Scanning Electron Microscopy (SEM)

  • Chapter
  • First Online:
Springer Handbook of Advanced Catalyst Characterization

Abstract

Scanning electron microscopy (SEM) is perhaps the first technique a catalyst researcher should use to start characterizing a catalyst. In this chapter, we present an overview of instrumental considerations when studying heterogeneous catalysts via SEM, methods to achieve high resolution for imaging and elemental analysis, and applications and case studies highlighting the use of SEM for the study of catalysts. The SEM images show the morphology of the sample and provide elemental composition and an indication of the uniformity of the sample as well as information on pore structure and particle size at the micron scale. The ability to see the material over this length scale is critical to early identification of issues with catalyst preparation, such as poor distribution of the active components. Using a high-resolution SEM, or when possible, a STEM detector within the SEM, it is possible to achieve resolutions rivaling a TEM. Then it becomes possible to see individual pores, the size and morphology of nanoparticles, and their composition. SEM is also ideally suited to see exposed surface facets in nanoparticles. Sample preparation for SEM is so much easier than a TEM, since the sample can be simply sprinkled on an SEM stub. The disadvantage is that only the surface of the sample is visible. But one can probe deeper by generating cross sections of extrudates. Such cross sections can help in identifying the location of various components, such as, for example, when preparing eggshell morphologies where the active phase is present only in the near-surface region of an extrudate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Goldstein, J.I., et al.: Scanning Electron Microscopy and X-ray Microanalysis, vol. 2018, 4th edn. Science+Business Media LLC (2018)

    Book  Google Scholar 

  2. Krumeich, F.: SEM: Imaging with Secondary Electrons. Available from: https://www.microscopy.ethz.ch/se.htm. Accessed 2/20/2021

  3. Kuo, W.C.H., Briceno, M., Ozkaya, D.: Final analysis: characterisation of catalysts using secondary and backscattered electron in-lens detectors. Platin. Met. Rev. 58(2), 106–110 (2014)

    Article  Google Scholar 

  4. JEOL. STEM-in-SEM (2020). Available from: https://www.jeolusa.com/RESOURCES/Electron-Optics/Documents-Downloads/stem-in-sem

  5. Terasaki, O., et al.: Novel structural characterisations of insulating and electron beam sensitive materials employing low voltage high resolution scanning electron microscopy. JEOL News. 48(1), 21–31 (2013)

    Google Scholar 

  6. Suga, M., et al.: Recent progress in scanning electron microscopy for the characterization of fine structural details of nano materials. Prog. Solid State Chem. 42(1), 1–21 (2014)

    Article  CAS  Google Scholar 

  7. Joy, D.C.: Resolution in low-voltage scanning electron-microscopy. J. Microsc. Oxford. 140, 283–292 (1985)

    Article  Google Scholar 

  8. Peters, K.R.: Collection deficiencies of scanning electron microscopy signal contrasts measured and corrected by differential hysteresis image processing. Scanning. 18(8), 539–555 (1996)

    Article  Google Scholar 

  9. Krumeich, F., et al.: Morphology and topochemical reactions of novel vanadium oxide nanotubes. J. Am. Chem. Soc. 121(36), 8324–8331 (1999)

    Article  CAS  Google Scholar 

  10. Michael, J.R.: High resolution at low beam energy in the SEM: resolution measurement of a monochromated SEM. Scanning. 33(3), 147–154 (2011)

    Article  CAS  Google Scholar 

  11. Asahina, S., et al.: Direct observation and analysis of yolk-shell materials using low-voltage high-resolution scanning electron microscopy: nanometal-particles encapsulated in metal-oxide, carbon, and polymer. APL Mater. 2(11), 113317 (2014)

    Article  Google Scholar 

  12. Zhu, Y., et al.: Imaging single atoms using secondary electrons with an aberration-corrected electron microscope. Nat. Mater. 8(10), 808–812 (2009)

    Article  CAS  Google Scholar 

  13. Yokoi, T.: Characterization of zeolites by advanced SEM/STEM techniques. Hitachi Sci. Instrum. News. 7(September), 7 (2016)

    Google Scholar 

  14. Friel, J.J., Lyman, C.E.: Tutorial review: X-ray map** in electron-beam instruments. Microsc. Microanal. 12(1), 2–25 (2006)

    Article  CAS  Google Scholar 

  15. Veisi, H., Mirzaei, A., Mohammadi, P.: Palladium nanoparticles decorated into a biguanidine modified-KIT-5 mesoporous structure: a recoverable nanocatalyst for ultrasound-assisted Suzuki-Miyaura cross-coupling. RSC Adv. 9(71), 41581–41590 (2019)

    Article  CAS  Google Scholar 

  16. Sugar, J.D., et al.: Comparison of orientation map** in SEM and TEM. Microsc. Microanal. 26(4), 630–640 (2020)

    Article  CAS  Google Scholar 

  17. Burkhardt, U., et al.: Absolute structure from scanning electron microscopy. Sci. Rep. 10(1), 4065 (2020)

    Article  CAS  Google Scholar 

  18. Susman, M.D., et al.: Synthesis of NiO crystals exposing stable high-index facets. Angew. Chem. Int. Edit. 59(35), 15119–15123 (2020)

    Article  CAS  Google Scholar 

  19. Prieto, G., et al.: Towards stable catalysts by controlling collective properties of supported metal nanoparticles. Nat. Mater. 12(1), 34–39 (2013)

    Article  CAS  Google Scholar 

  20. Pham, H., et al.: Using a combination of HAADF and SE imaging to locate Pt nanoparticles within a mesoporous silica diesel oxidation catalyst. Microsc. Microanal. 24(S1), 1700–1701 (2018). https://doi.org/10.1017/S143192761800898X

  21. Somorjai, G.A., Park, J.Y.: Concepts, instruments, and model systems that enabled the rapid evolution of surface science. Surf. Sci. 603(10–12), 1293–1300 (2009)

    Article  CAS  Google Scholar 

  22. Zhu, C., et al.: Product-specific active site motifs of Cu for electrochemical CO2 reduction. Chem. 7(2), 406–420 (2021)

    Article  CAS  Google Scholar 

  23. Ballestas-Barrientos, A., et al.: Interactions of plasmonic silver nanoparticles with high energy sites on multi-faceted rutile TiO2 photoanodes. ChemCatChem. 12, 469 (2020)

    Article  CAS  Google Scholar 

  24. Danilatos, G.D.: Review and outline of environmental SEM at present. J. Microsc. 162, 391–402 (1991)

    Article  Google Scholar 

  25. Greiner, M.T., et al.: Phase coexistence of multiple copper oxides on AgCu catalysts during ethylene epoxidation. ACS Catal. 8(3), 2286–2295 (2018)

    Article  CAS  Google Scholar 

  26. Yang, L., et al.: Making a hybrid microfluidic platform compatible for in situ imaging by vacuum-based techniques. J. Vac. Sci. Technol. A. 29(6), 061101 (2011)

    Article  Google Scholar 

  27. Yu, X.-Y.: In situ, in vivo, and in operando imaging and spectroscopy of liquids using microfluidics in vacuum. J. Vac. Sci. Technol. A. 38(4), 040804 (2020)

    Article  CAS  Google Scholar 

  28. Kolmakova, N., Kolmakov, A.: Scanning electron microscopy for in situ monitoring of semiconductor−liquid interfacial processes: electron assisted reduction of Ag ions from aqueous solution on the surface of TiO2 rutile nanowire. J. Phys. Chem. C. 114(40), 17233–17237 (2010)

    Article  CAS  Google Scholar 

  29. Wang, Z.-J., et al.: The coalescence behavior of two-dimensional materials revealed by multiscale in situ imaging during chemical vapor deposition growth. ACS Nano. 14(2), 1902–1918 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Acquisition of the Hitachi S-5200 was supported by a NSF EPSCOR Infrastructure Improvement grant. Research on the use of mesoporous silica for enhancing catalyst stability was supported by NSF GOALI grant CBET 1707127, and the authors acknowledge funding from the US Department of Energy, Office of Science, Catalysis Science Program grant DE-FG02-05ER15712. We thank Hitachi High Technologies North America for providing us access to the HF-5000 AC-STEM and the SU-9000 high-resolution SEM. The authors wish to thank Professor David Joy and Charlie Lyman for helpful discussions regarding imaging and microanalysis in the SEM and Dr. Frank Krumeich for providing some of the images in Figs. 18.1 and 18.7 in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhaya Datye .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Datye, A., DeLaRiva, A. (2023). Scanning Electron Microscopy (SEM). In: Wachs, I.E., Bañares, M.A. (eds) Springer Handbook of Advanced Catalyst Characterization. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-031-07125-6_18

Download citation

Publish with us

Policies and ethics

Navigation