Molecular Cavity QED

  • Chapter
  • First Online:
Optical Whispering Gallery Modes for Biosensing
  • 366 Accesses

Abstract

Cavity quantum electrodynamics (cavity QED) is the study of the strong coupling between two-level emitters and high-Q optical cavities, where the quantum nature of the light plays a crucial role. Thus far, the relevant cavity QED experiments have been performed by using various particles, including neutral atoms, trapped ions, quantum dots, and nitrogen–vacancy centers. Here, we focus on the cavity QED with the molecules placed inside or close to a microcavity. The molecules have the complex energy structures and the short energy-level lifetimes, posing the experimental challenges. Nevertheless, the strong molecule–cavity coupling regime is still accessible by carefully designing the cavity structure and controlling the ambient environment. The strong emitter–cavity coupling does not only shorten the measurement time in quantum metrology but also enhances the sensitivity of a sensor. The fundamental limit of the measurement uncertainty is set by the Heisenberg uncertainty principle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In some literatures, a factor 1/3 is introduced to account for a randomly oriented dipole moment.

References

  1. H. Walther, B.T.H. Varcoe, B.G. Englert, T. Becker, Cavity quantum electrodynamics. Rep. Prog. Phys. 69, 1325–1382 (2006). https://doi.org/10.1088/0034-4885/69/5/R02

    Article  ADS  Google Scholar 

  2. S. Gleyzes, S. Kuhr, C. Guerlin, J. Bernu, S. Deléglise, U.B. Hoff, M. Brune, J.M. Raimond, S. Haroche, Quantum jumps of light recording the birth and death of a photon in a cavity. Nature 446, 297–300 (2007). https://doi.org/10.1038/nature05589

    Article  ADS  Google Scholar 

  3. C.J. Hood, M.S. Chapman, T.W. Lynn, H.J. Kimble, Real-rime cavity QED with single atoms. Phys. Rev. Lett. 80, 4157–4160 (1998). https://doi.org/10.1103/PhysRevLett.80.4157

    Article  ADS  Google Scholar 

  4. J.P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L.V. Keldysh, V.D. Kulakovskii, T.L. Reinecke, A. Forchel, Strong coupling in a single quantum dot-semiconductor microcavity system. Nature 432, 197–200 (2004). https://doi.org/10.1038/nature02969

    Article  ADS  Google Scholar 

  5. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H.M. Gibbs, G. Rupper, C. Ell, O.B. Shchekin, D.G. Deppe, Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature 432, 200–203 (2004). https://doi.org/10.1038/nature03119

    Article  ADS  Google Scholar 

  6. Y.S. Park, A.K. Cook, H. Wang, Cavity QED with diamond nanocrystals and silica microspheres. Nano Lett. 6, 2075–2079 (2006). https://doi.org/10.1021/nl061342r

    Article  ADS  Google Scholar 

  7. D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vučković, H. Park, M.D. Lukin, Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity. Nano Lett. 10, 3922–3926 (2010). https://doi.org/10.1021/nl101662v

    Article  ADS  Google Scholar 

  8. A. Wallraff, D.I. Schuster, A. Blais, L. Frunzio, R.S. Huang, J. Majer, S. Kumar, S.M. Girvin, R.J. Schoelkopf, Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162–167 (2004). https://doi.org/10.1038/nature02851

    Article  ADS  Google Scholar 

  9. K.J. Vahala, Optical microcavities. Nature 424, 839–846 (2003). https://doi.org/10.1038/nature01939

    Article  ADS  Google Scholar 

  10. Y. Akahane, T. Asano, B.S. Song, S. Noda, High-Q photonic nanocavity in a two-dimensional photonic crystal. Nature 425, 944–947 (2003). https://doi.org/10.1038/nature02063

    Article  ADS  Google Scholar 

  11. J. Zmuidzinas, Superconducting microresonators: physics and applications. Annu. Rev. Condens. Matter Phys. 3, 169–214 (2012). https://doi.org/10.1146/annurev-conmatphys-020911-125022

    Article  Google Scholar 

  12. T. Niemczyk, F. Deppe, H. Huebl, E.P. Menzel, F. Hocke, M.J. Schwarz, J.J. Garcia-Ripoll, D. Zueco, T. Hümmer, E. Solano, A. Marx, R. Gross, Circuit quantum electrodynamics in the ultrastrong-coupling regime. Nat. Phys. 6, 772–776 (2010). https://doi.org/10.1038/nphys1730

    Article  Google Scholar 

  13. F. Yoshihara, T. Fuse, S. Ashhab, K. Kakuyanagi, S. Saito, K. Semba, Superconducting qubit-oscillator circuit beyond the ultrastrong-coupling regime. Nat. Phys. 13, 44–47 (2017). https://doi.org/10.1038/nphys3906

    Article  Google Scholar 

  14. D. Yu, M. Humar, K. Meserve, R.C. Bailey, S. Nic Chormaic, F. Vollmer, Whispering-gallery-mode sensors for biological and physical sensing. Nat. Rev. Methods Primers 1, 83 (2021). https://doi.org/10.1038/s43586-021-00079-2

  15. M.I. Kolobov, L. Davidovich, E. Giacobino, C. Fabre, Role of pum** statistics and dynamics of atomic polarization in quantum fluctuations of laser sources. Phys. Rev. A 47, 1431–1446 (1993). https://doi.org/10.1103/PhysRevA.47.1431

    Article  ADS  Google Scholar 

  16. R.J. Thompson, G. Rempe, H.J. Kimble, Observation of normal-mode splitting for an atom in an optical cavity. Phys. Rev. Lett. 68, 1132–1135 (1992). https://doi.org/10.1103/PhysRevLett.68.1132

    Article  ADS  Google Scholar 

  17. A. Boca, R. Miller, K.M. Birnbaum, A.D. Boozer, J. McKeever, H.J. Kimble, Observation of the vacuum Rabi spectrum for one trapped atom. Phys. Rev. Lett. 93, 233603 (2004). https://doi.org/10.1103/PhysRevLett.93.233603

    Article  ADS  Google Scholar 

  18. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E.L. Hu, A. Imamoğlu, Quantum nature of a strongly coupled single quantum dot-cavity system. Nature 445, 896–899 (2007). https://doi.org/10.1038/nature05586

    Article  ADS  Google Scholar 

  19. D.W. Vernooy, A. Furusawa, N.P. Georgiades, V.S. Ilchenko, H.J. Kimble, Cavity QED with high-\(Q\) whispering gallery modes. Phys. Rev. A 57, R2293–R2296 (1998). https://doi.org/10.1103/PhysRevA.57.R2293

    Article  ADS  Google Scholar 

  20. E. Peter, P. Senellart, D. Martrou, A. Lemaître, J. Hours, J.M. Gérard, J. Bloch, Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity. Phys. Rev. Lett. 95, 067401 (2005). https://doi.org/10.1103/PhysRevLett.95.067401

    Article  ADS  Google Scholar 

  21. R. Chikkaraddy, B. de Nijs, F. Benz, S.J. Barrow, O.A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, J.J. Baumberg, Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature 535, 127–130 (2016). https://doi.org/10.1038/nature17974

    Article  ADS  Google Scholar 

  22. R. Chikkaraddy, V.A. Turek, N. Kongsuwan, F. Benz, C. Carnegie, T. van de Goor, B. de Nijs, A. Demetriadou, O. Hess, U.F. Keyser, J.J. Baumberg, Map** nanoscale hotspots with single-molecule emitters assembled into plasmonic nanocavities using DNA origami. Nano Lett. 18, 405–411 (2018). https://doi.org/10.1021/acs.nanolett.7b04283

    Article  ADS  Google Scholar 

  23. O.S. Ojambati, R. Chikkaraddy, W.D. Deacon, M. Horton, D. Kos, V.A. Turek, U.F. Keyser, J.J. Baumberg, Quantum electrodynamics at room temperature coupling a single vibrating molecule with a plasmonic nanocavity. Nat. Commun. 10, 1049 (2019). https://doi.org/10.1038/s41467-019-08611-5

    Article  ADS  Google Scholar 

  24. K. Santhosh, O. Bitton, L. Chuntonov, G. Haran, Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit. Nat. Commun. 7, 11823 (2016). https://doi.org/10.1038/ncomms11823

    Article  ADS  Google Scholar 

  25. E.M. Purcell, Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69, 681 (1946). https://doi.org/10.1103/PhysRev.69.674.2

    Article  Google Scholar 

  26. T. Aoki, B. Dayan, E. Wilcut, W.P. Bowen, A.S. Parkins, T.J. Kippenberg, K.J. Vahala, H.J. Kimble, Observation of strong coupling between one atom and a monolithic microresonator. Nature 443, 671–674 (2006). https://doi.org/10.1038/nature05147

    Article  ADS  Google Scholar 

  27. C. Junge, D. O’Shea, J. Volz, A. Rauschenbeutel, Strong coupling between single atoms and nontransversal photons. Phys. Rev. Lett. 110, 213604 (2013). https://doi.org/10.1103/PhysRevLett.110.213604

    Article  ADS  Google Scholar 

  28. E. Will, L. Masters, A. Rauschenbeutel, M. Scheucher, J. Volz, Coupling a single trapped atom to a whispering-gallery-mode microresonator. Phys. Rev. Lett. 126, 233602 (2021). https://doi.org/10.1103/PhysRevLett.126.233602

    Article  ADS  Google Scholar 

  29. T. Ido, H. Katori, Recoil-free spectroscopy of neutral Sr atoms in the Lamb-Dicke regime. Phys. Rev. Lett. 91, 053001 (2003). https://doi.org/10.1103/PhysRevLett.91.053001

    Article  ADS  Google Scholar 

  30. M. Rosenblit, Y. Japha, P. Horak, R. Folman, Simultaneous optical trap** and detection of atoms by microdisk resonators. Phys. Rev. A 73, 063805 (2006). https://doi.org/10.1103/PhysRevA.73.063805

    Article  ADS  Google Scholar 

  31. F.L. Kien, V.I. Balykin, K. Hakuta, Atom trap and waveguide using a two-color evanescent light field around a subwavelength-diameter optical fiber. Phys. Rev. A 70, 063403 (2004). https://doi.org/10.1103/PhysRevA.70.063403

    Article  ADS  Google Scholar 

  32. E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S.T. Dawkins, A. Rauschenbeutel, Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber. Phys. Rev. Lett. 104, 203603 (2010). https://doi.org/PhysRevLett.104.203603

  33. D. Yu, F. Vollmer, Microscale whispering-gallery-mode light sources with lattice-confined atoms. Sci. Rep. 11, 13899 (2021). https://doi.org/10.1038/s41598-021-93295-5

    Article  ADS  Google Scholar 

  34. S.L. Campbell, R.B. Hutson, G.E. Marti, A. Goban, N.D. Oppong, R.L. McNally, L. Sonderhouse, J.M. Robinson, W. Zhang, B.J. Bloom, J. Ye, A Fermi-degenerate three-dimensional optical lattice clock. Science 358, 90–94 (2017). https://doi.org/10.1126/science.aam5538

    Article  ADS  Google Scholar 

  35. L. Amico, D. Aghamalyan, F. Auksztol, H. Crepaz, R. Dumke, L.C. Kwek, Superfluid qubit systems with ring shaped optical lattices. Sci. Rep. 4, 4298 (2014). https://doi.org/10.1038/srep04298

    Article  ADS  Google Scholar 

  36. T. Haug, R. Dumke, L.C. Kwek, L. Amico, Topological pum** in Aharonov-Bohm rings. Commun. Phys. 2, 127 (2019). https://doi.org/10.1038/s42005-019-0229-2

    Article  Google Scholar 

  37. J. Franck, Elementary processes of photochemical reactions. Trans. Faraday Soc. 21, 536–542 (1926). https://doi.org/10.1039/TF9262100536

    Article  Google Scholar 

  38. E. Condon, A theory of intensity distribution in band systems. Phys. Rev. 28, 1182–1201 (1926). https://doi.org/10.1103/PhysRev.28.1182

    Article  ADS  MATH  Google Scholar 

  39. E.U. Condon, Nuclear motions associated with electron transitions in diatomic molecules. Phys. Rev. 32, 858–872 (1928). https://doi.org/10.1103/PhysRev.32.858

    Article  ADS  MATH  Google Scholar 

  40. M. Kasha, Characterization of electronic transitions in complex molecules. Discuss. Faraday Soc. 9, 14–19 (1950). https://doi.org/10.1039/DF9500900014

    Article  Google Scholar 

  41. S.J. Strickler, R.A. Berg, Relationship between absorption intensity and fluorescence lifetime of molecules. J. Chem. Phys. 37, 814–822 (1962). https://doi.org/10.1063/1.1733166

    Article  ADS  Google Scholar 

  42. P.-H. Chung, C. Tregidgo, K. Suhling, Determining a fluorophore’s transition dipole moment from fluorescence lifetime measurements in solvents of varying refractive index. Methods Appl. Fluoresc. 4, 045001 (2016). https://doi.org/10.1088/2050-6120/4/4/045001

    Article  ADS  Google Scholar 

  43. S. Arnold, Microspheres, photonic atoms and the physics of nothing. Am. Sci. 89, 414–421 (2001)

    Article  ADS  Google Scholar 

  44. S. Götzinger, L. de S. Menezes, A. Mazzei, S. Kühn, V. Sandoghdar, O. Benson, Controlled photon transfer between two individual nanoemitters via shared high-\(Q\) modes of a microsphere resonator. Nano Lett. 6, 1151–1154 (2006). https://doi.org/10.1021/nl060306p

  45. C. Ciracì, R.T. Hill, J.J. Mock, Y. Urzhumov, A.I. Fernández-Domínguez, S.A. Maier, J.B. Pendry, A. Chilkoti, D.R. Smith, Probing the ultimate limits of plasmonic enhancement. Science 337, 1072–1074 (2012). https://doi.org/10.1126/science.1224823

    Article  ADS  Google Scholar 

  46. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, W.E. Moerner, Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nat. Photon. 3, 654–657 (2009). https://doi.org/10.1038/nphoton.2009.187

    Article  ADS  Google Scholar 

  47. G.M. Akselrod, C. Argyropoulos, T.B. Hoang, C. Ciracì, C. Fang, J. Huang, D.R. Smith, M.H. Mikkelsen, Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas. Nat. Photon. 8, 835–840 (2014). https://doi.org/10.1038/nphoton.2014.228

    Article  ADS  Google Scholar 

  48. S. Franke, S. Hughes, M.K. Dezfouli, P.T. Kristensen, K. Busch, A. Knorr, M. Richter, Quantization of quasinormal modes for open cavities and plasmonic cavity quantum electrodynamics. Phys. Rev. Lett. 122, 213901 (2019). https://doi.org/10.1103/PhysRevLett.122.213901

    Article  ADS  Google Scholar 

  49. D. Melnikau, R. Esteban, D. Savateeva, A. Sánchez-Iglesias, M. Grzelczak, M.K. Schmidt, L.M. Liz-Marzán, J. Aizpurua, Y.P. Rakovich, Rabi splitting in photoluminescence spectra of hybrid systems of gold nanorods and J-aggregates. J. Phys. Chem. Lett. 7, 354–362 (2016). https://doi.org/10.1021/acs.jpclett.5b02512

    Article  Google Scholar 

  50. M. Wersäll, J. Cuadra, T.J. Antosiewicz, S. Balci, T. Shegai, Observation of mode splitting in photoluminescence of individual plasmonic nanoparticles strongly coupled to molecular excitons. Nano Lett. 17, 551–558 (2017). https://doi.org/10.1021/acs.nanolett.6b04659

    Article  ADS  Google Scholar 

  51. O. Kapon, R. Yitzhari, A. Palatnik, Y.R. Tischler, Vibrational strong light-matter coupling using a wavelength-tunable mid-infrared open microcavity. J. Phys. Chem. C 121, 18845–18853 (2017). https://doi.org/10.1021/acs.jpcc.7b06999

    Article  Google Scholar 

  52. M. Muallem, A. Palatnik, G.D. Nessim, Y.R. Tischler, Strong light-matter coupling and hybridization of molecular vibrations in a low-loss infrared microcavity. J. Phys. Chem. Lett. 7, 2002–2008 (2016). https://doi.org/10.1021/acs.jpclett.6b00617

    Article  Google Scholar 

  53. A. Palatnik, H. Aviv, Y.R. Tischler, Microcavity laser based on a single molecule thick high gain layer. ACS Nano 11, 4514–4520 (2017). https://doi.org/10.1021/acsnano.6b08092

    Article  Google Scholar 

  54. G.M. Akselrod, E.R. Young, K.W. Stone, A. Palatnik, V. Bulović, Y.R. Tischler, Reduced lasing threshold from organic dye microcavities. Phys. Rev. B 90, 035209 (2014). https://doi.org/10.1103/PhysRevB.90.035209

    Article  ADS  Google Scholar 

  55. A. Palatnik, Y.R. Tischler, Solid-state Rhodamine 6G microcavity laser. IEEE Photonics Technol. Lett. 28, 1823–1826 (2016). https://doi.org/10.1109/LPT.2016.2573200

    Article  ADS  Google Scholar 

  56. D. Wang, H. Kelkar, D. Martin-Cano, D. Rattenbacher, A. Shkarin, T. Utikal, S. Götzinger, V. Sandoghdar, Turning a molecule into a coherent two-level quantum system. Nat. Phys. 15, 483–489 (2019). https://doi.org/10.1038/s41567-019-0436-5

    Article  Google Scholar 

  57. C.L. Degen, F. Reinhard, P. Cappellaro, Quantum sensing. Rev. Mod. Phys. 89, 035002 (2017). https://doi.org/10.1103/RevModPhys.89.035002

    Article  ADS  MathSciNet  Google Scholar 

  58. F.T. Arecchi, E. Courtens, R. Gilmore, H. Thomas, Atomic coherent states in quantum optics. Phys. Rev. A 6, 2211–2237 (1972). https://doi.org/10.1103/PhysRevA.6.2211

    Article  ADS  Google Scholar 

  59. M. Kitagawa, M. Ueda, Squeezed spin states. Phys. Rev. A 47, 5138–5143 (1993). https://doi.org/10.1103/PhysRevA.47.5138

    Article  ADS  Google Scholar 

  60. D.J. Wineland, J.J. Bollinger, W.M. Itano, F.L. Moore, D.J. Heinzen, Spin squeezing and reduced quantum noise in spectroscopy. Phys. Rev. A 46, R6797–R6800 (1992). https://doi.org/10.1103/PhysRevA.46.R6797

    Article  ADS  Google Scholar 

  61. D.J. Wineland, J.J. Bollinger, W.M. Itano, D.J. Heinzen, Squeezed atomic states and projection noise in spectroscopy. Phys. Rev. A 50, 67–88 (1994). https://doi.org/10.1103/PhysRevA.50.67

    Article  ADS  Google Scholar 

  62. H. Lee, P. Kok, J.P. Dowling, A quantum Rosetta stone for interferometry. J. Mod. Opt. 49, 2325–2338 (2002). https://doi.org/10.1080/0950034021000011536

    Article  ADS  MathSciNet  Google Scholar 

  63. M. Zwierz, C.A. Pérez-Delgado, P. Kok, General optimality of the Heisenberg limit for quantum metrology. Phys. Rev. Lett. 105, 180402 (2010). https://doi.org/10.1103/PhysRevLett.105.180402

    Article  ADS  Google Scholar 

  64. M. Nielsen, I. Chuang, Quantum Computation and Quantum Information, (Cambridge University Press, 2000)

    Google Scholar 

  65. D.M. Greenberger, M.A. Horne, A. Zeilinger, in Bell’s Theorem, Quantum Theory, and Conceptions of the Universe, ed. by M. Kafatos (Springer, Dordrecht, 1989), pp. 69–72. https://doi.org/10.1007/978-94-017-0849-4_10

  66. D. Leibfried, M.D. Barrett, T. Schaetz, J. Britton, J. Chiaverini, W.M. Itano, J.D. Jost, C. Langer, D.J. Wineland, Toward Heisenberg-limited spectroscopy with multiparticle entangled states. Science 304, 1476–1478 (2004). https://doi.org/10.1126/science.1097576

    Article  ADS  Google Scholar 

  67. M.W. Mitchell, J.S. Lundeen, A.M. Steinberg, Super-resolving phase measurements with a multiphoton entangled state. Nature 429, 161–164 (2004). https://doi.org/10.1038/nature02493

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Vollmer .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vollmer, F., Yu, D. (2022). Molecular Cavity QED. In: Optical Whispering Gallery Modes for Biosensing. Springer, Cham. https://doi.org/10.1007/978-3-031-06858-4_7

Download citation

Publish with us

Policies and ethics

Navigation