Coral Conservation from the Genomic Perspective on Symbiodiniaceae Diversity and Function in the Holobiont

  • Chapter
  • First Online:
Coral Reef Conservation and Restoration in the Omics Age

Part of the book series: Coral Reefs of the World ((CORW,volume 15))

Abstract

Coral reefs are critically supported by symbiosis with dinoflagellate algae in the family Symbiodiniaceae. The tightly linked coral-Symbiodiniaceae symbiosis is central to coral health because the algae provide the coral with most of their nutrition via the translocation of photosynthates; breakdown of this symbiosis leads to bleaching and eventual death of the coral. Symbiodiniaceae have differing lifestyles, ranging from symbionts with varied specificity and permanence in the host to those not yet found to associate with a host (i.e., putatively free-living). The phylogenetic diversity of these algae was recognized by their recent systematic re-classification as a family, and was further supported by comparative genomic analyses that reveal extensive genomic divergence and even greater sequence diversity than previously appreciated. Here, we review recent advances in Symbiodiniaceae genomics, the knowledge gained regarding lineage-specific innovations and ecological niches, and present a Symbiodiniaceae-centric view of coral holobionts. We discuss how our knowledge about Symbiodiniaceae evolution and diversification is essential for understanding the health and resilience of symbiotic interactions in coral holobionts. Given the high divergence and ecological flexibility of Symbiodiniaceae, a one-size-fits-all approach for designing environmentally robust corals may not be effective. When designing strategies for coral conservation, a context-specific holistic approach will require that algal biology and ecology are fully integrated into strategies to improve coral health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Andersson SG, Kurland CG (1998) Reductive evolution of resident genomes. Trends Microbiol 6:263–268

    Article  CAS  PubMed  Google Scholar 

  • Aranda M, Li Y, Liew YJ, Baumgarten S, Simakov O, Wilson MC, Piel J, Ashoor H, Bougouffa S, Bajic VB, Ryu T, Ravasi T, Bayer T, Micklem G, Kim H, Bhak J, LaJeunesse TC, Voolstra CR (2016) Genomes of coral dinoflagellate symbionts highlight evolutionary adaptations conducive to a symbiotic lifestyle. Sci Rep 6:39734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arif C, Daniels C, Bayer T, Banguera-Hinestroza E, Barbrook A, Howe CJ, LaJeunesse TC, Voolstra CR (2014) Assessing Symbiodinium diversity in scleractinian corals via next-generation sequencing-based genoty** of the ITS2 rDNA region. Mol Ecol 23:4418–4433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baird AH, Bhagooli R, Ralph PJ, Takahashi S (2009) Coral bleaching: the role of the host. Trends Ecol Evol 24:16–20

    Article  PubMed  Google Scholar 

  • Baker AC (2003) Flexibility and specificity in coral-algal symbiosis: diversity, ecology, and biogeography of Symbiodinium. Annu Rev Ecol Evol Syst 34:661–689

    Article  Google Scholar 

  • Barrera-Redondo J, Pinero D, Eguiarte LE (2020) Genomic, transcriptomic and epigenomic tools to study the domestication of plants and animals: a field guide for beginners. Front Genet 11:742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barshis DJ, Ladner JT, Oliver TA, Palumbi SR (2014) Lineage-specific transcriptional profiles of Symbiodinium spp. unaltered by heat stress in a coral host. Mol Biol Evol 31:1343–1352

    Article  CAS  PubMed  Google Scholar 

  • Beedessee G, Kubota T, Arimoto A, Nishitsuji K, Waller RF, Hisata K, Yamasaki S, Satoh N, Ji K, Shoguchi E (2020) Integrated omics unveil the secondary metabolic landscape of a basal dinoflagellate. BMC Biol 18:139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Behrendt L, Salek MM, Trampe EL, Fernandez VI, Lee KS, Kühl M, Stocker R (2020) Pheno Chip: a single-cell phenomic platform for high-throughput photophysiological analyses of microalgae. Sci Adv 6:eabb2754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bellantuono AJ, Dougan KE, Granados-Cifuentes C, Rodriguez-Lanetty M (2019) Free-living and symbiotic lifestyles of a thermotolerant coral endosymbiont display profoundly distinct transcriptomes under both stable and heat stress conditions. Mol Ecol 28:5265–5281

    Article  CAS  PubMed  Google Scholar 

  • Buerger P, Alvarez-Roa C, Coppin CW, Pearce SL, Chakravarti LJ, Oakeshott JG, Edwards OR, van Oppen MJH (2020) Heatevolved microalgal symbionts increase coral bleaching tolerance. Sci Adv 6:eaba2498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buerger P, van Oppen MJH (2018) Viruses in corals: hidden drivers of coral bleaching and disease? Microbiol Aust 39:9–12

    Article  Google Scholar 

  • Burt JA, Camp EF, Enochs IC, Johansen JL, Morgan KM, Riegl B, Hoey AS (2020) Insights from extreme coral reefs in a changing world. Coral Reefs 39:495–507

    Article  Google Scholar 

  • Camp EF, Kahlke T, Signal B, Oakley CA, Lutz A, Davy SK, Suggett DJ, Leggat WP (2022) Proteome metabolome and transcriptome data for three Symbiodiniaceae under ambient and heat stress conditions. Sci Data 9:153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campion-Alsumard T, Golubic S, Priess K (1995) Fungi in corals: symbiosis or disease? Interaction between polyps and fungi causes pearl-like skeleton biomineralization. Mar Ecol Prog Ser 117:137–147

    Article  Google Scholar 

  • Chakravarti LJ, Buerger P, Levin RA, van Oppen MJH (2020) Gene regulation underpinning increased thermal tolerance in a laboratory-evolved coral photosymbiont. Mol Ecol 29:1684–1703

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, González-Pech RA, Stephens TG, Bhattacharya D, Chan CX (2020) Evidence that inconsistent gene prediction can mislead analysis of dinoflagellate genomes. J Phycol 56:6–10

    Article  PubMed  PubMed Central  Google Scholar 

  • Cooke I, Mead O, Whalen C, Boote C, Moya A, Ying H, Robbins S, Strugnell JM, Darling A, Miller D, Voolstra CR, Adamska M, Consortium of Australian Academy of Science Boden Research Conference Participants (2019) Molecular techniques and their limitations shape our view of the holobiont. Zoology 137:125695

    Article  PubMed  Google Scholar 

  • Correa AM, Welsh RM, Vega Thurber RL (2013) Unique nucleocytoplasmic dsDNA and +ssRNA viruses are associated with the dinoflagellate endosymbionts of corals. ISME J 7:13–27

    Article  CAS  PubMed  Google Scholar 

  • Correa AMS, Ainsworth TD, Rosales SM, Thurber AR, Butler CR, Vega Thurber RL (2016) Viral outbreak in corals associated with an in situ bleaching event: atypical herpes-like viruses and a new megavirus infecting Symbiodinium. Front Microbiol 7:127

    Article  PubMed  PubMed Central  Google Scholar 

  • Cumbo VR, Baird AH, Moore RB, Negri AP, Neilan BA, Salih A, van Oppen MJ, Wang Y, Marquis CP (2013) Chromera velia is endosymbiotic in larvae of the reef corals Acropora digitifera and A. tenuis. Protist 164:237–244

    Article  PubMed  Google Scholar 

  • Del Campo J, Pombert JF, Slapeta J, Larkum A, Keeling PJ (2017) The ‘other’ coral symbiont: Ostreobium diversity and distribution. ISME J 11:296–299

    Article  PubMed  Google Scholar 

  • Dietzel A, Bode M, Connolly SR, Hughes TP (2020) Long-term shifts in the colony size structure of coral populations along the great barrier Reef. Proc R Soc B 287:20201432

    Article  PubMed  PubMed Central  Google Scholar 

  • Dougan KE, González-Pech RA, Stephens TG, Shah S, Chen Y, Ragan MA, Bhattacharya D, Chan CX (2022) Genome-powered classification of microbial eukaryotes: focus on coral algal symbionts. Trends Microbiol. https://doi.org/10.1016/j.tim.2022.02.001

  • Dunlap WC, Shick JM (1998) Ultraviolet radiation-absorbing mycosporine-like amino acids in coral reef organisms: a biochemical and environmental perspective. J Phycol 34:418–430

    Article  Google Scholar 

  • Figueroa RI, Howe-Kerr LI, Correa AMS (2021) Direct evidence of sex and a hypothesis about meiosis in Symbiodiniaceae. Sci Rep 11:18838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gabay Y, Weis VM, Davy SK (2018) Symbiont identity influences patterns of symbiosis establishment, host growth, and asexual reproduction in a model cnidarian-dinoflagellate symbiosis. Biol Bull 234:1–10

    Article  PubMed  Google Scholar 

  • Golubic S, Radtke G, Le Campion-Alsumard T (2005) Endolithic fungi in marine ecosystems. Trends Microbiol 13:229–235

    Article  CAS  PubMed  Google Scholar 

  • González-Pech RA, Bhattacharya D, Ragan MA, Chan CX (2019) Genome evolution of coral reef symbionts as intracellular residents. Trends Ecol Evol 34:799–806

    Article  PubMed  Google Scholar 

  • Gonzalez-Pech RA, Ragan MA, Chan CX (2017) Signatures of adaptation and symbiosis in genomes and transcriptomes of Symbiodinium. Sci Rep 7:15021

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • González-Pech RA, Stephens TG, Chen Y, Mohamed AR, Cheng Y, Shah S, Dougan KE, Fortuin MDA, Lagorce R, Burt DW, Bhattacharya D, Ragan MA, Chan CX (2021) Comparison of 15 dinoflagellate genomes reveals extensive sequence and structural divergence in family Symbiodiniaceae and genus Symbiodinium. BMC Biol 19:73

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goulet TL, Erill I, Ascunce MS, Finley SJ, Javan GT (2020) Conceptualization of the holobiont paradigm as it pertains to corals. Front Physiol 11:566968

    Article  PubMed  PubMed Central  Google Scholar 

  • Great Barrier Reef Marine Park Authority (2020) Reef snapshot: summer 2019–20. 8p

    Google Scholar 

  • Hansen G, Daugbjerg N (2009) Symbiodinium natans sp. nov.: a “free-living” dinoflagellate from Tenerife (Northeast-Atlantic Ocean). J Phycol 45:251–263

    Article  PubMed  Google Scholar 

  • Helm M, Motorin Y (2017) Detecting RNA modifications in the epitranscriptome: predict and validate. Nat Rev Genet 18:275–291

    Article  CAS  PubMed  Google Scholar 

  • Hillyer KE, Tumanov S, Villas-Boas S, Davy SK (2016) Metabolite profiling of symbiont and host during thermal stress and bleaching in a model cnidarian-dinoflagellate symbiosis. J Exp Biol 219:516–527

    PubMed  Google Scholar 

  • Hoegh-Guldberg O (1999) Climate change, coral bleaching and the future of the world's coral reefs. Mar Freshwat Res 50:839–866

    Google Scholar 

  • Hou Y, Lin S (2009) Distinct gene number-genome size relationships for eukaryotes and non-eukaryotes: gene content estimation for dinoflagellate genomes. PLoS One 4:e6978

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hu M, Zheng X, Fan C-M, Zheng Y (2020) Lineage dynamics of the endosymbiotic cell type in the soft coral Xenia. Nature 582:534–538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes TP, Kerry JT, Alvarez-Noriega M, Alvarez-Romero JG, Anderson KD, Baird AH, Babcock RC, Beger M, Bellwood DR, Berkelmans R, Bridge TC, Butler IR, Byrne M, Cantin NE, Comeau S, Connolly SR, Cumming GS, Dalton SJ, Diaz-Pulido G, Eakin CM, Figueira WF, Gilmour JP, Harrison HB, Heron SF, Hoey AS, Hobbs JA, Hoogenboom MO, Kennedy EV, Kuo CY, Lough JM, Lowe RJ, Liu G, McCulloch MT, Malcolm HA, McWilliam MJ, Pandolfi JM, Pears RJ, Pratchett MS, Schoepf V, Simpson T, Skirving WJ, Sommer B, Torda G, Wachenfeld DR, Willis BL, Wilson SK (2017) Global warming and recurrent mass bleaching of corals. Nature 543:373–377

    Article  CAS  PubMed  Google Scholar 

  • Hume BCC, Smith EG, Ziegler M, Warrington HJM, Burt JA, LaJeunesse TC, Wiedenmann J, Voolstra CR (2019) SymPortal: a novel analytical framework and platform for coral algal symbiont next-generation sequencing ITS2 profiling. Mol Ecol Resour 19:1063–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iha C, Dougan KE, Varela JA, Avila V, Jackson CJ, Bogaert KA, Chen Y, Judd LM, Wick R, Holt KE, Pasella MM, Ricci F, Repetti SI, Medina M, Marcelino VR, Chan CX, Verbruggen H (2021) Genomic adaptations to an endolithic lifestyle in the coral-associated alga Ostreobium. Curr Biol 31:1393–1402.e5

    Article  CAS  PubMed  Google Scholar 

  • Jacobovitz MR, Rupp S, Voss PA, Maegele I, Gornik SG, Guse A (2021) Dinoflagellate symbionts escape vomocytosis by host cell immune suppression. Nat Microbiol 6:769–782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaspers C, Fraune S, Arnold AE, Miller DJ, TCG B, Voolstra CR, Consortium of Australian Academy of Science Boden Research Conference Participants (2019) Resolving structure and function of metaorganisms through a holistic framework combining reductionist and integrative approaches. Zoology 133:81–87

    Article  PubMed  Google Scholar 

  • Jeong HJ, Lee SY, Kang N, Yoo Y, Lim AS, Lee MJ, Yih W, Yamashita H, LaJeunesse T (2014a) Genetics and morphology characterize the dinoflagellate Symbiodinium voratum, n. sp., (Dinophyceae) as the sole representative of Symbiodinium Clade E. J Eukaryot Microbiol 61:75–94

    Article  CAS  PubMed  Google Scholar 

  • Jones AM, Berkelmans R, van Oppen MJ, Mieog JC, Sinclair W (2008) A community change in the algal endosymbionts of a scleractinian coral following a natural bleaching event: field evidence of acclimatization. Proc R Soc B 275:1359–1365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klinger CM, Paoli L, Newby RJ, Wang MY, Carroll HD, Leblond JD, Howe CJ, Dacks JB, Bowler C, Cahoon AB, Dorrell RG, Richardson E (2018) Plastid transcript editing across dinoflagellate lineages shows lineage-specific application but conserved trends. Genome Biol Evol 10:1019–1038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klueter A, Crandall JB, Archer FI, Teece MA, Coffroth MA (2015) Taxonomic and environmental variation of metabolite profiles in marine dinoflagellates of the genus Symbiodinium. Meta 5:74–99

    Google Scholar 

  • LaJeunesse TC, Lambert G, Andersen RA, Coffroth MA, Galbraith DW (2005) Symbiodinium (Pyrrhophyta) genome sizes (DNA content) are smallest among dinoflagellates. J Phycol 41:880–886

    Article  CAS  Google Scholar 

  • LaJeunesse TC, Parkinson JE, Gabrielson PW, Jeong HJ, Reimer JD, Voolstra CR, Santos SR (2018) Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr Biol 28:2570–2580.e6

    Article  CAS  PubMed  Google Scholar 

  • LaJeunesse TC, Wiedenmann J, Casado-Amezúa P, D’Ambra I, Turnham KE, Nitschke MR, Oakley CA, Goffredo S, Spano CA, Cubillos VM, Davy SK, Suggett DJ (2022) Revival of Philozoon Geddes for host-specialized dinoflagellates, ‘zooxanthellae’, in animals from coastal temperate zones of northern and southern hemispheres. Eur J Phycol 57:166–180

    Article  Google Scholar 

  • Lawson CA, Possell M, Seymour JR, Raina J-B, Suggett DJ (2019) Coral endosymbionts (Symbiodiniaceae) emit species-specific volatilomes that shift when exposed to thermal stress. Sci Rep 9:17395

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lawson CA, Raina JB, Deschaseaux E, Hrebien V, Possell M, Seymour JR, Suggett DJ (2021) Heat stress decreases the diversity, abundance and functional potential of coral gas emissions. Glob Chang Biol 27:879–891

    Article  CAS  PubMed  Google Scholar 

  • Lawson CA, Seymour JR, Possell M, Suggett DJ, Raina J-B (2020) The volatilomes of Symbiodiniaceae-associated bacteria are influenced by chemicals derived from their algal partner. Front Mar Sci 7:106

    Article  Google Scholar 

  • Levin RA, Voolstra CR, Weynberg KD, van Oppen MJH (2017) Evidence for a role of viruses in the thermal sensitivity of coral photosymbionts. ISME J 11:808–812

    Article  CAS  PubMed  Google Scholar 

  • Levy S, Elek A, Grau-Bové X, Menéndez-Bravo S, Iglesias M, Tanay A, Mass T, Sebé-Pedrós A (2021) A stony coral cell atlas illuminates the molecular and cellular basis of coral symbiosis, calcification, and immunity. Cell 184:2973–2987.e18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li M, Liu H, Guo Y, Chen F, Zi X, Fan R, Li H, Cai Y, He C, Lu Z, Zhao X (2020a) Single symbiotic cell transcriptome sequencing of coral. Genomics 112:5305–5312

    Article  CAS  PubMed  Google Scholar 

  • Li T, Yu L, Song B, Song Y, Li L, Lin X, Lin S (2020b) Genome improvement and core gene set refinement of Fugacium kawagutii. Microorganisms 8:102

    Article  CAS  PubMed Central  Google Scholar 

  • Li X, **ong X, Yi C (2016) Epitranscriptome sequencing technologies: decoding RNA modifications. Nat Methods 14:23–31

    Article  PubMed  CAS  Google Scholar 

  • Liew YJ, Li Y, Baumgarten S, Voolstra CR, Aranda M (2017) Condition-specific RNA editing in the coral symbiont Symbiodinium microadriaticum. PLoS Genet 13:e1006619

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lin S (2011) Genomic understanding of dinoflagellates. Res Microbiol 162:551–569

    Article  CAS  PubMed  Google Scholar 

  • Lin S, Cheng S, Song B, Zhong X, Lin X, Li W, Li L, Zhang Y, Zhang H, Ji Z, Cai M, Zhuang Y, Shi X, Lin L, Wang L, Wang Z, Liu X, Yu S, Zeng P, Hao H, Zou Q, Chen C, Li Y, Wang Y, Xu C, Meng S, Xu X, Wang J, Yang H, Campbell DA, Sturm NR, Dagenais-Bellefeuille S, Morse D (2015) The Symbiodinium kawagutii genome illuminates dinoflagellate gene expression and coral symbiosis. Science 350:691–694

    Article  CAS  PubMed  Google Scholar 

  • Lin S, Song B, Morse D (2021) Spatial organization of dinoflagellate genomes: novel insights and remaining critical questions. J Phycol 57:1674–1678

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Begik O, Lucas MC, Ramirez JM, Mason CE, Wiener D, Schwartz S, Mattick JS, Smith MA, Novoa EM (2019) Accurate detection of m6A RNA modifications in native RNA sequences. Nat Commun 10:4079

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu H, Stephens TG, González-Pech RA, Beltran VH, Lapeyre B, Bongaerts P, Cooke I, Aranda M, Bourne DG, Forêt S, Miller DJ, van Oppen MJH, Voolstra CR, Ragan MA, Chan CX (2018) Symbiodinium genomes reveal adaptive evolution of functions related to coral-dinoflagellate symbiosis. Commun Biol 1:95

    Article  PubMed  PubMed Central  Google Scholar 

  • Lo R, Dougan KE, Chen Y, Shah S, Bhattacharya D, Chan CX (2022) Alignment-free analysis of whole-genome sequences from Symbiodiniaceae reveals differential phylogenetic signals in distinct regions. Front Plant Sci 13:815714

    Article  PubMed  PubMed Central  Google Scholar 

  • Maire J, Girvan SK, Barkla SE, Perez-Gonzalez A, Suggett DJ, Blackall LL, van Oppen MJH (2021) Intracellular bacteria are common and taxonomically diverse in cultured and in hospite algal endosymbionts of coral reefs. ISME J 15:2028–2042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manzello DP, Matz MV, Enochs IC, Valentino L, Carlton RD, Kolodziej G, Serrano X, Towle EK, Jankulak M (2019) Role of host genetics and heat-tolerant algal symbionts in sustaining populations of the endangered coral Orbicella faveolata in the Florida Keys with ocean warming. Glob Chang Biol 25:1016–1031

    Article  PubMed  Google Scholar 

  • Maor-Landaw K, van Oppen MJH, McFadden GI (2020) Symbiotic lifestyle triggers drastic changes in the gene expression of the algal endosymbiont Breviolum minutum (Symbiodiniaceae). Ecol Evol 10:451–466

    Article  PubMed  Google Scholar 

  • Marinov GK, Trevino AE, **ang T, Kundaje A, Grossman AR, Greenleaf WJ (2021) Transcription-dependent domain-scale three-dimensional genome organization in the dinoflagellate Breviolum minutum. Nat Genet 53:613–617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maruyama S, Weis VM (2021) Limitations of using cultured algae to study cnidarian-algal symbioses and suggestions for future studies. J Phycol 57:30–38

    Article  PubMed  Google Scholar 

  • Matthews JL, Raina J-B, Kahlke T, Seymour JR, van Oppen MJH, Suggett DJ (2020) Symbiodiniaceae-bacteria interactions: rethinking metabolite exchange in reef-building corals as multi-partner metabolic networks. Environ Microbiol 22:1675–1687

    Article  PubMed  Google Scholar 

  • Mayfield AB, Aguilar C, Kolodziej G, Enochs IC, Manzello DP (2021) Shotgun proteomic analysis of thermally challenged reef corals. Front Mar Sci 8:660153

    Article  Google Scholar 

  • McCutcheon JP, Moran NA (2011) Extreme genome reduction in symbiotic bacteria. Nat Rev Microbiol 10:13–26

    Article  PubMed  CAS  Google Scholar 

  • McKenna V, Archibald J, Beinart R, Dawson M, Hentschel U, Keeling P, Lopez J, Martín-Durán J, Petersen J, Sigwart J, Simakov O, Sutherland K, Sweet M, Talbot N, Thompson A, Bender S, Harrison P, Rajan J, Cochrane G, Berriman M, Lawniczak M, Blaxter M (2021) The aquatic Symbiosis genomics project: probing the evolution of symbiosis across the tree of life [version 1; peer review: 1 approved with reservations]. Wellcome Open Res 6:254

    Article  Google Scholar 

  • Mendez GS, Delwiche CF, Apt KE, Lippmeier JC (2015) Dinoflagellate gene structure and intron splice sites in a genomic tandem array. J Eukaryot Microbiol 62:679–687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Messyasz A, Rosales SM, Mueller RS, Sawyer T, Correa AMS, Thurber AR, Vega Thurber R (2020) Coral bleaching phenotypes associated with differential abundances of nucleocytoplasmic large DNA viruses. Front Mar Sci 7:555474

    Article  Google Scholar 

  • Mohamed AR, Andrade N, Moya A, Chan CX, Negri AP, Bourne DG, Ying H, Ball EE, Miller DJ (2020a) Dual RNA-sequencing analyses of a coral and its native symbiont during the establishment of symbiosis. Mol Ecol 29:3921–3937

    Article  CAS  PubMed  Google Scholar 

  • Mohamed AR, Chan CX, Ragan MA, Zhang J, Cooke I, Ball EE, Miller DJ (2020b) Comparative transcriptomic analyses of Chromera and Symbiodiniaceae. Environ Microbiol Rep 12:435–443

    Article  CAS  PubMed  Google Scholar 

  • Mohamed AR, Cumbo V, Harii S, Shinzato C, Chan CX, Ragan MA, Bourne DG, Willis BL, Ball EE, Satoh N, Miller DJ (2016) The transcriptomic response of the coral Acropora digitifera to a competent Symbiodinium strain: the symbiosome as an arrested early phagosome. Mol Ecol 25:3127–3141

    Article  CAS  PubMed  Google Scholar 

  • Mohamed AR, Cumbo VR, Harii S, Shinzato C, Chan CX, Ragan MA, Satoh N, Ball EE, Miller DJ (2018) Deciphering the nature of the coral–Chromera association. ISME J 12:776–790

    Article  PubMed  PubMed Central  Google Scholar 

  • Moran NA, Plague GR (2004) Genomic changes following host restriction in bacteria. Curr Opin Genet Dev 14:627–633

    Article  CAS  PubMed  Google Scholar 

  • Moran NA, Sloan DB (2015) The hologenome concept: helpful or hollow? PLoS Biol 13:e1002311

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moran NA, Wernegreen JJ (2000) Lifestyle evolution in symbiotic bacteria: insights from genomics. Trends Ecol Evol 15:321–326

    Article  CAS  PubMed  Google Scholar 

  • Moustafa A, Evans AN, Kulis DM, Hackett JD, Erdner DL, Anderson DM, Bhattacharya D (2010) Transcriptome profiling of a toxic dinoflagellate reveals a gene-rich protist and a potential impact on gene expression due to bacterial presence. PLoS One 5:e9688

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Muller HJ (1964) The relation of recombination to mutational advance. Mutat Res 106:2–9

    Article  CAS  PubMed  Google Scholar 

  • Mungpakdee S, Shinzato C, Takeuchi T, Kawashima T, Koyanagi R, Hisata K, Tanaka M, Goto H, Fujie M, Lin S, Satoh N, Shoguchi E (2014) Massive gene transfer and extensive RNA editing of a symbiotic dinoflagellate plastid genome. Genome Biol Evol 6:1408–1422

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nand A, Zhan Y, Salazar OR, Aranda M, Voolstra CR, Dekker J (2021) Genetic and spatial organization of the unusual chromosomes of the dinoflagellate Symbiodinium microadriaticum. Nat Genet 53:618–629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nitschke MR, Craveiro SC, Brandão C, Fidalgo C, Serôdio J, Calado AJ, Frommlet JC (2020) Description of Freudenthalidium gen. nov. and Halluxium gen. nov. to formally recognize clades Fr3 and H as genera in the family Symbiodiniaceae (Dinophyceae). J Phycol 56:923–940

    Article  CAS  PubMed  Google Scholar 

  • NOAA Coral Reef Watch (2018) Coral bleaching during and since the 2014–2017 global coral bleaching event. https://coralreefwatch.noaa.gov/satellite/analyses_guidance/global_coral_bleaching_2014-17_status.php

  • Parkinson JE, Baumgarten S, Michell CT, Baums IB, LaJeunesse TC, Voolstra CR (2016) Gene expression variation resolves species and individual strains among coral-associated dinoflagellates within the genus Symbiodinium. Genome Biol Evol 8:665–680

    Article  PubMed  PubMed Central  Google Scholar 

  • Payne A, Holmes N, Clarke T, Munro R, Debebe BJ, Loose M (2021) Readfish enables targeted nanopore sequencing of gigabase-sized genomes. Nat Biotechnol 39:442–450

    Article  CAS  PubMed  Google Scholar 

  • Peixoto RS, Rosado PM, Leite DC, Rosado AS, Bourne DG (2017) Beneficial microorganisms for corals (BMC): proposed mechanisms for coral health and resilience. Front Microbiol 8:341

    Article  PubMed  PubMed Central  Google Scholar 

  • Pernice M, Raina J-B, Rädecker N, Cárdenas A, Pogoreutz C, Voolstra CR (2020) Down to the bone: the role of overlooked endolithic microbiomes in reef coral health. ISME J 14:325–334

    Article  PubMed  Google Scholar 

  • Pochon X, LaJeunesse TC (2021) Miliolidium n. gen, a new symbiodiniacean genus whose members associate with soritid foraminifera or are free-living. J Eukaryot Microbiol 68:e12856

    Article  Google Scholar 

  • Reich HG, Kitchen SA, Stankiewicz KH, Devlin-Durante M, Fogarty ND, Baums IB (2021) Genomic variation of an endosymbiotic dinoflagellate (Symbiodinium ‘fitti’) among closely related coral hosts. Mol Ecol 30:3500–3514

    Article  PubMed  Google Scholar 

  • Reyes-Nivia C, Diaz-Pulido G, Kline D, Guldberg OH, Dove S (2013) Ocean acidification and warming scenarios increase microbioerosion of coral skeletons. Glob Chang Biol 19:1919–1929

    Article  PubMed  Google Scholar 

  • Robbins SJ, Singleton CM, Chan CX, Messer LF, Geers AU, Ying H, Baker A, Bell SC, Morrow KM, Ragan MA, Miller DJ, Forêt S, ReFuGe2020 Consortium, Voolstra CR, Tyson GW, Bourne DG (2019) A genomic view of the reef-building coral Porites lutea and its microbial symbionts. Nat Microbiol 4:2090–2100

    Article  PubMed  CAS  Google Scholar 

  • Rowan R (1991) Molecular systematics of symbiotic algae. J Phycol 27:661–666

    Article  CAS  Google Scholar 

  • Rowan R, Powers DA (1991) A molecular genetic classification of zooxanthellae and the evolution of animal-algal symbioses. Science 251:1348–1351

    Article  CAS  PubMed  Google Scholar 

  • Saad OS, Lin X, Ng TY, Li L, Ang P, Lin S (2020) Genome size, rDNA copy, and qPCR assays for Symbiodiniaceae. Front Microbiol 11:847

    Article  PubMed  PubMed Central  Google Scholar 

  • Saad OS, Lin X, Ng TY, Lim L, Ang P, Lin S (2022) Species richness and generalists–specialists mosaicism of symbiodiniacean symbionts in corals from Hong Kong revealed by high-throughput ITS sequencing. Coral Reefs 41:1–12

    Article  Google Scholar 

  • Schaefer M, Kapoor U, Jantsch MF (2017) Understanding RNA modifications: the promises and technological bottlenecks of the ‘epitranscriptome’. Open Biol 7:170077

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shah S, Chen Y, Bhattacharya D, Chan CX (2020) Sex in Symbiodiniaceae dinoflagellates: genomic evidence for independent loss of the canonical synaptonemal complex. Sci Rep 10:9792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shoguchi E, Beedessee G, Hisata K, Tada I, Narisoko H, Satoh N, Kawachi M, Shinzato C (2021) A new dinoflagellate genome illuminates a conserved gene cluster involved in sunscreen biosynthesis. Genome Biol Evol 13:evaa235

    Article  PubMed  CAS  Google Scholar 

  • Shoguchi E, Beedessee G, Tada I, Hisata K, Kawashima T, Takeuchi T, Arakaki N, Fujie M, Koyanagi R, Roy MC, Kawachi M, Hidaka M, Satoh N, Shinzato C (2018) Two divergent Symbiodinium genomes reveal conservation of a gene cluster for sunscreen biosynthesis and recently lost genes. BMC Genomics 19:458

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shoguchi E, Shinzato C, Kawashima T, Gyoja F, Mungpakdee S, Koyanagi R, Takeuchi T, Hisata K, Tanaka M, Fujiwara M, Hamada M, Seidi A, Fujie M, Usami T, Goto H, Yamasaki S, Arakaki N, Suzuki Y, Sugano S, Toyoda A, Kuroki Y, Fujiyama A, Medina M, Coffroth Mary A, Bhattacharya D, Satoh N (2013) Draft assembly of the Symbiodinium minutum nuclear genome reveals dinoflagellate gene structure. Curr Biol 23:1399–1408

    Article  CAS  PubMed  Google Scholar 

  • Shoguchi E, Yoshioka Y, Shinzato C, Arimoto A, Bhattacharya D, Satoh N (2020) Correlation between organelle genetic variation and RNA editing in dinoflagellates associated with the coral Acropora digitifera. Genome Biol Evol 12:203–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slamovits CH, Fast NM, Law JS, Keeling PJ (2004) Genome compaction and stability in microsporidian intracellular parasites. Curr Biol 14:891–896

    Article  CAS  PubMed  Google Scholar 

  • Stat M, Bird CE, Pochon X, Chasqui L, Chauka LJ, Concepcion GT, Logan D, Takabayashi M, Toonen RJ, Gates RD (2011) Variation in Symbiodinium ITS2 sequence assemblages among coral colonies. PLoS One 6:e15854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stephens TG, González-Pech RA, Cheng Y, Mohamed AR, Burt DW, Bhattacharya D, Ragan MA, Chan CX (2020) Genomes of the dinoflagellate Polarella glacialis encode tandemly repeated single-exon genes with adaptive functions. BMC Biol 18:56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stephens TG, Ragan MA, Bhattacharya D, Chan CX (2018) Core genes in diverse dinoflagellate lineages include a wealth of conserved dark genes with unknown functions. Sci Rep 8:17175

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Suggett DJ, Smith DJ (2020) Coral bleaching patterns are the outcome of complex biological and environmental networking. Glob Chang Biol 26:68–79

    Article  PubMed  Google Scholar 

  • Thornhill DJ, Howells EJ, Wham DC, Steury TD, Santos SR (2017) Population genetics of reef coral endosymbionts (Symbiodinium, Dinophyceae). Mol Ecol 26:2640–2659

    Article  CAS  PubMed  Google Scholar 

  • Thornhill DJ, Lajeunesse TC, Santos SR (2007) Measuring rDNA diversity in eukaryotic microbial systems: how intragenomic variation, pseudogenes, and PCR artifacts confound biodiversity estimates. Mol Ecol 16:5326–5340

    Article  CAS  PubMed  Google Scholar 

  • Tortorelli G, Oakley CA, Davy SK, van Oppen MJH, McFadden GI (2021) Cell wall proteomic analysis of the cnidarian photosymbionts Breviolum minutum and Cladocopium goreaui. J Eukaryot Microbiol 69:e12870

    PubMed  PubMed Central  Google Scholar 

  • Trench RK (1993) Microalgal-invertebrate symbiosis, a review. Endocytobiosis Cell Res 9:135–175

    Google Scholar 

  • Voolstra CR, Quigley KM, Davies SW, Parkinson JE, Peixoto RS, Aranda M, Baker AC, Barno AR, Barshis DJ, Benzoni F, Bonito V, Bourne DG, Buitrago-López C, Bridge TCL, Chan CX, Combosch DJ, Craggs J, Frommlet JC, Herrera S, Quattrini AM, Röthig T, Reimer JD, Rubio-Portillo E, Suggett DJ, Villela H, Ziegler M, Sweet M (2021a) Consensus guidelines for advancing coral holobiont genome and specimen voucher deposition. Front Mar Sci 8:701784

    Article  Google Scholar 

  • Voolstra CR, Suggett DJ, Peixoto RS, Parkinson JE, Quigley KM, Silveira CB, Sweet M, Muller EM, Barshis DJ, Bourne DG, Aranda M (2021b) Extending the natural adaptive capacity of coral holobionts. Nat Rev Earth Environ 2:747–762

    Article  Google Scholar 

  • Wegley L, Edwards R, Rodriguez-Brito B, Liu H, Rohwer F (2007) Metagenomic analysis of the microbial community associated with the coral Porites astreoides. Environ Microbiol 9:2707–2719

    Article  CAS  PubMed  Google Scholar 

  • Weis VM (2008) Cellular mechanisms of cnidarian bleaching: stress causes the collapse of symbiosis. J Exp Biol 211:3059–3066

    Article  CAS  PubMed  Google Scholar 

  • Wernegreen JJ (2005) For better or worse: genomic consequences of intracellular mutualism and parasitism. Curr Opin Genet Dev 15:572–583

    Article  CAS  PubMed  Google Scholar 

  • Wiener D, Schwartz S (2021) The epitranscriptome beyond m6A. Nat Rev Genet 22:119–131

    Article  CAS  PubMed  Google Scholar 

  • Williams A, Chiles EN, Conetta D, Pathmanathan JS, Cleves PA, Putnam HM, Su X, Bhattacharya D (2021a) Metabolomic shifts associated with heat stress in coral holobionts. Sci Adv 7:eabd4210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams A, Pathmanathan JS, Stephens TG, Su X, Chiles EN, Conetta D, Putnam HM, Bhattacharya D (2021b) Multi-omic characterization of the thermal stress phenome in the stony coral Montipora capitata. PeerJ 9:e12335

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wisecaver JH, Hackett JD (2011) Dinoflagellate genome evolution. Annu Rev Microbiol 65:369–387

    Article  CAS  PubMed  Google Scholar 

  • Woo YH, Ansari H, Otto TD, Klinger CM, Kolisko M, Michálek J, Saxena A, Shanmugam D, Tayyrov A, Veluchamy A, Ali S, Bernal A, del Campo J, Cihlář J, Flegontov P, Gornik SG, Hajdušková E, Horák A, Janouškovec J, Katris NJ, Mast FD, Miranda-Saavedra D, Mourier T, Naeem R, Nair M, Panigrahi AK, Rawlings ND, Padron-Regalado E, Ramaprasad A, Samad N, Tomčala A, Wilkes J, Neafsey DE, Doerig C, Bowler C, Keeling PJ, Roos DS, Dacks JB, Templeton TJ, Waller RF, Lukeš J, Oborník M, Pain A (2015) Chromerid genomes reveal the evolutionary path from photosynthetic algae to obligate intracellular parasites. elife 4:e06974

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

S.S. is supported by a University of Queensland Research Training Program scholarship. This work is supported by the Australian Research Council via a Discovery Projects grant DP19012474 awarded to C.X.C. and D.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheong **n Chan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shah, S., Dougan, K.E., Bhattacharya, D., Chan, C.X. (2022). Coral Conservation from the Genomic Perspective on Symbiodiniaceae Diversity and Function in the Holobiont. In: van Oppen, M.J.H., Aranda Lastra, M. (eds) Coral Reef Conservation and Restoration in the Omics Age. Coral Reefs of the World, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-031-07055-6_6

Download citation

Publish with us

Policies and ethics

Navigation