10.2165/00002018-200326150-00001

    Article  PubMed  Google Scholar 

  126. Aggarwal AM, Barnes J (2006) A pilot study of community-pharmacy-based pharmacovigilance of an over-the-counter herbal medicine ginkgo (Ginkgo biloba): methodological issues from work in progress. Drug Saf 29(4):358

    Google Scholar 

  127. Baybutt J, Sheridan J, Barnes J (2015) New Zealand community pharmacists’ views on pharmacovigilance for natural health products. In: Abstracts of the Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists (ASCEPT) and Australasian Pharmaceutical Science Association (APSA) Joint Scientific Meeting, Tasmania, Australia, 29 Nov–2 Dec 2015

    Google Scholar 

  128. Brown P, Bahri P (2019) ‘Engagement’ of patients and healthcare professionals in regulatory pharmacovigilance: establishing a conceptual and methodological framework. Eur J Clin Pharmacol 75(9):1181–1192. https://doi.org/10.1007/s00228-019-02705-1

    Article  CAS  PubMed  Google Scholar 

  129. Jonker CJ, van den Berg HM, Kwa MSG et al (2017) Registries supporting new drug applications. Pharmacoepidemiol Drug Saf 26(12):1451–1457. https://doi.org/10.1002/pds.4332

    Article  PubMed  PubMed Central  Google Scholar 

  130. Schmitt-Egenolf M (2018) Patient registries for safetyness: clinical and quantitative aspects. In: Bate A (ed) Evidence-based pharmacovigilance. Humana Press, New York, pp 149–164

    Chapter  Google Scholar 

  131. McGettigan P, Alonso Olmo C, Plueschke K et al (2019) Patient registries: an underused resource for medicines evaluation: operational proposals for increasing the use of patient registries in regulatory assessments. Drug Saf 42(11):1343–1351. https://doi.org/10.1007/s40264-019-00848-9

    Article  PubMed  PubMed Central  Google Scholar 

  132. Olmo CA, McGettigan P, Kurz X (2019) Barriers and opportunities for use of patient registries in medicines regulation. Clin Pharmacol Ther 106(1):39–42. https://doi.org/10.1002/cpt.1414

    Article  PubMed  PubMed Central  Google Scholar 

  133. Zhang L (2018) Pharmacovigilance of herbal and traditional medicines: clinical and quantitative aspects. In: Bate A (ed) Methods on pharmacology and toxicology. Humana Press, New York, pp 37–65

    Google Scholar 

  134. Liao X, **e Y-m, Robinson N et al (2017) To establish a body of evidence on safety for postmarketing Chinese medicine: a new research paradigm. Chin J Integr Med 23(3):226–232. https://doi.org/10.1007/s11655-016-2534-x

    Article  PubMed  Google Scholar 

  135. Liang Z, Lai Y, Li M et al (2021) Applying regulatory science in traditional chinese medicines for improving public safety and facilitating innovation in China: a sco** review and regulatory implications. Chin Med 16:23

    Article  Google Scholar 

  136. Guidance for Industry and Food and Drug Administration Staff. (2017). Use of real-world evidence to support regulatory decision-making for medical devices. U.S. Food and Drug Administration. https://www.fda.gov/media/99447/download. Accessed 4 Jun 2021

  137. Dal Pan GJ (2019) Real-World data, advanced analytics, and the evolution of postmarket drug safety surveillance. Clin Pharmacol Ther 106(1):28–30. https://doi.org/10.1002/cpt.1415

    Article  PubMed  Google Scholar 

  138. Raghupathi W, Raghupathi V (2014) Big data analytics in healthcare: promise and potential. Health Inf Sci Syst 2:3–3. https://doi.org/10.1186/2047-2501-2-3

    Article  PubMed  PubMed Central  Google Scholar 

  139. Bate A, Reynolds RF, Caubel P (2018) The hope, hype and reality of Big Data for pharmacovigilance. Ther Adv Drug Saf 9(1):5–11. https://doi.org/10.1177/2042098617736422

    Article  PubMed  Google Scholar 

  140. Liu F, Jagannatha A, Yu H (2019) Towards drug safety surveillance and pharmacovigilance: current progress in detecting medication and adverse drug events from electronic health records. Drug Saf 42(1):95–97. https://doi.org/10.1007/s40264-018-0766-8

    Article  PubMed  PubMed Central  Google Scholar 

  141. Boyce RD, Ryan PB, Norén GN et al (2014) Bridging islands of information to establish an integrated knowledge base of drugs and health outcomes of interest. Drug Saf 37(8):557–567. https://doi.org/10.1007/s40264-014-0189-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Hripcsak G, Duke JD, Shah NH et al (2015) Observational health data sciences and informatics (OHDSI): opportunities for observational researchers. Stud Health Technol Inform 216:574–578

    PubMed  PubMed Central  Google Scholar 

  143. Tabali M, Ostermann T, Jeschke E et al (2012) Adverse drug reactions for CAM and conventional drugs detected in a network of physicians certified to prescribe CAM drugs. J Manag Care Pharm 18(6):427–438. https://doi.org/10.18553/jmcp.2012.18.6.427

    Article  PubMed  Google Scholar 

  144. Milne BJ, Atkinson J, Blakely T et al (2019) Data resource profile: the New Zealand Integrated Data Infrastructure (IDI). Int J Epidemiol 48(3):677–677e. https://doi.org/10.1093/ije/dyz014

    Article  PubMed  Google Scholar 

  145. Patient-focused drug development glossary. U.S Food and Drug Administration. https://www.fda.gov/drugs/development-approval-process-drugs/patient-focused-drug-development-glossary. Accessed 4 Jun 2021

  146. Nowell WB (2019) Information patients can provide will strengthen the real-world evidence that matters to them. Clin Pharmacol Ther 106(1):49–51. https://doi.org/10.1002/cpt.1460

    Article  PubMed  Google Scholar 

  147. PatientsLikeMe. Business Milestones 2015. https://news.patientslikeme.com/milestones. Accessed 4 Jun 2021

  148. Bahk CY, Goshgarian M, Donahue K et al (2015) Increasing patient engagement in pharmacovigilance through online community outreach and mobile reporting applications: an analysis of adverse event reporting for the Essure device in the US. Pharmaceut Med 29(6):331–340. https://doi.org/10.1007/s40290-015-0106-6

    Article  PubMed  PubMed Central  Google Scholar 

  149. Pierce CE, de Vries ST, Bodin-Parssinen S et al (2019) Recommendations on the use of mobile applications for the collection and communication of pharmaceutical product safety information: lessons from IMI WEB-RADR. Drug Saf 42(4):477–489. https://doi.org/10.1007/s40264-019-00813-6

    Article  PubMed  PubMed Central  Google Scholar 

  150. de Vries ST, Wong L, Sutcliffe A et al (2017) Factors influencing the use of a mobile app for reporting adverse drug reactions and receiving safety information: a qualitative study. Drug Saf 40(5):443–455. https://doi.org/10.1007/s40264-016-0494-x

    Article  PubMed  Google Scholar 

  151. Golder S, Norman G, Loke Y (2015) Systematic review on the prevalence, frequency and comparative value of adverse events data in social media. Br J Clin Pharmacol 80(4):878–888. https://doi.org/10.1111/bcp.12746

    Article  PubMed  PubMed Central  Google Scholar 

  152. Caster O, Dietrich J, Kürzinger ML et al (2018) Assessment of the utility of social media for broad-ranging statistical signal detection in pharmacovigilance: results from the WEB-RADR project. Drug Saf 41(12):1355–1369. https://doi.org/10.1007/s40264-018-0699-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. van Stekelenborg J, Ellenius J, Maskell S et al (2019) Recommendations for the use of social media in pharmacovigilance: lessons from IMI WEB-RADR. Drug Saf 42(12):1393–1407. https://doi.org/10.1007/s40264-019-00858-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. World Health Organization ICD-11 for mortality and morbidity statistics, 26 supplementary chapter traditional medicine conditions—module I. https://icd.who.int/browse11/l-m/en#/http%3a%2f%2fid.who.int%2ficd%2fentity%2f718687701. Accessed 9 Jun 2021

  155. Choi SH (2020) A proposed revision of the International Classification of Diseases, 11th revision, chapter 26. Integr Cancer Ther 19:1534735420908334. https://doi.org/10.1177/1534735420908334

    Article  PubMed  PubMed Central  Google Scholar 

  156. Choi SH, Chang IM (2010) A milestone in codifying the wisdom of traditional Oriental medicine: TCM, Kampo, TKM, TVM-WHO international standard terminologies on traditional medicine in the Western Pacific Region. Evid Based Complement Alternat Med 7(3):303–305. https://doi.org/10.1093/ecam/nen083

    Article  PubMed  Google Scholar 

  157. Brosch S, de Ferran AM, Newbould V et al (2019) Establishing a framework for the use of social media in pharmacovigilance in Europe. Drug Saf 42(8):921–930. https://doi.org/10.1007/s40264-019-00811-8

    Article  PubMed  PubMed Central  Google Scholar 

  158. Cockayne NL, Duguid M, Shenfield GM (2005) Health professionals rarely record history of complementary and alternative medicines. Br J Clin Pharmacol 59(2):254–258. https://doi.org/10.1111/j.1365-2125.2004.02328.x

    Article  PubMed  PubMed Central  Google Scholar 

  159. Wisniewski AF, Bate A, Bousquet C et al (2016) Good signal detection practices: evidence from IMI PROTECT. Drug Saf 39(6):469–490. https://doi.org/10.1007/s40264-016-0405-1

    Article  PubMed  PubMed Central  Google Scholar 

  160. Schulz KF, Altman DG, Moher D (2010) CONSORT 2010 Statement: updated guidelines for reporting parallel group randomised trials. Trials 11:32. https://doi.org/10.1186/1745-6215-11-32

    Article  PubMed  PubMed Central  Google Scholar 

  161. Ioannidis JP, Evans SJ, Gøtzsche PC et al (2004) Better reporting of harms in randomized trials: an extension of the CONSORT statement. Ann Intern Med 141(10):781–788. https://doi.org/10.7326/0003-4819-141-10-200411160-00009

    Article  PubMed  Google Scholar 

  162. Linde K, Berner MM, Kriston L (2008) St John’s wort for major depression. Cochrane Database Syst Rev 2008(4):Cd000448. https://doi.org/10.1002/14651858.CD000448.pub3

  163. van Puijenbroek EP, Bate A, Leufkens HG et al (2002) A comparison of measures of disproportionality for signal detection in spontaneous reporting systems for adverse drug reactions. Pharmacoepidemiol Drug Saf 11(1):3–10. https://doi.org/10.1002/pds.668

    Article  CAS  PubMed  Google Scholar 

  164. Bate A, Lindquist M, Edwards IR et al (1998) A Bayesian neural network method for adverse drug reaction signal generation. Eur J Clin Pharmacol 54(4):315–321. https://doi.org/10.1007/s002280050466

    Article  CAS  PubMed  Google Scholar 

  165. Waller PC, Evans SJW (2003) A model for the future conduct of pharmacovigilance. Pharmacoepidemiol Drug Saf 12(1):17–29. https://doi.org/10.1002/pds.773

    Article  PubMed  Google Scholar 

  166. Betz J, Anderson L, Avigan M et al (2009) Black Cohosh: considerations of safety and benefit. Nutr Today 44:155–162. https://doi.org/10.1097/NT.0b013e3181af63f9

    Article  Google Scholar 

  167. Black cohosh. UK public assessment report. Medicine and Healthcare products Regulatory Agency. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/852384/Black_cohosh_and_liver_injury.pdf. Accessed 4 Jun 2021

  168. Mazzanti G, Di Sotto A, Vitalone A (2015) Hepatotoxicity of green tea: an update. Arch Toxicol 89(8):1175–1191. https://doi.org/10.1007/s00204-015-1521-x

    Article  CAS  PubMed  Google Scholar 

  169. Savage RL, Hill GR, Barnes J et al (2019) Suspected hepatotoxicity with a supercritical carbon dioxide extract of Artemisia annua in grapeseed oil used in New Zealand. Front Pharmacol 10:1448. https://doi.org/10.3389/fphar.2019.01448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Wechwithan S, Suwankesawong W, Sornsrivichai V et al (2014) Signal detection for Thai traditional medicine: examination of national pharmacovigilance data using reporting odds ratio and reported population attributable risk. Regul Toxicol Pharmacol 70(1):407–412. https://doi.org/10.1016/j.yrtph.2014.06.007

    Article  PubMed  Google Scholar 

  171. Li H, Deng J, Yue Z et al (2015) Detecting drug-herbal interaction using a spontaneous reporting system database: an example with benzylpenicillin and qingkailing injection. Eur J Clin Pharmacol 71(9):1139–1145. https://doi.org/10.1007/s00228-015-1898-8

    Article  CAS  PubMed  Google Scholar 

  172. Caster O, Juhlin K, Watson S et al (2014) Improved statistical signal detection in pharmacovigilance by combining multiple strength-of-evidence aspects in vigiRank. Drug Saf 37(8):617–628. https://doi.org/10.1007/s40264-014-0204-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Uppsala Monitoring Cenre Signal detection at UMC. https://www.who-umc.org/research-scientific-development/signal-detection/signal-detection-at-umc. Accessed 27 Apr 2021

  174. Barnes J, van Hunsel F (2020) Ginkgo biloba L. and cardiac arrhythmias. WHO Pharmaceuticals Newslett 3:14–22

    Google Scholar 

  175. Gogolak VV (2003) The effect of backgrounds in safety analysis: the impact of comparison cases on what you see. Pharmacoepidemiol Drug Saf 12(3):249–252. https://doi.org/10.1002/pds.823

    Article  PubMed  Google Scholar 

  176. Bate A, Ericsson J, Farah M (2006) International data mining for signals of herbal ADRs. In: Abstracts of the Pharmacovigilance of herbal medicines: current state and future directions, London, UK, 26–28 April 2006

    Google Scholar 

  177. Klein K, Hazell L, Stolk P et al (2020) The UK BIO-TRAC study: a cross-sectional study of product and batch traceability for biologics in clinical practice and electronic adverse drug reaction reporting in the UK. Drug Saf 43(3):255–263. https://doi.org/10.1007/s40264-019-00891-6

    Article  PubMed  Google Scholar 

  178. Heinrich M, Barnes J, Gibbons S et al (2018) Fundamentals of pharmacognosy and phytotherapy, 3rd edn. Elsevier

    Google Scholar 

  179. Arnaud M, Bégaud B, Thurin N et al (2017) Methods for safety signal detection in healthcare databases: a literature review. Expert Opin Drug Saf 16(6):721–732. https://doi.org/10.1080/14740338.2017.1325463

    Article  PubMed  Google Scholar 

  180. Sun X, Tan J, Tang L et al (2018) Real world evidence: experience and lessons from China. BMJ 360:j5262. https://doi.org/10.1136/bmj.j5262

    Article  PubMed  PubMed Central  Google Scholar 

  181. Stricker BH (2018) Adverse reaction signal detection methodology in pharmacoepidemiology. Eur J Epidemiol 33(6):507–508. https://doi.org/10.1007/s10654-018-0417-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Pottegård A, Hallas J, Wang SV et al (2018) Identifying signals of interest when screening for drug-outcome associations in health care data. Br J Clin Pharmacol 84(9):1865–1867. https://doi.org/10.1111/bcp.13634

    Article  PubMed  PubMed Central  Google Scholar 

  183. Caster O, Aoki Y, Gattepaille LM et al (2020) Disproportionality analysis for pharmacovigilance signal detection in small databases or subsets: recommendations for limiting false-positive associations. Drug Saf 43(5):479–487. https://doi.org/10.1007/s40264-020-00911-w

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

The author thanks Dr. Mira Harrison-Woolrych and Dr. Aleksandra Milosavljevic for helpful comments on this chapter, and E Lyn Lee for administrative assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanne Barnes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barnes, J. (2022). Advances in Methods and Techniques in Pharmacovigilance for Herbal and Traditional Medicines and Other Natural Health Products. In: Barnes, J. (eds) Pharmacovigilance for Herbal and Traditional Medicines. Adis, Cham. https://doi.org/10.1007/978-3-031-07275-8_7

Download citation

Publish with us

Policies and ethics

Navigation