Normal Development and Pathology of Motoneurons: Anatomy, Electrophysiological Properties, Firing Patterns and Circuit Connectivity

  • Chapter
  • First Online:
Vertebrate Motoneurons

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 28))

  • 756 Accesses

Abstract

This chapter will provide an introduction into motoneuron anatomy, electrophysiological properties, firing patterns focusing on development and also describing several pathological conditions that affect mononeurons. It starts with a historical retrospective describing the early landmark work into motoneurons. The next section lays out the various types of motoneurons (alpha, beta, and gamma) and their subclasses (fast-twitch fatigable, fast-twitch fatigue-resistant, and slow-twitch fatigue resistant), highlighting the functional relevance of this classification scheme. The third section describes the development of motoneurons’ passive and active electrophysiological properties. This section also defines the major terms one uses in describing how a neuron functions electrophysiologically. The electrophysiological aspects of a neuron is critical to understanding how it behaves within a circuit and contributes to behavior since the firing of an action potential is how neurons communicate with each other and with muscles. The electrophysiological changes of motoneurons over development underlies how their function changes over the lifetime of an organism. After describing the properties of individual motoneurons, the chapter then turns to revealing how motoneurons interact within complex neural circuits, with other motoneurons as well as sensory neurons, and how these circuits change over development. Finally, this chapter ends with highlighting some recent advances made in motoneuron pathology, focusing on spinal muscular atrophy, amyotrophic lateral sclerosis, and axotomy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Akhter ET, Griffith RW, English AW, Alvarez FJ (2019) Removal of the potassium chloride co-transporter from the somatodendritic membrane of axotomized motoneurons is independent of BDNF/TrkB signaling but is controlled by neuromuscular innervation. eNeuro 6

    Google Scholar 

  • Al-Chalabi A, van den Berg LH, Veldink J (2017) Gene discovery in amyotrophic lateral sclerosis: implications for clinical management. Nat Rev Neurol 13:96–104

    Article  CAS  PubMed  Google Scholar 

  • Alvarez FJ (2017) Gephyrin and the regulation of synaptic strength and dynamics at glycinergic inhibitory synapses. Brain Res Bull 129:50–65

    Article  CAS  PubMed  Google Scholar 

  • Alvarez FJ, Rotterman TM, Akhter ET, Lane AR, English AW, Cope TC (2020) Synaptic plasticity on motoneurons after axotomy: a necessary change in paradigm. Front Mol Neurosci 13:68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barker D, Young JZ (1947) Recovery of stretch reflexes after nerve injury, vol 1. Lancet, London, pp 704–707

    Google Scholar 

  • Bayliss DA, Viana F, Bellingham MC, Berger AJ (1994) Characteristics and postnatal development of a hyperpolarization-activated inward current in rat hypoglossal motoneurons in vitro. J Neurophysiol 71:119–128

    Article  CAS  PubMed  Google Scholar 

  • Bertrand S, Cazalets JR (1998) Postinhibitory rebound during locomotor-like activity in neonatal rat motoneurons in vitro. J Neurophysiol 79:342–351

    Article  CAS  PubMed  Google Scholar 

  • Bessou P, Emonet-Dénand F, Laporte Y (1965) Motor fibres innervating extrafusal and intrafusal muscle fibres in the cat. J Physiol 180:649–672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouhadfane M, Tazerart S, Moqrich A, Vinay L, Brocard F (2013) Sodium-mediated plateau potentials in lumbar motoneurons of neonatal rats. J Neurosci Off J Soc Neurosci 33:15626–15641

    Article  CAS  Google Scholar 

  • Brock LG, Coombs JS, Eccles JC (1952) The recording of potentials from motoneurones with an intracellular electrode. J Physiol 117:431–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brock LG, Coombs JS, Eccles JC (1953) Intracellular recording from antidromically activated motoneurones. J Physiol 122:429–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burghes AH, Beattie CE (2009) Spinal muscular atrophy: why do low levels of survival motor neuron protein make motor neurons sick? Nat Rev Neurosci 10:597–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burke RE, Levine DN, Tsairis P, Zajac FE 3rd (1973) Physiological types and histochemical profiles in motor units of the cat gastrocnemius. J Physiol 234:723–748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burke RE, Dum RP, Fleshman JW, Glenn LL, Lev-Tov A, O’Donovan MJ, Pinter MJ (1982) A HRP study of the relation between cell size and motor unit type in cat ankle extensor motoneurons. J Comp Neurol 209:17–28

    Article  CAS  PubMed  Google Scholar 

  • Burke RE, Fyffe RE, Moschovakis AK (1994) Electrotonic architecture of cat gamma motoneurons. J Neurophysiol 72:2302–2316

    Article  CAS  PubMed  Google Scholar 

  • Cameron WE, He F, Kalipatnapu P, Jodkowski JS, Guthrie RD (1991) Morphometric analysis of phrenic motoneurons in the cat during postnatal development. J Comp Neurol 314:763–776

    Article  CAS  PubMed  Google Scholar 

  • Cameron WE, Núñez-Abades PA, Kerman IA, Hodgson TM (2000) Role of potassium conductances in determining input resistance of develo** brain stem motoneurons. J Neurophysiol 84:2330–2339

    Article  CAS  PubMed  Google Scholar 

  • Carrascal L, Nieto-Gonzalez JL, Cameron WE, Torres B, Nunez-Abades PA (2005) Changes during the postnatal development in physiological and anatomical characteristics of rat motoneurons studied in vitro. Brain Res Brain Res Rev 49:377–387

    Article  PubMed  Google Scholar 

  • Chang Q, Gonzalez M, Pinter MJ, Balice-Gordon RJ (1999) Gap junctional coupling and patterns of connexin expression among neonatal rat lumbar spinal motor neurons. J Neurosci Off J Soc Neurosci 19:10813–10828

    Article  CAS  Google Scholar 

  • Chen HH, Hippenmeyer S, Arber S, Frank E (2003) Development of the monosynaptic stretch reflex circuit. Curr Opin Neurobiol 13:96–102

    Article  CAS  PubMed  Google Scholar 

  • Conway BA, Hultborn H, Kiehn O, Mintz I (1988) Plateau potentials in alpha-motoneurones induced by intravenous injection of L-dopa and clonidine in the spinal cat. J Physiol 405:369–384

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cullheim S, Ulfhake B (1979a) Observations on the morphology of intracellularly stained gamma-motoneurons in relation to their axon conduction velocity. Neurosci Lett 13:47–50

    Article  CAS  PubMed  Google Scholar 

  • Cullheim S, Ulfhake B (1979b) Relations between cell body size, axon diameter and axon conduction velocity of triceps surae alpha montoneurons during the postnatal development in the cat. J Comp Neurol 188:679–686

    Article  CAS  PubMed  Google Scholar 

  • Cullheim S, Fleshman JW, Glenn LL, Burke RE (1987) Three-dimensional architecture of dendritic trees in type-identified alpha-motoneurons. J Comp Neurol 255:82–96

    Article  CAS  PubMed  Google Scholar 

  • De La Cruz RR, Escudero M, Delgado-García JM (1989) Behaviour of medial rectus motoneurons in the alert cat. Eur J Neurosci 1:288–295

    Article  Google Scholar 

  • Delestrée N, Manuel M, Iglesias C, Elbasiouny SM, Heckman CJ, Zytnicki D (2014) Adult spinal motoneurones are not hyperexcitable in a mouse model of inherited amyotrophic lateral sclerosis. J Physiol 592:1687–1703

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dengler R, Konstanzer A, Küther G, Hesse S, Wolf W, Struppler A (1990) Amyotrophic lateral sclerosis: macro-EMG and twitch forces of single motor units. Muscle Nerve 13:545–550

    Article  CAS  PubMed  Google Scholar 

  • Di Pasquale E, Tell F, Ptak K, Monteau R, Hilaire G (2001) Perinatal changes of I(h) in phrenic motoneurons. Eur J Neurosci 13:1403–1410

    PubMed  Google Scholar 

  • Durand J, Amendola J, Bories C, Lamotte d’Incamps B (2006) Early abnormalities in transgenic mouse models of amyotrophic lateral sclerosis. J Physiol Paris 99:211–220

    Article  PubMed  Google Scholar 

  • Eccles JC, Eccles RM, Lundberg A (1957) The convergence of monosynaptic excitatory afferents on to many different species of alpha motoneurones. J Physiol 137:22–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eccles JC, Eccles RM, Iggo A, Lundberg A (1960) Electrophysiological studies on gamma motoneurones. Acta Physiol Scand 50:32–40

    Article  CAS  PubMed  Google Scholar 

  • Elbasiouny SM, Amendola J, Durand J, Heckman CJ (2010) Evidence from computer simulations for alterations in the membrane biophysical properties and dendritic processing of synaptic inputs in mutant superoxide dismutase-1 motoneurons. J Neurosci Off J Soc Neurosci 30:5544–5558

    Article  CAS  Google Scholar 

  • Ferrucci M, Spalloni A, Bartalucci A, Cantafora E, Fulceri F, Nutini M, Longone P, Paparelli A, Fornai F (2010) A systematic study of brainstem motor nuclei in a mouse model of ALS, the effects of lithium. Neurobiol Dis 37:370–383

    Article  CAS  PubMed  Google Scholar 

  • Fleshman JW, Segev I, Burke RB (1988) Electrotonic architecture of type-identified alpha-motoneurons in the cat spinal cord. J Neurophysiol 60:60–85

    Article  CAS  PubMed  Google Scholar 

  • Fletcher EV, Simon CM, Pagiazitis JG, Chalif JI, Vukojicic A, Drobac E, Wang X, Mentis GZ (2017) Reduced sensory synaptic excitation impairs motor neuron function via Kv2.1 in spinal muscular atrophy. Nat Neurosci 20:905–916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frey D, Schneider C, Xu L, Borg J, Spooren W, Caroni P (2000) Early and selective loss of neuromuscular synapse subtypes with low sprouting competence in motoneuron diseases. J Neurosci Off J Soc Neurosci 20:2534–2542

    Article  CAS  Google Scholar 

  • Friese A, Kaltschmidt JA, Ladle DR, Sigrist M, Jessell TM, Arber S (2009) Gamma and alpha motor neurons distinguished by expression of transcription factor Err3. Proc Natl Acad Sci U S A 106:13588–13593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuchs AF, Scudder CA, Kaneko CR (1988) Discharge patterns and recruitment order of identified motoneurons and internuclear neurons in the monkey abducens nucleus. J Neurophysiol 60:1874–1895

    Article  CAS  PubMed  Google Scholar 

  • Fulton BP, Walton K (1986) Electrophysiological properties of neonatal rat motoneurones studied in vitro. J Physiol 370:651–678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galvani A (1791) De Viribus Electricitatis in Motu Musculari Commentarius (note on the effect of electricity on muscular motion) Typographia Instuti Scientarium. Bologna 7

    Google Scholar 

  • Gardiner PF (1993) Physiological properties of motoneurons innervating different muscle unit types in rat gastrocnemius. J Neurophysiol 69:1160–1170

    Article  CAS  PubMed  Google Scholar 

  • Hanson MG, Milner LD, Landmesser LT (2008) Spontaneous rhythmic activity in early chick spinal cord influences distinct motor axon pathfinding decisions. Brain Res Rev 57:77–85

    Article  PubMed  Google Scholar 

  • Harris-Warrick RM (2010) General principles of rhythmogenesis in central pattern generator networks. Prog Brain Res 187:213–222

    Article  PubMed  PubMed Central  Google Scholar 

  • Hashizume K, Kanda K, Burke RE (1988) Medial gastrocnemius motor nucleus in the rat: age-related changes in the number and size of motoneurons. J Comp Neurol 269:425–430

    Article  CAS  PubMed  Google Scholar 

  • Heckman CJ, Johnson M, Mottram C, Schuster J (2008) Persistent inward currents in spinal motoneurons and their influence on human motoneuron firing patterns. The Neuroscientist 14:264–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henneman E, Somjen G, Carpenter DO (1965) Functional significance of cell size in spinal motoneurons. J Neurophysiol 28:560–580

    Article  CAS  PubMed  Google Scholar 

  • Hornby TG, McDonagh JC, Reinking RM, Stuart DG (2002) Effects of excitatory modulation on intrinsic properties of turtle motoneurons. J Neurophysiol 88:86–97

    Article  CAS  PubMed  Google Scholar 

  • Horstman GM, Housley SN, Cope TC (2019) Dysregulation of mechanosensory circuits coordinating the actions of antagonist motor pools following peripheral nerve injury and muscle reinnervation. Exp Neurol 318:124–134

    Article  PubMed  PubMed Central  Google Scholar 

  • Hounsgaard J, Hultborn H, Jespersen B, Kiehn O (1988) Bistability of alpha-motoneurones in the decerebrate cat and in the acute spinal cat after intravenous 5-hydroxytryptophan. J Physiol 405:345–367

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ikeda R, Kato F (2005) Early and transient increase in spontaneous synaptic inputs to the rat facial motoneurons after axotomy in isolated brainstem slices of rats. Neuroscience 134:889–899

    Article  CAS  PubMed  Google Scholar 

  • Imlach WL, Beck ES, Choi BJ, Lotti F, Pellizzoni L, McCabe BD (2012) SMN is required for sensory-motor circuit function in drosophila. Cell 151:427–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaminski HJ, Richmonds CR, Kusner LL, Mitsumoto H (2002) Differential susceptibility of the ocular motor system to disease. Ann N Y Acad Sci 956:42–54

    Article  PubMed  Google Scholar 

  • Kanning KC, Kaplan A, Henderson CE (2010) Motor neuron diversity in development and disease. Annu Rev Neurosci 33:409–440

    Article  CAS  PubMed  Google Scholar 

  • Lee RH, Heckman CJ (1998) Bistability in spinal motoneurons in vivo: systematic variations in persistent inward currents. J Neurophysiol 80:583–593

    Article  CAS  PubMed  Google Scholar 

  • Lee RH, Heckman CJ (1999) Enhancement of bistability in spinal motoneurons in vivo by the noradrenergic alpha1 agonist methoxamine. J Neurophysiol 81:2164–2174

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Gorassini MA, Bennett DJ (2004) Role of persistent sodium and calcium currents in motoneuron firing and spasticity in chronic spinal rats. J Neurophysiol 91:767–783

    Article  CAS  PubMed  Google Scholar 

  • Ling KK, Lin MY, Zingg B, Feng Z, Ko CP (2010) Synaptic defects in the spinal and neuromuscular circuitry in a mouse model of spinal muscular atrophy. PLoS One 5:e15457

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu PW, Bean BP (2014) Kv2 channel regulation of action potential repolarization and firing patterns in superior cervical ganglion neurons and hippocampal CA1 pyramidal neurons. J Neurosci Off J Soc Neurosci 34:4991–5002

    Article  CAS  Google Scholar 

  • Lotti F, Imlach WL, Saieva L, Beck ES, Hao le T, Li DK, Jiao W, Mentis GZ, Beattie CE, McCabe BD et al (2012) An SMN-dependent U12 splicing event essential for motor circuit function. Cell 151:440–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lowrie MB, Vrbová G (1992) Dependence of postnatal motoneurones on their targets: review and hypothesis. Trends Neurosci 15:80–84

    Article  CAS  PubMed  Google Scholar 

  • Lowrie MB, Vrbová G (2001) Repeated injury to the sciatic nerve in immature rats causes motoneuron death and impairs muscle recovery. Exp Neurol 171:170–175

    Article  CAS  PubMed  Google Scholar 

  • Magariños-Ascone C, Núñez A, Delgado-García JM (1999) Different discharge properties of rat facial nucleus motoneurons. Neuroscience 94:879–886

    Article  PubMed  Google Scholar 

  • Manuel M, Zytnicki D (2011) Alpha, beta and gamma motoneurons: functional diversity in the motor system’s final pathway. J Integr Neurosci 10:243–276

    Article  PubMed  Google Scholar 

  • Martínez-Silva ML, Imhoff-Manuel RD, Sharma A, Heckman CJ, Shneider NA, Roselli F, Zytnicki D, Manuel M (2018) Hypoexcitability precedes denervation in the large fast-contracting motor units in two unrelated mouse models of ALS. eLife:7

    Google Scholar 

  • Mazza E, Núñez-Abades PA, Spielmann JM, Cameron WE (1992) Anatomical and electrotonic coupling in develo** genioglossal motoneurons of the rat. Brain Res 598:127–137

    Article  CAS  PubMed  Google Scholar 

  • Mendelsohn AI, Simon CM, Abbott LF, Mentis GZ, Jessell TM (2015) Activity regulates the incidence of heteronymous sensory-motor connections. Neuron 87:111–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mentis GZ, Díaz E, Moran LB, Navarrete R (2002) Increased incidence of gap junctional coupling between spinal motoneurones following transient blockade of NMDA receptors in neonatal rats. J Physiol 544:757–764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mentis GZ, Díaz E, Moran LB, Navarrete R (2007) Early alterations in the electrophysiological properties of rat spinal motoneurones following neonatal axotomy. J Physiol 582:1141–1161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mentis GZ, Blivis D, Liu W, Drobac E, Crowder ME, Kong L, Alvarez FJ, Sumner CJ, O’Donovan MJ (2011) Early functional impairment of sensory-motor connectivity in a mouse model of spinal muscular atrophy. Neuron 69:453–467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Misonou H (2010) Homeostatic regulation of neuronal excitability by K(+) channels in normal and diseased brains. The Neuroscientist 16:51–64

    Article  CAS  PubMed  Google Scholar 

  • Mosfeldt Laursen A, Rekling JC (1989) Electrophysiological properties of hypoglossal motoneurons of Guinea-pigs studied in vitro. Neuroscience 30:619–637

    Article  CAS  PubMed  Google Scholar 

  • Nabekura J, Ueno T, Okabe A, Furuta A, Iwaki T, Shimizu-Okabe C, Fukuda A, Akaike N (2002) Reduction of KCC2 expression and GABAA receptor-mediated excitation after in vivo axonal injury. J Neurosci Off J Soc Neurosci 22:4412–4417

    Article  CAS  Google Scholar 

  • Navarrete R, Vrbová G (1984) Differential effect of nerve injury at birth on the activity pattern of reinnervated slow and fast muscles of the rat. J Physiol 351:675–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Núñez-Abades PA, Cameron WE (1995) Morphology of develo** rat genioglossal motoneurons studied in vitro: relative changes in diameter and surface area of somata and dendrites. J Comp Neurol 353:129–142

    Article  PubMed  Google Scholar 

  • Núñez-Abades PA, Spielmann JM, Barrionuevo G, Cameron WE (1993) In vitro electrophysiology of develo** genioglossal motoneurons in the rat. J Neurophysiol 70:1401–1411

    Article  PubMed  Google Scholar 

  • Núñez-Abades PA, Pattillo JM, Hodgson TM, Cameron WE (2000) Role of synaptic inputs in determining input resistance of develo** brain stem motoneurons. J Neurophysiol 84:2317–2329

    Article  PubMed  Google Scholar 

  • O’Donovan MJ, Chub N, Wenner P (1998) Mechanisms of spontaneous activity in develo** spinal networks. J Neurobiol 37:131–145

    Article  PubMed  Google Scholar 

  • O’Dowd DK, Ribera AB, Spitzer NC (1988) Development of voltage-dependent calcium, sodium, and potassium currents in Xenopus spinal neurons. J Neurosci Off J Soc Neurosci 8:792–805

    Article  Google Scholar 

  • Pastor AM, Mentis GZ, De La Cruz RR, Díaz E, Navarrete R (2003) Increased electrotonic coupling in spinal motoneurons after transient botulinum neurotoxin paralysis in the neonatal rat. J Neurophysiol 89(2):793–805. https://doi.org/10.1152/jn.00498.2002. PMID: 12574457

  • Perrier JF, Hounsgaard J (2000) Development and regulation of response properties in spinal cord motoneurons. Brain Res Bull 53:529–535

    Article  CAS  PubMed  Google Scholar 

  • Personius KE, Chang Q, Mentis GZ, O’Donovan MJ, Balice-Gordon RJ (2007) Reduced gap junctional coupling leads to uncorrelated motor neuron firing and precocious neuromuscular synapse elimination. Proc Natl Acad Sci U S A 104:11808–11813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poliak S, Norovich AL, Yamagata M, Sanes JR, Jessell TM (2016) Muscle-type identity of proprioceptors specified by spatially restricted signals from limb mesenchyme. Cell 164:512–525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pun S, Santos AF, Saxena S, Xu L, Caroni P (2006) Selective vulnerability and pruning of phasic motoneuron axons in motoneuron disease alleviated by CNTF. Nat Neurosci 9:408–419

    Article  CAS  PubMed  Google Scholar 

  • Ramírez V, Ulfhake B (1991) Postnatal development of cat hind limb motoneurons supplying the intrinsic muscles of the foot sole. Brain Res Dev Brain Res 62:189–202

    Article  PubMed  Google Scholar 

  • Rekling JC, Funk GD, Bayliss DA, Dong XW, Feldman JL (2000) Synaptic control of motoneuronal excitability. Physiol Rev 80:767–852

    Article  CAS  PubMed  Google Scholar 

  • Robinson DW, Cameron WE (2000) Time-dependent changes in input resistance of rat hypoglossal motoneurons associated with whole-cell recording. J Neurophysiol 83:3160–3164

    Article  CAS  PubMed  Google Scholar 

  • Rotterman TM, Akhter ET, Lane AR, Mac Pherson KP, García VV, Tansey MG, Alvarez FJ (2019) Spinal motor circuit synaptic plasticity after peripheral nerve injury depends on microglia activation and a CCR2 mechanism. J Neurosci Off J Soc Neurosci 39:3412–3433

    CAS  Google Scholar 

  • Russier M, Carlier E, Ankri N, Fronzaroli L, Debanne D (2003) A-, T-, and H-type currents shape intrinsic firing of develo** rat abducens motoneurons. J Physiol 549:21–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Russo RE, Hounsgaard J (1999) Dynamics of intrinsic electrophysiological properties in spinal cord neurones. Prog Biophys Mol Biol 72:329–365

    Article  CAS  PubMed  Google Scholar 

  • Sabatier MJ, To BN, Nicolini J, English AW (2011) Effect of axon misdirection on recovery of electromyographic activity and kinematics after peripheral nerve injury. Cells Tissues Organs 193:298–309

    Article  PubMed  PubMed Central  Google Scholar 

  • Seebach BS, Ziskind-Conhaim L (1994) Formation of transient inappropriate sensorimotor synapses in develo** rat spinal cords. J Neurosci Off J Soc Neurosci 14:4520–4528

    Article  CAS  Google Scholar 

  • Sherrington CS (1924) Problems of muscular receptivity. Nature 113:732–732

    Article  Google Scholar 

  • Shneider NA, Brown MN, Smith CA, Pickel J, Alvarez FJ (2009) Gamma motor neurons express distinct genetic markers at birth and require muscle spindle-derived GDNF for postnatal survival. Neural Dev 4:42

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Simon M, Destombes J, Horcholle-Bossavit G, Thiesson D (1996) Postnatal development of alpha- and gamma-peroneal motoneurons in kittens: an ultrastructural study. Neurosci Res 25:77–89

    Article  CAS  PubMed  Google Scholar 

  • Simon CM, Dai Y, Van Alstyne M, Koutsioumpa C, Pagiazitis JG, Chalif JI, Wang X, Rabinowitz JE, Henderson CE, Pellizzoni L et al (2017) Converging mechanisms of p53 activation drive motor neuron degeneration in spinal muscular atrophy. Cell Rep 21:3767–3780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srinivasan E, Rajasekaran R (2020) A systematic and comprehensive review on disease-causing genes in amyotrophic lateral sclerosis. J Molecul Neurosci: MN 70:1742–1770

    Article  CAS  Google Scholar 

  • Stevens B, Allen NJ, Vazquez LE, Howell GR, Christopherson KS, Nouri N, Micheva KD, Mehalow AK, Huberman AD, Stafford B et al (2007) The classical complement cascade mediates CNS synapse elimination. Cell 131:1164–1178

    Article  CAS  PubMed  Google Scholar 

  • Takata M, Nagahama T (1983) Synaptic efficacy of inhibitory synapses in hypoglossal motoneurons after transection of the hypoglossal nerves. Neuroscience 10:23–29

    Article  CAS  PubMed  Google Scholar 

  • Tisdale S, Pellizzoni L (2015) Disease mechanisms and therapeutic approaches in spinal muscular atrophy. J Neurosci Off J Soc Neurosci 35:8691–8700

    Article  CAS  Google Scholar 

  • Toyoda H, Ohno K, Yamada J, Ikeda M, Okabe A, Sato K, Hashimoto K, Fukuda A (2003) Induction of NMDA and GABAA receptor-mediated Ca2+ oscillations with KCC2 mRNA downregulation in injured facial motoneurons. J Neurophysiol 89:1353–1362

    Article  CAS  PubMed  Google Scholar 

  • Ulfhake B, Cullheim S, Franson P (1988) Postnatal development of cat hind limb motoneurons. I: changes in length, branching structure, and spatial distribution of dendrites of cat triceps surae motoneurons. J Comp Neurol 278:69–87

    Article  CAS  PubMed  Google Scholar 

  • Umemiya M, Berger AJ (1994) Properties and function of low- and high-voltage-activated Ca2+ channels in hypoglossal motoneurons. J Neurosci Off J Soc Neurosci 14:5652–5660

    Article  CAS  Google Scholar 

  • Van Alstyne M, Simon CM, Sardi SP, Shihabuddin LS, Mentis GZ, Pellizzoni L (2018) Dysregulation of Mdm2 and Mdm4 alternative splicing underlies motor neuron death in spinal muscular atrophy. Genes Dev 32:1045–1059

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vejsada R, Hník P, Navarrete R, Palecek J, Soukup T, Borecka U, Payne R (1991) Motor functions in rat hindlimb muscles following neonatal sciatic nerve crush. Neuroscience 40:267–275

    Article  CAS  PubMed  Google Scholar 

  • Viana F, Bayliss DA, Berger AJ (1994) Postnatal changes in rat hypoglossal motoneuron membrane properties. Neuroscience 59:131–148

    Article  CAS  PubMed  Google Scholar 

  • Viana F, Bayliss DA, Berger AJ (1995) Repetitive firing properties of develo** rat brainstem motoneurones. J Physiol 486(Pt 3):745–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vinay L, Brocard F, Pflieger JF, Simeoni-Alias J, Clarac F (2000) Perinatal development of lumbar motoneurons and their inputs in the rat. Brain Res Bull 53:635–647

    Article  CAS  PubMed  Google Scholar 

  • Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. Nature 408:307–310

    Article  CAS  PubMed  Google Scholar 

  • Volta A (1800) On the electricity excited by the mere contact of conductors of different kinds. Philos Trans R Soc Lond A 90:403–431

    Google Scholar 

  • Vukojicic A, Delestrée N, Fletcher EV, Pagiazitis JG, Sankaranarayanan S, Yednock TA, Barres BA, Mentis GZ (2019) The classical complement pathway mediates microglia-dependent remodeling of spinal motor circuits during development and in SMA. Cell Rep 29:3087–3100.e3087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walsh MK, Lichtman JW (2003) In vivo time-lapse imaging of synaptic takeover associated with naturally occurring synapse elimination. Neuron 37:67–73

    Article  CAS  PubMed  Google Scholar 

  • Walton KD, Navarrete R (1991) Postnatal changes in motoneurone electrotonic coupling studied in the in vitro rat lumbar spinal cord. J Physiol 433:283–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Westbury DR (1982) A comparison of the structures of alpha and gamma-spinal motoneurones of the cat. J Physiol 325:79–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woodbury JW, Patton HD (1952) Electrical activity of single spinal cord elements. Cold Spring Harb Symp Quant Biol 17:185–188

    Article  CAS  PubMed  Google Scholar 

  • Yamada J, Nakanishi H, **no S (2011) Differential involvement of perineuronal astrocytes and microglia in synaptic strip** after hypoglossal axotomy. Neuroscience 182:1–10

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Z. Mentis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chalif, J.I., Mentis, G.Z. (2022). Normal Development and Pathology of Motoneurons: Anatomy, Electrophysiological Properties, Firing Patterns and Circuit Connectivity. In: O'Donovan, M.J., Falgairolle, M. (eds) Vertebrate Motoneurons. Advances in Neurobiology, vol 28. Springer, Cham. https://doi.org/10.1007/978-3-031-07167-6_3

Download citation

Publish with us

Policies and ethics

Navigation