Lattice-Free Simplices with Lattice Width \(2d - o(d)\)

  • Conference paper
  • First Online:
Integer Programming and Combinatorial Optimization (IPCO 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13265))

Abstract

The Flatness theorem states that the maximum lattice width \(\mathrm {Flt}(d)\) of a d-dimensional lattice-free convex set is finite. It is the key ingredient for Lenstra’s algorithm for integer programming in fixed dimension, and much work has been done to obtain bounds on \(\mathrm {Flt}(d)\). While most results have been concerned with upper bounds, only few techniques are known to obtain lower bounds. In fact, the previously best known lower bound \(\mathrm {Flt}(d) \ge 1.138d\) arises from direct sums of a 3-dimensional lattice-free simplex.

In this work, we establish the lower bound \(\mathrm {Flt}(d) \ge 2d - O(\sqrt{d})\), attained by a family of lattice-free simplices. Our construction is based on a differential equation that naturally appears in this context.

Additionally, we provide the first local maximizers of the lattice width of 4- and 5-dimensional lattice-free convex bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 59.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 74.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Andersen, K., Louveaux, Q., Weismantel, R., Wolsey, L.A.: Inequalities from two rows of a simplex tableau. In: Fischetti, M., Williamson, D.P. (eds.) IPCO 2007. LNCS, vol. 4513, pp. 1–15. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72792-7_1

    Chapter  Google Scholar 

  2. Averkov, G., Basu, A., Paat, J.: Approximation of corner polyhedra with families of intersection cuts. SIAM J. Optim. 28(1), 904–929 (2018)

    Article  MathSciNet  Google Scholar 

  3. Averkov, G., Codenotti, G., Macchia, A., Santos, F.: A local maximizer for lattice width of 3-dimensional hollow bodies. Discrete Appl. Math. 298, 129–142 (2021)

    Article  MathSciNet  Google Scholar 

  4. Baes, M., Oertel, T., Weismantel, R.: Duality for mixed-integer convex minimization. Math. Prog. 158(1), 547–564 (2015). https://doi.org/10.1007/s10107-015-0917-y

    Article  MathSciNet  MATH  Google Scholar 

  5. Balas, E.: Intersection cuts-a new type of cutting planes for integer programming. Oper. Res. 19(1), 19–39 (1971)

    Article  MathSciNet  Google Scholar 

  6. Banaszczyk, W., Litvak, A.E., Pajor, A., Szarek, S.J.: The flatness theorem for nonsymmetric convex bodies via the local theory of banach spaces. Math. oper. res. 24(3), 728–750 (1999)

    Article  MathSciNet  Google Scholar 

  7. Basu, A., Conforti, M., Cornuéjols, G., Weismantel, R., Weltge, S.: Optimality certificates for convex minimization and helly numbers. Oper. Res. Lett. 45(6), 671–674 (2017)

    Article  MathSciNet  Google Scholar 

  8. Basu, A., Conforti, M., Di Summa, M.: A geometric approach to cut-generating functions. Math. Program. 151(1), 153–189 (2015). https://doi.org/10.1007/s10107-015-0890-5

    Article  MathSciNet  MATH  Google Scholar 

  9. Blair, C.E., Jeroslow, R.G.: Constructive characterizations of the value-function of a mixed-integer program i. Discrete Appl. Math. 9(3), 217–233 (1984)

    Article  MathSciNet  Google Scholar 

  10. Blair, C.E., Jeroslow, R.G.: Constructive characterizations of the value function of a mixed-integer program ii. Discrete Appl. Math. 10(3), 227–240 (1985)

    Article  MathSciNet  Google Scholar 

  11. Borozan, V., Cornuéjols, G.: Minimal valid inequalities for integer constraints. Math. Oper. Res. 34(3), 538–546 (2009)

    Article  MathSciNet  Google Scholar 

  12. Cevallos, A., Weltge, S., Zenklusen, R.: Lifting linear extension complexity bounds to the mixed-integer setting. In: Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms. pp. 788–807. SIAM (2018)

    Google Scholar 

  13. Codenotti, G., Santos, F.: Hollow polytopes of large width. Proc. Am. Math. Soc. 148(2), 835–850 (2020)

    Article  MathSciNet  Google Scholar 

  14. Dash, S., Dobbs, N.B., Günlük, O., Nowicki, T.J., Świrszcz, G.M.: Lattice-free sets, multi-branch split disjunctions, and mixed-integer programming. Math. Program. 145(1), 483–508 (2013). https://doi.org/10.1007/s10107-013-0654-z

    Article  MathSciNet  MATH  Google Scholar 

  15. Del Pia, A., Weismantel, R.: Relaxations of mixed integer sets from lattice-free polyhedra. Ann. Oper. Res. 240(1), 95–117 (2015). https://doi.org/10.1007/s10479-015-2024-0

    Article  MathSciNet  MATH  Google Scholar 

  16. Doolittle, J., Katthän, L., Nill, B., Santos, F.: Empty simplices of large width. ar**v preprint. ar**v:2103.14925 (2021)

  17. Fukasawa, R., Poirrier, L., Xavier, Á.S.: The (not so) trivial lifting in two dimensions. Math. Prog. Comp. 11(2), 211–235 (2018). https://doi.org/10.1007/s12532-018-0146-5

    Article  MathSciNet  MATH  Google Scholar 

  18. Herr, K., Rehn, T., Schürmann, A.: On lattice-free orbit polytopes. Discrete Comput. Geom. 53(1), 144–172 (2014). https://doi.org/10.1007/s00454-014-9638-x

    Article  MathSciNet  MATH  Google Scholar 

  19. Hurkens, C.: Blowing up convex sets in the plane. Linear Algebra Appl. 134, 121–128 (1990)

    Article  MathSciNet  Google Scholar 

  20. Khinchine, A.: A quantitative formulation of kronecker’s theory of approximation. Izv. Akad. Nauk SSR Ser. Matem. 12(2), 113–122 (1948)

    Google Scholar 

  21. Lenstra, H.W., Jr.: Integer programming with a fixed number of variables. Math. Oper. Res. 8(4), 538–548 (1983)

    Article  MathSciNet  Google Scholar 

  22. Morán, R., Diego, A., Dey, S.S., Vielma, J.P.: A strong dual for conic mixed-integer programs. SIAM J. Optim. 22(3), 1136–1150 (2012)

    Article  MathSciNet  Google Scholar 

  23. Rudelson, M.: Distances between non-symmetric convex bodies and the \( mm^* \)-estimate. Positivity 24, 161–178 (2000)

    Article  MathSciNet  Google Scholar 

  24. Sebő, A.: An introduction to empty lattice simplices. In: Cornuéjols, G., Burkard, R.E., Woeginger, G.J. (eds.) IPCO 1999. LNCS, vol. 1610, pp. 400–414. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48777-8_30

    Chapter  Google Scholar 

  25. Wolsey, L.A.: The b-hull of an integer program. Discrete Appl. Math. 3(3), 193–201 (1981)

    Article  MathSciNet  Google Scholar 

  26. Wolsey, L.A.: Integer programming duality: price functions and sensitivity analysis. Math. Program. 20(1), 173–195 (1981). https://doi.org/10.1007/BF01589344

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Gennadiy Averkov and Paco Santos for valuable feedback and discussions on earlier stages of this work, and Amitabh Basu for discussions about applications of the Flatness theorem within optimization. This work was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), project number 451026932.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Weltge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mayrhofer, L., Schade, J., Weltge, S. (2022). Lattice-Free Simplices with Lattice Width \(2d - o(d)\). In: Aardal, K., Sanità, L. (eds) Integer Programming and Combinatorial Optimization. IPCO 2022. Lecture Notes in Computer Science, vol 13265. Springer, Cham. https://doi.org/10.1007/978-3-031-06901-7_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06901-7_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06900-0

  • Online ISBN: 978-3-031-06901-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation