Abstract

Arsenic (As) is a highly toxic and carcinogenic metalloid. Its accumulation in plants and subsequent consumption by animals and humans threaten life forms. In contrast, selenium (Se) is a metalloid, essential for many species, including humans and also considered beneficial for plants. Selenium plays an important role in many biological functions. Plants are the major source of dietary intake of Se for people across the world. Interest in the biological impact of Se has grown dramatically and Se field is expanding at a rapid pace in the last few years. Nano-selenium has attracted more attention due to a wide range of medical applications, enhanced antioxidant properties as well as less toxicity than inorganic and organic forms of Se. The antagonistic nature of Se against As toxicity in plants is well reported. This chapter focuses on various aspects of Se biology and advanced new approaches that insight into Se and nano-Se-mediated amelioration of As burden in plants. The interpretation of Se-induced changes at transcript and protein level will help to present a complete inventory of genes and proteins and the pathways involved in the reduction of As stress in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abbas G, Murtaza B, Bibi I, Shahid M, Niazi NK, Khan MI, Amjad M, Hussain M (2018) Arsenic uptake, toxicity, detoxification, and speciation in plants: physiological, biochemical, and molecular aspects. Int J Environ Res Public Health 15(1):59

    Article  PubMed Central  Google Scholar 

  • Abdelhameed RM, Darwesh OM, Rocha J, Silva AM (2019) IRMOF-3 biological activity enhancement by post-synthetic modification. Eur J Inorg Chem 2019(9):1243–1249

    Article  CAS  Google Scholar 

  • Ahmed SF, Kumar PS, Rozbu MR, Chowdhury AT, Nuzhat S, Rafa N, Mahlia TMI, Ong HC, Mofijur M (2022) Heavy metal toxicity, sources, and remediation techniques for contaminated water and soil. Environ Technol Innov 25:102114

    Article  CAS  Google Scholar 

  • Ali W, Mushtaq N, Javed T, Zhang H, Ali K, Rasool A, Farooqi A (2019) Vertical mixing with return irrigation water the cause of arsenic enrichment in groundwater of district Larkana Sindh, Pakistan. Environ Pollut 245:77–88

    Article  CAS  PubMed  Google Scholar 

  • Antoniadis V, Levizou E, Shaheen SM, Ok YS, Sebastian A, Baum C, Prasad MN, Wenzel WW, Rinklebe J (2017) Trace elements in the soil-plant interface: phytoavailability, translocation, and phytoremediation–a review. Earth Sci Rev 171:621–645

    Article  CAS  Google Scholar 

  • Arenhart RA, Bai Y, de Oliveira LFV, Neto LB, Schunemann M, dos Santos Maraschin F, Mariath J, Silverio A, Sachetto-Martins G, Margis R, Wang ZY (2014) New insights into aluminum tolerance in rice: the ASR5 protein binds the STAR1 promoter and other aluminum-responsive genes. Mol Plant 7(4):709–721

    Article  CAS  PubMed  Google Scholar 

  • Ashraf MA, Akbar A, Parveen A, Rasheed R, Hussain I, Iqbal M (2018) Phenological application of selenium differentially improves growth, oxidative defense and ion homeostasis in maize under salinity stress. Plant Physiol Biochem 123:268–280

    Article  CAS  PubMed  Google Scholar 

  • Awasthi S, Chauhan R, Srivastava S, Tripathi RD (2017) The journey of arsenic from soil to grain in rice. Front Plant Sci 8:1007

    Article  PubMed  PubMed Central  Google Scholar 

  • Awasthi S, Chauhan R, Dwivedi S, Srivastava S, Srivastava S, Tripathi RD (2018) A consortium of alga (Chlorella vulgaris) and bacterium (Pseudomonas putida) for amelioration of arsenic toxicity in rice: a promising and feasible approach. Environ Exp Bot 150:115–126

    Article  CAS  Google Scholar 

  • Awasthi S, Chauhan R, Indoliya Y, Chauhan AS, Mishra S, Agrawal L, Dwivedi S, Singh SN, Srivastava S, Singh PC, Chauhan PS (2021) Microbial consortium mediated growth promotion and Arsenic reduction in Rice: an integrated transcriptome and proteome profiling. Ecotoxicol Environ Saf 228:113004

    Article  CAS  Google Scholar 

  • Barranco-Medina S, Lázaro JJ, Dietz KJ (2009) The oligomeric conformation of peroxiredoxins links redox state to function. FEBS Lett 583(12):1809–1816

    Article  CAS  PubMed  Google Scholar 

  • Bi D, Liu S, Liu Y, Yin X (2010) Preparation of selenium-rich Chinese cabbage using selenium nanoparticle containing nutrient. CN Patent, 101734971, p 16

    Google Scholar 

  • Boldrin PF, Faquin V, Clemente ADCS, de Andrade T, Guilherme LRG (2018) Genotypic variation and biofortification with selenium in Brazilian wheat cultivars. J Environ Qual 47(6):1371–1379

    Article  CAS  PubMed  Google Scholar 

  • Castrillo G, Sánchez-Bermejo E, de Lorenzo L, Crevillén P, Fraile-Escanciano A, Tc M, Mouriz A, Catarecha P, Sobrino-Plata J, Olsson S, Leo del Puerto Y (2013) WRKY6 transcription factor restricts arsenate uptake and transposon activation in Arabidopsis. Plant Cell 25(8):2944–2957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandrakar V, Pandey N, Keshavkant S (2018) Plant responses to arsenic toxicity: morphology and physiology. In: Mechanisms of arsenic toxicity and tolerance in plants. Springer, Singapore, pp 27–48

    Chapter  Google Scholar 

  • Chauhan R, Awasthi S, Tripathi P, Mishra S, Dwivedi S, Niranjan A, Mallick S, Tripathi P, Pande V, Tripathi RD (2017) Selenite modulates the level of phenolics and nutrient element to alleviate the toxicity of arsenite in rice (Oryza sativa L.). Ecotoxicol Environ Saf 138:47–55

    Article  CAS  PubMed  Google Scholar 

  • Chauhan R, Awasthi S, Srivastava S, Dwivedi S, Pilon-Smits EA, Dhankher OP, Tripathi RD (2019) Understanding selenium metabolism in plants and its role as a beneficial element. Crit Rev Environ Sci Technol 49(21):1937–1958

    Article  CAS  Google Scholar 

  • Chauhan R, Awasthi S, Indoliya Y, Chauhan AS, Mishra S, Agrawal L, Srivastava S, Dwivedi S, Singh PC, Mallick S, Chauhan PS (2020) Transcriptome and proteome analyses reveal selenium mediated amelioration of arsenic toxicity in rice (Oryza sativa L.). J Hazard Mater 390:122122

    Article  CAS  PubMed  Google Scholar 

  • Cheboi PK, Siddiqui SA, Onyando J, Kiptum CK, Heinz V (2021) Effect of ploughing techniques on water use and yield of rice in Maugo small-holder irrigation scheme, Kenya. Agri Eng 3(1):110–117

    Google Scholar 

  • Devasagayam TPA, Tilak JC, Boloor KK, Sane KS, Ghaskadbi SS, Lele RD (2004) Free radicals and antioxidants in human health: current status and future prospects. Japi 52(794804):4

    Google Scholar 

  • Dixit G, Singh AP, Kumar A, Dwivedi S, Deeba F, Kumar S, Suman S, Adhikari B, Shukla Y, Trivedi PK, Pandey V (2015) Sulfur alleviates arsenic toxicity by reducing its accumulation and modulating proteome, amino acids and thiol metabolism in rice leaves. Sci Rep 5(1):1–16

    Article  Google Scholar 

  • Djanaguiraman M, Belliraj N, Bossmann SH, Prasad PV (2018) High-temperature stress alleviation by selenium nanoparticle treatment in grain sorghum. ACS Omega 3(3):2479–2491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Domokos-Szabolcsy E, Marton L, Sztrik A, Babka B, Prokisch J, Fari M (2012) Accumulation of red elemental selenium nanoparticles and their biological effects in Nicotinia tabacum. Plant Growth Regul 68(3):525–531

    Article  CAS  Google Scholar 

  • El Mehdawi AF, Jiang Y, Guignardi ZS, Esmat A, Pilon M, Pilon‐Smits EA, Schiavon M (2018) Influence of sulfate supply on selenium uptake dynamics and expression of sulfate/selenate transporters in selenium hyperaccumulator and nonhyperaccumulator Brassicaceae. New Phytologist 217(1):194–205

    Google Scholar 

  • El-Ramady H, Faizy SED, Abdalla N, Taha H, Domokos-Szabolcsy É, Fari M, Elsakhawy T, Omara AED, Shalaby T, Bayoumi Y, Shehata S (2020) Selenium and nano-selenium biofortification for human health: opportunities and challenges. Soil Syst 4(3):57

    Article  CAS  Google Scholar 

  • Feng X, Ma Q (2021) Transcriptome and proteome profiling revealed molecular mechanism of selenium responses in bread wheat (Triticum aestivum L.). BMC Plant Biol 21(1):1–16

    Article  CAS  Google Scholar 

  • Feng R, Wei C, Tu S (2013) The roles of selenium in protecting plants against abiotic stresses. Environ Exp Bot 87:58–68

    Article  CAS  Google Scholar 

  • Fordyce (2013) Selenium deficiency and toxicity in the environment. In: Essentials of medical geology. Springer, Dordrecht, pp 375–416

    Chapter  Google Scholar 

  • Gao X, Zhang J, Zhang L (2002) Hollow sphere selenium nanoparticles: their in-vitro anti hydroxyl radical effect. Adv Mater 14(4):290–293

    Article  CAS  Google Scholar 

  • Garousi F (2017) The essentiality of selenium for humans, animals, and plants, and the role of selenium in plant metabolism and physiology. Acta Univ Sapientiae Aliment 10(1):75–90

    CAS  Google Scholar 

  • Golubkina NA, Kosheleva OV, Krivenkov LV, Dobrutskaya HG, Nadezhkin S, Caruso G (2017) Intersexual differences in plant growth, yield, mineral composition and antioxidants of spinach (Spinacia oleracea L.) as affected by selenium form. Sci Hortic 225:350–358

    Article  CAS  Google Scholar 

  • Gupta M, Gupta S (2017) An overview of selenium uptake, metabolism, and toxicity in plants. Front Plant Sci 7:2074

    Article  PubMed  PubMed Central  Google Scholar 

  • Hartley-Whitaker J, Woods C, Meharg AA (2002) Is differential phytochelatin production related to decreased arsenate influx in arsenate tolerant Holcus lanatus? New Phytol 155(2):219–225

    Article  CAS  Google Scholar 

  • Hirano K, Kondo M, Aya K, Miyao A, Sato Y, Antonio BA, Namiki N, Nagamura Y, Matsuoka M (2013) Identification of transcription factors involved in rice secondary cell wall formation. Plant Cell Physiol 54(11):1791–1802

    Article  CAS  PubMed  Google Scholar 

  • Hosnedlova B, Kepinska M, Skalickova S, Fernandez C, Ruttkay-Nedecky B, Peng Q, Baron M, Melcova M, Opatrilova R, Zidkova J, Bjørklund G (2018) Nano-selenium and its nanomedicine applications: a critical review. Int J Nanomedicine 13:2107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu X, Dong W, Liu R (2015) Effects of the addition of selenium on trace element concentrations in Danshen (Salvia miltiorrhiza). Anal Lett 48(3):513–525

    Article  CAS  Google Scholar 

  • Huang C, Qin N, Sun L, Yu M, Hu W, Qi Z (2018) Selenium improves physiological parameters and alleviates oxidative stress in strawberry seedlings under low-temperature stress. Int J Mol Sci 19(7):1913

    Article  PubMed Central  Google Scholar 

  • Hussein HAA, Darwesh OM, Mekki BB (2019) Environmentally friendly nano-selenium to improve antioxidant system and growth of groundnut cultivars under sandy soil conditions. Biocatal Agri Biotechnol 18:101080

    Article  Google Scholar 

  • Ibrahim SA, Kerkadi A, Agouni A (2019) Selenium and health: an update on the situation in the Middle East and North Africa. Nutrients 11(7):1457

    Article  CAS  PubMed Central  Google Scholar 

  • Jiang C, Zu C, Lu D, Zheng Q, Shen J, Wang H, Li D (2017) Effect of exogenous selenium supply on photosynthesis, Na+ accumulation and antioxidative capacity of maize (Zea mays L.) under salinity stress. Sci Rep 7(1):1–14

    Google Scholar 

  • Joy EJ, Broadley MR, Young SD, Black CR, Chilimba AD, Ander EL, Barlow TS, Watts MJ (2015) Soil type influences crop mineral composition in Malawi. Sci Total Environ 505:587–595

    Article  CAS  PubMed  Google Scholar 

  • Khurana A, Tekula S, Saifi MA, Venkatesh P, Godugu C (2019) Therapeutic applications of selenium nanoparticles. Biomed Pharmacother 111:802–812

    Article  CAS  PubMed  Google Scholar 

  • Krishnamurthy A, Rathinasabapathi B (2013) Auxin and its transport play a role in plant tolerance to arsenite-induced oxidative stress in A rabidopsis thaliana. Plant Cell Environ 36(10):1838–1849

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Asif MH, Chakrabarty D, Tripathi RD, Dubey RS, Trivedi PK (2013) Expression of a rice Lambda class of glutathione S-transferase, OsGSTL2, in Arabidopsis provides tolerance to heavy metal and other abiotic stresses. J Hazard Mater 248:228–237

    Article  PubMed  Google Scholar 

  • Kumar A, Singh RP, Singh PK, Awasthi S, Chakrabarty D, Trivedi PK, Tripathi RD (2014) Selenium ameliorates arsenic induced oxidative stress through modulation of antioxidant enzymes and thiols in rice (Oryza sativa L.). Ecotoxicology 23(7):1153–1163

    Article  CAS  PubMed  Google Scholar 

  • Lara TS, de Lima Lessa JH, de Souza KRD, Corguinha APB, Martins FAD, Lopes G, Guilherme LRG (2019) Selenium biofortification of wheat grain via foliar application and its effect on plant metabolism. J Food Compos Anal 81:10–18

    Article  CAS  Google Scholar 

  • Lee KO, Jang HH, Jung BG, Chi YH, Lee JY, Choi YO, Lee JR, Lim CO, Cho MJ, Lee SY (2000) Rice 1Cys-peroxiredoxin over-expressed in transgenic tobacco does not maintain dormancy but enhances antioxidant activity. FEBS Lett 486(2):103–106

    Article  CAS  PubMed  Google Scholar 

  • Leija-Martínez P, Benavides-Mendoza A, Robledo-Olivo A, Ortega-Ortíz H, Sandoval-Rangel A, González-Morales S (2018) Lettuce biofortification with selenium in chitosan-polyacrylic acid complexes. Agronomy 8(12):275

    Article  Google Scholar 

  • Leybourne MI, Layton-Matthews D, Peter JM, Kidder JA (2022) Controls on groundwater selenium, arsenic and base metals in groundwater around a selenium-bearing volcanogenic massive sulfide deposit: constraints from stable isotopes, trace elements, and redox controls. In: Geochemistry: exploration, environment, analysis. Association of Applied Geochemists/Geological Society of London

    Google Scholar 

  • Li C, Ji J, Wang G, Li Z, Wang Y, Fan Y (2020) Over-expression of LcPDS, LcZDS, and LcCRTISO, genes from Wolfberry for carotenoid biosynthesis, enhanced carotenoid accumulation, and salt tolerance in Tobacco. Front Plant Sci 11:119

    Article  PubMed  PubMed Central  Google Scholar 

  • Lima LW, Checchio MV, dos Reis AR, de Cássia Alves R, Tezzoto T, Gratão PL (2019) Selenium restricts cadmium uptake and improve micronutrients and proline concentration in tomato fruits. Biocatal Agri Biotechnol 18:101057

    Article  Google Scholar 

  • Lindsay ER, Maathuis FJ (2017) New molecular mechanisms to reduce arsenic in crops. Trends Plant Sci 22(12):1016–1026

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Yang B, Cheng Y, Lin H (2015) Ameliorative effects of selenium on cadmium-induced oxidative stress and endoplasmic reticulum stress in the chicken kidney. Biol Trace Elem Res 167(2):308–319

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Lu S, Liu K, Wang S, Huang L, Guo L (2019) Proteomics: a powerful tool to study plant responses to biotic stress. Plant Methods 15(1):1–20

    Article  Google Scholar 

  • López-Bellido FJ, Sanchez V, Rivas I, López-Bellido RJ, López-Bellido L (2019) Wheat grain selenium content as affected by year and tillage system in a rainfed Mediterranean Vertisol. Field Crops Res 233:41–48

    Google Scholar 

  • Lyons G, Stangoulis J, Graham R (2003) High-selenium wheat: biofortification for better health. Nutr Res Rev 16(1):45–60

    Article  CAS  PubMed  Google Scholar 

  • Ma JF, Yamaji N, Mitani N, Xu XY, Su YH, McGrath SP, Zhao FJ (2008) Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proc Natl Acad Sci 105(29):9931–9935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malik JA, Goel S, Kaur N, Sharma S, Singh I, Nayyar H (2012) Selenium antagonises the toxic effects of arsenic on mungbean (Phaseolus aureus Roxb.) plants by restricting its uptake and enhancing the antioxidative and detoxification mechanisms. Environ Exp Bot 77:242–248

    Article  CAS  Google Scholar 

  • Mimmo T, Tiziani R, Valentinuzzi F, Lucini L, Nicoletto C, Sambo P, Scampicchio M, Pii Y, Cesco S (2017) Selenium biofortification in Fragaria× ananassa: implications on strawberry fruits quality, content of bioactive health beneficial compounds and metabolomic profile. Front Plant Sci 8:1887

    Article  PubMed  PubMed Central  Google Scholar 

  • Pandey C, Gupta M (2015) Selenium and auxin mitigates arsenic stress in rice (Oryza sativa L.) by combining the role of stress indicators, modulators and genotoxicity assay. J Hazard Mater 287:384–391

    Article  CAS  PubMed  Google Scholar 

  • Patel M, Parida AK (2022) Salinity mediated cross-tolerance of arsenic toxicity in the halophyte Salvadora persica L. through metabolomic dynamics and regulation of stomatal movement and photosynthesis. Environ Pollut 300:118888

    Article  CAS  PubMed  Google Scholar 

  • Peng Q, Wang M, Cui Z, Huang J, Chen C, Guo L, Liang D (2017) Assessment of bioavailability of selenium in different plant-soil systems by diffusive gradients in thin-films (DGT). Environ Pollut 225:637–643

    Article  CAS  PubMed  Google Scholar 

  • Pilon-Smits EA (2019) On the ecology of selenium accumulation in plants. Plants 8(7):197

    Article  CAS  PubMed Central  Google Scholar 

  • Pilon-Smits EA, Quinn CF, Tapken W, Malagoli M, Schiavon M (2009) Physiological functions of beneficial elements. Curr Opin Plant Biol 12(3):267–274

    Article  CAS  PubMed  Google Scholar 

  • Pokhrel GR, Wang KT, Zhuang H, Wu Y, Chen W, Lan Y, Zhu X, Li Z, Fu F, Yang G (2020) Effect of selenium in soil on the toxicity and uptake of arsenic in rice plant. Chemosphere 239:124712

    Article  CAS  PubMed  Google Scholar 

  • Prasad KS, Selvaraj K (2014) Biogenic synthesis of selenium nanoparticles and their effect on As (III)-induced toxicity on human lymphocytes. Biol Trace Elem Res 157(3):275–283

    Article  CAS  PubMed  Google Scholar 

  • Puccinelli M, Malorgio F, Terry LA, Tosetti R, Rosellini I, Pezzarossa B (2019) Effect of selenium enrichment on metabolism of tomato (Solanum lycopersicum) fruit during postharvest ripening. J Sci Food Agric 99(5):2463–2472

    Article  CAS  PubMed  Google Scholar 

  • Ramamurthy CH, Sampath KS, Arunkumar P, Kumar MS, Sujatha V, Premkumar K, Thirunavukkarasu C (2013) Green synthesis and characterization of selenium nanoparticles and its augmented cytotoxicity with doxorubicin on cancer cells. Bioprocess Biosyst Eng 36(8):1131–1139

    Article  CAS  PubMed  Google Scholar 

  • Reilly C (2006) Selenium in health and disease II: endemic selenium-related conditions in humans. In: Selenium in food and health, Springer, pp 85–110

    Google Scholar 

  • Roy S (2016) Function of MYB domain transcription factors in abiotic stress and epigenetic control of stress response in plant genome. Plant Signal Behav 11(1):e1117723

    Article  PubMed  Google Scholar 

  • Safari M, Ardebili ZO, Iranbakhsh A (2018) Selenium nano-particle induced alterations in expression patterns of heat shock factor A4A (HSFA4A), and high molecular weight glutenin subunit 1Bx (Glu-1Bx) and enhanced nitrate reductase activity in wheat (Triticum aestivum L.). Acta Physiol Plant 40(6):1–8

    Article  CAS  Google Scholar 

  • Schiavon M, Pilon-Smits EA (2017) Selenium biofortification and phytoremediation phytotechnologies: a review. J Environ Qual 46(1):10–19

    Article  CAS  PubMed  Google Scholar 

  • Sengupta D, Kannan M, Reddy AR (2011) A root proteomics-based insight reveals dynamic regulation of root proteins under progressive drought stress and recovery in Vigna radiata (L.) Wilczek. Planta 233(6):1111–1127

    Article  CAS  PubMed  Google Scholar 

  • Shahid M, Niazi NK, Khalid S, Murtaza B, Bibi I, Rashid MI (2018) A critical review of selenium biogeochemical behavior in soil-plant system with an inference to human health. Environ Pollut 234:915–934

    PubMed  Google Scholar 

  • Shi L, Xun W, Yue W, Zhang C, Ren Y, Shi L, Wang Q, Yang R, Lei F (2011) Effect of sodium selenite, Se-yeast and nano-elemental selenium on growth performance, Se concentration and antioxidant status in growing male goats. Small Rumin Res 96(1):49–52

    Article  Google Scholar 

  • Siddiqui SA, Blinov AV, Serov AV, Gvozdenko AA, Kravtsov AA, Nagdalian AA, Raffa VV, Maglakelidze DG, Blinova AA, Kobina AV, Golik AB (2021) Effect of selenium nanoparticles on germination of hordéum vulgáre barley seeds. CoatingsTech 11(7):862

    Article  CAS  Google Scholar 

  • Song WY, Yamaki T, Yamaji N, Ko D, Jung KH, Fujii-Kashino M, An G, Martinoia E, Lee Y, Ma JF (2014) A rice ABC transporter, OsABCC1, reduces arsenic accumulation in the grain. Proc Natl Acad Sci 111(44):15699–15704

    Google Scholar 

  • Subramanyam K, Du Laing G, Van Damme EJ (2019) Sodium selenate treatment using a combination of seed priming and foliar spray alleviates salinity stress in rice. Front Plant Sci 10:116

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun H, Dai H, Wang X, Wang G (2016) Physiological and proteomic analysis of selenium-mediated tolerance to Cd stress in cucumber (Cucumis sativus L.). Ecotoxicol Environ Saf 133:114–126

    Article  CAS  PubMed  Google Scholar 

  • Tan HW, Mo HY, Lau AT, Xu YM (2019) Selenium species: current status and potentials in cancer prevention and therapy. Int J Mol Sci 20(1):75

    Article  Google Scholar 

  • Terry N, Zayed AM, De Souza MP, Tarun AS (2000) Selenium in higher plants. Annu Rev Plant Biol 51(1):401–432

    Article  CAS  Google Scholar 

  • Thapa G, Sadhukhan A, Panda SK, Sahoo L (2012) Molecular mechanistic model of plant heavy metal tolerance. Biometals 25(3):489–505

    Article  CAS  PubMed  Google Scholar 

  • Tinggi U (2003) Essentiality and toxicity of selenium and its status in Australia: a review. Toxicol Lett 137(1-2):103–110

    Article  CAS  PubMed  Google Scholar 

  • Ullah H, Liu G, Yousaf B, Ali MU, Irshad S, Abbas Q, Ahmad R (2019) A comprehensive review on environmental transformation of selenium: recent advances and research perspectives. Environ Geochem Health 41(2):1003–1035

    Article  CAS  PubMed  Google Scholar 

  • Vahidi H, Barabadi H, Saravanan M (2020) Emerging selenium nanoparticles to combat cancer: a systematic review. J Clust Sci 31(2):301–309

    Article  CAS  Google Scholar 

  • Verma PK, Verma S, Meher AK, Pande V, Mallick S, Bansiwal AK, Tripathi RD, Dhankher OP, Chakrabarty D (2016) Overexpression of rice glutaredoxins (OsGrxs) significantly reduces arsenite accumulation by maintaining glutathione pool and modulating aquaporins in yeast. Plant Physiol Biochem 106:208–217

    Google Scholar 

  • Wang P, Xu X, Tang Z, Zhang W, Huang XY, Zhao FJ (2018) OsWRKY28 regulates phosphate and arsenate accumulation, root system architecture and fertility in rice. Front Plant Sci 9:1330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White PJ (2016) Selenium accumulation by plants. Ann Bot 117(2):217–235

    CAS  PubMed  Google Scholar 

  • Wisutiamonkul A, Ampomah-Dwamena C, Allan AC, Ketsa S (2017) Carotenoid accumulation in durian (Durio zibethinus) fruit is affected by ethylene via modulation of carotenoid pathway gene expression. Plant Physiol Biochem 115:308–319

    Article  CAS  PubMed  Google Scholar 

  • **ao Y, Huang Q, Zheng Z, Guan H, Liu S (2017) Construction of a Cordyceps sinensis exopolysaccharide-conjugated selenium nanoparticles and enhancement of their antioxidant activities. Int J Biol Macromol 99:483–491

    Article  CAS  PubMed  Google Scholar 

  • Yasin M, El-Mehdawi AF, Pilon-Smits EA, Faisal M (2015) Selenium-fortified wheat: potential of microbes for biofortification of selenium and other essential nutrients. Int J Phytoremediation 17(8):777–786

    Article  CAS  PubMed  Google Scholar 

  • Yazdi MH, Mahdavi M, Setayesh N, Esfandyar M, Shahverdi AR (2013) Selenium nanoparticle-enriched Lactobacillus brevis causes more efficient immune responses in vivo and reduces the liver metastasis in metastatic form of mouse breast cancer. DARU J Pharm Sci 21(1):1–9

    Article  Google Scholar 

  • Yu H (2005) Cultivation technology for production of ziziphus jujuba fruit rich in selenium. In: Nanotechnologies in Food and Agriculture. Springer, Cham

    Google Scholar 

  • Yu LJ, Luo YF, Liao B, **e LJ, Chen L, **ao S, Li JT, Hu SN, Shu WS (2012) Comparative transcriptome analysis of transporters, phytohormone and lipid metabolism pathways in response to arsenic stress in rice (Oryza sativa). New Phytol 195(1):97–112

    Article  CAS  PubMed  Google Scholar 

  • Zahedi SM, Hosseini MS, Meybodi NDH, da Silva JAT (2019) Foliar application of selenium and nano-selenium affects pomegranate (Punica granatum cv. Malase Saveh) fruit yield and quality. S Afr J Bot 124:350–358

    Article  CAS  Google Scholar 

  • Zhang L, Hu B, Li W, Che R, Deng K, Li H, Yu F, Ling H, Li Y, Chu C (2014) Os PT 2, a phosphate transporter, is involved in the active uptake of selenite in rice. New Phytol 201(4):1183–1191

    Article  CAS  PubMed  Google Scholar 

  • Zhang G, Yao X, Wang C, Wang D, Wei G (2019) Transcriptome analysis reveals the mechanism underlying improved glutathione biosynthesis and secretion in Candida utilis during selenium enrichment. J Biotechnol 304:89–96

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, He C, Yan R, Chen Y, Zhao P, Li M, Fan T, Yang T, Lu Y, Luo J, Ma X (2020) HIF-1 dependent reversal of cisplatin resistance via anti-oxidative nano selenium for effective cancer therapy. Chem Eng J 380:122540

    Article  CAS  Google Scholar 

  • Zhao FJ, McGrath SP, Meharg AA (2010a) Arsenic as a food chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies. Annu Rev Plant Biol 61:535–559

    Article  CAS  PubMed  Google Scholar 

  • Zhao XQ, Mitani N, Yamaji N, Shen RF, Ma JF (2010b) Involvement of silicon influx transporter OsNIP2; 1 in selenite uptake in rice. Plant Physiol 153(4):1871–1877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu YG, Pilon-Smits EA, Zhao FJ, Williams PN, Meharg AA (2009) Selenium in higher plants: understanding mechanisms for biofortification and phytoremediation. Trends Plant Sci 14(8):436–442

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

RC and SA are thankful to the Indian Council of Medical Research (ICMR) New Delhi, India for the award of ICMR-RA Fellowship [(No. 3/1/2(7)/Env./2020-NCDII & No. 3/1/2(5)/Env./2020-NCD-II respectively]. RDT is grateful to NASI, Prayagraj for the award of NASI-Senior Scientist Platinum Jubilee Fellowship.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chauhan, R., Awasthi, S., Singh, P.K., Dwivedi, S., Srivastava, S., Tripathi, R.D. (2022). Selenium and Nano-Selenium-Mediated Arsenic Stress Tolerance in Plants. In: Hossain, M.A., Ahammed, G.J., Kolbert, Z., El-Ramady, H., Islam, T., Schiavon, M. (eds) Selenium and Nano-Selenium in Environmental Stress Management and Crop Quality Improvement. Sustainable Plant Nutrition in a Changing World. Springer, Cham. https://doi.org/10.1007/978-3-031-07063-1_10

Download citation

Publish with us

Policies and ethics

Navigation