The Lattice NExtS41 as Composed of Replicas of NExtInt, and Beyond

  • Chapter
  • First Online:
V.A. Yankov on Non-Classical Logics, History and Philosophy of Mathematics

Part of the book series: Outstanding Contributions to Logic ((OCTR,volume 24))

  • 266 Accesses

Abstract

We study the lattice of all normal consistent extensions of the modal logic \(\mathbf {S4}\), \(\mathrm{{NExt}}\mathbf {S4}\), from a structural point of view. We show that a pattern isomorphic to the lattice of intermediate logics is present as a sublattice in \(\mathrm{{NExt}}\mathbf {S4}\) in many, in fact, in infinitely many places, and this pattern itself is isomorphic to a quotient lattice of \(\mathrm{{NExt}}\mathbf {S4}\). We also designate three “dark spots” of \(\mathrm{{NExt}}\mathbf {S4}\), three sublattices of it, where, although we can characterize the logics belonging to each of these sublattices, their structural picture is invisible at all.

Dedicated to Vadim A. Yankov (Jankov)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Yankov introduced these formulas relating them to finite subdirectly irreducible Heyting algebras. Independently, similar characteristic formulas associated with finite rooted posets were defined in de Jongh (1968). This approach has been extended further for propositional monomodal language and \(\mathbf {S4}\)-frames in Fine (1974); see more in this section below in Pr 2.

  2. 2.

    W. Blok established this isomorphism in terms of the corresponding varieties of algebras in Blok (1976), and L. Esakia stated the existence of such an isomorphism in Esakia (1976), but never published the proof.

  3. 3.

    At first, the distributivity of \(\mathrm{{NExt}}\mathbf {Int}\) was noted in Hosoi (1969), Theorem 1.6. Then, the distributivity of \(\mathrm{{NExt}}\mathbf {S4}\) was established in Maksimova and Rybakov (1974), Theorem 2.

  4. 4.

    It is believed that the idea of this equality was borrowed from Miura (1966).

  5. 5.

    The last argument is based on Miura’s theorem on the intersection of two intermediate logics (see Miura 1966) and the fact that \(\mathbf {Int}\) possesses the disjunction property.

  6. 6.

    Some authors use the term pseudo-Boolean algebra instead; see, e.g., Rasiowa and Sikorski (1970).

  7. 7.

    Some authors prefer the term topological Boolean algebra or topoboolean algebra; see, e.g., Rasiowa and Sikorski (1970) and Chagrov and Zakharyaschev (1997), for the former, and Gabbay and Maksimova (2005), for the latter.

  8. 8.

    All these facts are well-known and can be found, e.g. in Rasiowa and Sikorski (1970), Chagrov and Zakharyaschev (1997) or Gabbay and Maksimova (2005).

  9. 9.

    In Muravitsky (2018), we use a different, but equivalent, definition of .

  10. 10.

    We note that, in view of Maksimova and Rybakov (1974), Theorem 1, \(M_{0}\) is a calculus.

  11. 11.

    We note that for any \(\boldsymbol{\tau }\in \boldsymbol{\mathcal {L}}\), \(M_{0}\cap \boldsymbol{\tau }=\mathbf {Grz}\cap \boldsymbol{\tau }\). A sketch of proof of the implication \((\boldsymbol{\tau }_1\ne \boldsymbol{\tau }_2\Longrightarrow \mathbf {Grz}\cap \boldsymbol{\tau }_1\ne \mathbf {Grz}\cap \boldsymbol{\tau }_2)\) was concisely outlined in Muravitsky (2018), Lemma 1. Here we present a detailed proof, some details of which, however, are given in appendix (Sect. 7.9).

  12. 12.

    Kneale writes: “\(\ldots \) one at least of the marks of a philosophical mind is a desire to make the truth seem plausible;” cf. Kneale (1948), p. 160.

  13. 13.

    The quotes of this paragraph were taken from Kneale and Kneale (1971), Sect. v.1.

  14. 14.

    Cf. Mill (1979), pp. 332–333.

  15. 15.

    Cf. Jevons (1888), lesson v.

  16. 16.

    See, e.g., Kneale and Kneale (1971), Sect. x.3.

  17. 17.

    It is not our purpose here to discuss the extension-intension dualism in comparison with the reference-sense dualism of Frege and Russell. Also, we find that the explication of extension and intension by Carnap in terms of equivalence and L-equivalence is too narrow for our discussion; see Carnap (1956), Chap. 1, § 5.

  18. 18.

    We note that (7.21) is equivalent to the equality \(\mathbf {Set}{x}{P(x)}=\mathbf {Set}{x}{Q(x)}\).

  19. 19.

    Rescher (1959) uses the equality relation for \(\mathcal R\).

  20. 20.

    Take, for instance, the calculi \(\mathbf {GL}\) and \(\mathbf {GL}^{\!*}\) of Muravitsky (2014).

  21. 21.

    Proof of this fact can be extracted, e.g., from the Proofs of Lemmas 2 and 3 in Tsitkin (1986); see also Bezhanishvili and Grigolia (2005), Lemma 2.2.

References

  • Bezhanishvil, G., & Grigolia, R. (2005). Locally finite varieties of Heyting algebras. Algebra Universalis, 54, 465–473.

    Article  MathSciNet  MATH  Google Scholar 

  • Blok, W. (1976). Varieties of interior algebras. Ph.D. thesis, University of Amsterdam.

    Google Scholar 

  • Carnap, R. (1956). Meaning and necessity. Chicago: The University of Chicago Press.

    Google Scholar 

  • Chagrov, A., & Zakharyaschev, M. (1997). Modal logic. Oxford logic guides (Vol. 35). New York: The Clarendon Press, Oxford University Press.

    Google Scholar 

  • Citkin, A. (2013). Jankov formula and ternary deductive term. In Proceedings of the Sixth Conference on Topology, Algebra, and Category in Logic (TACL 2013) (pp. 48–51). Nashville: Vanderbilt University.

    Google Scholar 

  • Citkin, A. (2014). Characteristic formulas 50 years later (An algebraic account). ar**v:1407583v1.

  • de Jongh, D. (1968). Investigations on the intuitionistic propositional calculus. Ph.D. thesis, University of Wisconsin, Madison.

    Google Scholar 

  • Dummett, M. (1959). A propositional calculus with denumerable matrix. Journal of Symbolic Logic, 24, 97–106.

    Google Scholar 

  • Dummett, M., & Lemmon, E. (1959). Modal logics between S4 and S5. Zeitschrift für mathematische Logik und Grundlagen der Mathematik, 5(3/4), 250–264.

    Google Scholar 

  • Esakia, L. (1976). On modal “counterparts” of superintuitionistic logics. In Abstracts of the 7th All-Union Symposium on Logic and Methodology of Science, Kiev (pp. 135–136) (In Russian).

    Google Scholar 

  • Esakia, L. (1979). On the variety of Grzegorczyk algebras. In A. I. Mikhailov (Ed.), Studies in non-classical logics and set theory, Moscow, Nauka (pp. 257–287). (In Russian) [Translation: Esakia, L. (1983/1983). Selecta Mathematica Sovietica, 3(4), 343–366].

    Google Scholar 

  • Fine, K. (1974). An ascending chain of S4 logics. Theoria, 40(2), 110–116.

    Article  MathSciNet  MATH  Google Scholar 

  • Gabbay, D., & Maksimova, L. (2005). Interpolation and definability. Oxford logic guides (Vol. 46). Oxford: The Clarendon Press, Oxford University Press.

    Google Scholar 

  • Gerĉiu, V. (1970). Sverkhnezavisimye superintuitsionistskie logiki. Matematicheskie Issledovaniya, 5(3), 24–37 (In Russian). [Superindependent superintuitionistic logics].

    Google Scholar 

  • Gerĉiu, V., & Kuznecov, A. (1970). The finitely axiomatizable superintuitionistic logics. Soviet Mathematics - Doklady, 11, 1654–1658.

    Google Scholar 

  • Hosoi, T. (1969). In intermediate logics II. Journal of the Faculty of Science, University of Tokyo, Section I, 14, 1–12.

    Google Scholar 

  • Ishiguro, H. (1990). Leibniz’s philosophy of logic and language (2nd ed.). Cambridge: Cambridge University Press.

    Google Scholar 

  • Jankov, V. (1963). On the relation between deducibility in intuitionistic propositional calculus and finite implicative structures. Doklady Akademii Nauk SSSR, 151, 1293–1294 (In Russian) [Translation: Jankov, V. (1963). Soviet Mathematics - Doklady, 4(4), 1203–1204].

    Google Scholar 

  • Jankov, V. (1969). Conjunctively indecomposable formulas in propositional calculi. Izvestiya Akademii Nauk SSSR, Series Mathematica, 33, 18–38 (In Russian) [Translation: Jankov, V. (1969). Mathematics of the USSR–Izvestiya, 3(1), 17–35].

    Google Scholar 

  • Jevons, W. (1888). Elementary lessons in logic. London: Macmillan and Co.; New York: The Mises Institute (2010).

    Google Scholar 

  • Kneale, W. (1948). What can logic do for philosophy? In Proceedings of the Aristotelian Society, Supplementary Volumes 22, 155–166.

    Google Scholar 

  • Kneale, W., & Kneale, M. (1971). The development of logic. London: The Clarendon Press, Oxford University Press.

    Google Scholar 

  • Kuznetsov, A. (1973). O konechno-porozhdennykh psevdobulevykh algebrakh i konechno-approksimiruevykh mnogoobraziyakh. In Abstracts of the 12th All-Soviet Algebraic Colloquium, Sverdlovsk (p. 281) (Russian) [On finitely generated pseudo-Boolean algebras and finitely approximable varieties].

    Google Scholar 

  • Maksimova, L., & Rybakov, V. (1974). The lattice of normal modal logics. Algebra i Logika, 13(2), 188–216 (In Russian) [Translation: Maksimova, L., & Rybakov, V. (1974). Algebra and Logic, 13(2), 105–122].

    Google Scholar 

  • McKenzie, R. (1972). Equational bases and nonmodular lattice varieties. Transactions of the American Mathematical Society, 174, 1–43.

    Article  MathSciNet  MATH  Google Scholar 

  • Mill, J. (1979). An examination of Sir William Hamilton’s philosophy and of the principle philosophical questions discussed in his writings. In J. M. Robson (Ed.), With an introduction by A. Ryan, Vol. 9 of Collected works of John Stuart Mill, gen. J. M. Robson et al. (Eds.). London: Routledge and Kegan Paul.

    Google Scholar 

  • Miura, S. (1966). A remark on the intersection of two logics. Nagoya Mathematical Journal, 26, 167–171.

    Article  MathSciNet  MATH  Google Scholar 

  • Muravitsky, A. (2006). The embedding theorem: Its further development and consequences. Part 1. Notre Dame Journal of Formal Logic, 47(4), 525–540.

    Google Scholar 

  • Muravitsky, A. (2014). Logic KM: A biography. In G. Bezhanishvili (Ed.), Leo Esakia on duality in modal and intuitionistic logics, outstanding contributions to logic (Vol. 4, pp. 155–185). Berlin: Springer.

    Google Scholar 

  • Muravitsky, A. (2018). Lattice NExtS4 from the embedding theorem viewpoint. In S. Odintsov (Ed.), Larisa Maksimova on implication, interpolation, and definability, outstanding contributions to logic (Vol. 15, pp. 185–218). Berlin: Springer.

    Google Scholar 

  • Rasiowa, H. (1974). An algebraic approach to non-classical logics. Studies in logic and the foundations of mathematics (Vol. 78). Amsterdam: North-Holland.

    Google Scholar 

  • Rasiowa, H., & Sikorski, R. (1970). The mathematics of metamathematics. Monografie Matematyczne (3rd ed.) (Vol. 41). Warsaw: PAN–Polish Scientific Publishers.

    Google Scholar 

  • Rautenberg, W. (1979). Klassische und nichtclassische Aussagenlogik. Logik und Grundlagen der Mathematik (Vol. 22). Braunschweig: Friedr. Vieweg & Sohn (In German).

    Google Scholar 

  • Rescher, N. (1959). The distinction between predicate intension and extension. Revue Philosophique de Louvain, Troisième série, 57(56), 623–636.

    Article  Google Scholar 

  • Scroggs, S. (1951). Extensions of the Lewis system S5. Journal of Symbolic Logic, 16, 112–120.

    Article  MathSciNet  MATH  Google Scholar 

  • Swoyer, C. (1995). Leibniz on intension and extension. Naûs, 1, 96–114.

    MathSciNet  MATH  Google Scholar 

  • Tarski, A. (1968). Equational logic and equational theories of algebras. In H. Schmidt, K. Schütte, & H.-J. Thiele (Eds.), Contributions to mathematical logic: Proceedings of the logic colloquium, Hannover 1966 (pp. 275–288). Amsterdam: North-Holland.

    Google Scholar 

  • Tsitkin, A. (1986). Finite axiomatizability of locally tabular superintuitionistic logics. Mathematical Notes of the Academy of Sciences of the USSR, 40(3), 739–742.

    MathSciNet  MATH  Google Scholar 

  • Wolter, F., & Zakharyaschev, M. (2014). On the Blok-Esakia theorem. In G. Bezhanishvili (Ed.), Leo Esakia on duality in modal and intuitionistic logics, outstanding contributions to logic (Vol. 4, pp. 99–118). Berlin: Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexei Muravitsky .

Editor information

Editors and Affiliations

7.9 Appendix

7.9 Appendix

The terminology, notions and facts used in this section are standard. The main references here are Rasiowa and Sikorski (1970), Rasiowa (1974) and Chagrov and Zakharyaschev (1997). Although we avoid using the term Kripke frame, this concept underlies our exposition below.

Lat \(\mathfrak {A}\) be a Heyting algebra and \(\textsf {S}_{\mathfrak {A}}\) be the set of all prime filters of \(\mathfrak {A}\). The map \(h:a\mapsto \mathbf {Set}{x\in \textsf {S}_{\mathfrak {A}}}{a\in x}\), where \(a\in |\mathfrak {A}|\), is called Stone embedding, because it is an embedding of \(\mathfrak {A}\) into \(\text {H}(\textsf {S}_{\mathfrak {A}})\), where the last algebra is a Heyting algebra associated with the partially ordered set \(\langle \textsf {S}_{\mathfrak {A}},\subseteq \rangle \).

Let us fix \(x^{*}\in \textsf {S}_{\mathfrak {A}}\) and let \(x_0\) and \(x_1\) be two new distinct elements that do not belong to \(\textsf {S}_{\mathfrak {A}}\). We define

$$ \textsf {S}_{\mathfrak {A}}^{*}:=(\textsf {S}_{\mathfrak {A}}\setminus \lbrace x^{*}\rbrace )\cup \lbrace x_0,x_1\rbrace ; $$

and, then, define the following relation R on \(\textsf {S}_{\mathfrak {A}}^{*}\) as follows:

$$ xR^{*}y{\mathop {\Longleftrightarrow }\limits ^{\text {df}}} {\left\{ \begin{array}{ll} \begin{array}{l} x,y\in \textsf {S}_{\mathfrak {A}}\setminus \lbrace x^{*}\rbrace \text { and } x\subseteq y ;\\ x\in \lbrace x_0,x_1\rbrace \text { and } y\in \lbrace x_0,x_1\rbrace ;\\ x\in \textsf {S}_{\mathfrak {A}}\setminus \lbrace x^{*}\rbrace , y\in \lbrace x_0,x_1\rbrace , \text { and } x\subseteq x^{*} ;\\ y\in \textsf {S}_{\mathfrak {A}}\setminus \lbrace x^{*}\rbrace , x\in \lbrace x_0,x_1\rbrace , \text { and } x^{*}\subseteq y . \end{array} \end{array}\right. } $$

We note that the relation R is transitive and reflexive on \(\textsf {S}_{\mathfrak {A}}^{*}\).

Next we define: for any \(X\subseteq \textsf {S}_{\mathfrak {A}}\),

$$\begin{aligned} X^{\oplus }:={\left\{ \begin{array}{ll} \begin{array}{cl} X, &{}\text {if } x^{*}\notin X ,\\ (X\setminus \lbrace x^{*}\rbrace )\cup \lbrace x_1,x_2\rbrace , &{}\text {if } x^{*}\in X ; \end{array} \end{array}\right. } \end{aligned}$$
(7.25)

and for any \(X\subseteq \textsf {S}_{\mathfrak {A}}^{*}\),

$$\begin{aligned} X^{\ominus }:={\left\{ \begin{array}{ll} \begin{array}{cl} X, &{}\text {if } X\cap \lbrace x_1,x_2\rbrace =\emptyset ,\\ X\setminus \lbrace x_1,x_2\rbrace ,&{}\text {if } X\cap \lbrace x_1,x_2\rbrace =\lbrace x_i\rbrace , \text {where } i=1 \text { or } i=2 ,\\ (X\setminus \lbrace x_1,x_2\rbrace )\cup \lbrace x^{*}\rbrace , &{}\text {if } X\cap \lbrace x_1,x_2\rbrace \ne \emptyset . \end{array} \end{array}\right. } \end{aligned}$$
(7.26)

We note that for any \(X\subseteq \textsf {S}_{\mathfrak {A}}^{*}\),

$$\begin{aligned} \forall y\in \textsf {S}_{\mathfrak {A}}\setminus \lbrace x^{*}\rbrace .~y\in X^{\ominus }\Longleftrightarrow y\in X. \end{aligned}$$
(7.27)

Also, for any \(X\subseteq \textsf {S}_{\mathfrak {A}}\),

$$\begin{aligned} X\setminus \lbrace x^{*}\rbrace =X^{\oplus }\setminus \lbrace x_1,x_2\rbrace ; \end{aligned}$$
(7.28)

and for any \(X\subseteq \textsf {S}_{\mathfrak {A}}^{*}\),

$$\begin{aligned} X\setminus \lbrace x_1,x_2\rbrace =X^{\ominus }\setminus \lbrace x^{*}\rbrace . \end{aligned}$$
(7.29)

It is obvious that if \(X\subseteq \textsf {S}_{\mathfrak {A}}\), then \(X^{\oplus }\subseteq \textsf {S}_{\mathfrak {A}}^{*}\); and if \(X\subseteq \textsf {S}_{\mathfrak {A}}^{*}\), then \(X^{\ominus }\subseteq \textsf {S}_{\mathfrak {A}}\). The last observation can be refined as follows.

Lemma 7.6

For any \(X\in \mathcal{U}(\textsf {S}_{\mathfrak {A}})\), \(X^{\oplus }\in \mathcal{U}(\textsf {S}_{\mathfrak {A}}^{*})\); and for any \(X\in \mathcal{U}(\textsf {S}_{\mathfrak {A}}^{*})\), \(X^{\ominus }\in \mathcal{U}(\textsf {S}_{\mathfrak {A}})\).

Proof

Let \(X\in \mathcal{U}(\textsf {S}_{\mathfrak {A}})\). If \(x^{*}\notin X\), then \(X=X^{\oplus }\). Let us take \(x\in X\) and \(y\in \textsf {S}_{\mathfrak {A}}^{*}\) with xRy. For contradiction assume that \(y=x_i\). Then \(x\subseteq x^{*}\) and hence \(x^{*}\in X\). This implies that \(y\in \textsf {S}_{\mathfrak {A}}\) and \(x\subseteq y\). Hence \(y\in X\).

Now we suppose that \(x^{*}\in X\). Then \(\lbrace x_1,x_2\rbrace \subseteq X^{\oplus }\). Let us take \(x\in X^{\oplus }\) and \(y\in \textsf {S}_{\mathfrak {A}}^{*}\) with xRy. We have to consider the following cases.

Case: \(y\in \lbrace x_1,x_2\rbrace \). Then, obviously, \(y\in X^{\oplus }\).

Case: \(x\in X\setminus \lbrace x_1,x_2\rbrace \) and \(y\notin \lbrace x_1,x_2\rbrace \). Then \(x\subseteq y\) and, by premise, \(y\in X\). Since \(y\ne x^{*}\), \(y\in X^{\oplus }\).

Case: \(x\in \lbrace x_1,x_2\rbrace \) and \(y\notin \lbrace x_1,x_2\rbrace \). Then \(x^{*}\subseteq y\) and, by supposition, \(y\in X\). And since \(y\ne x^{*}\), \(y\in X^{\oplus }\).

The other part of the statement can be proven in a similar way.

The last observation can be extended as follows.

Proposition 7.13

Restricted to the upward sets of \(\textsf {S}_{\mathfrak {A}}\) and, respectively, to that of \(\textsf {S}_{\mathfrak {A}}^{*}\), the maps \(g:X\mapsto X^{\oplus }\) and \(g^{-1}:X\mapsto X^{\ominus }\) are mutually inverse isomorphisms between \(\langle \mathcal{U}(\textsf {S}_{\mathfrak {A}}),\subseteq \rangle \) and \(\langle \mathcal{U}(\textsf {S}_{\mathfrak {A}}^{*}),\subseteq \rangle \), and hence between \(\mathrm{H}({\textsf {S}_{\mathfrak {A}}})\) and \(\mathrm{H}({\textsf {S}_{\mathfrak {A}}^{*}})\).

Proof

It should be obvious that for any X and Y of \(\mathcal{U}(\textsf {S}_{\mathfrak {A}})\),

$$ X\subseteq Y\Longrightarrow X^{\oplus }\subseteq Y^{\oplus }, $$

and for any X and Y of \(\mathcal{U}(\textsf {S}_{\mathfrak {A}}^{*})\),

$$ X\subseteq Y\Longrightarrow X^{\ominus }\subseteq Y^{\ominus }. $$

Also, for any \(X\in \mathcal{U}(\textsf {S}_{\mathfrak {A}})\) and any \(Y\in \mathcal{U}(\textsf {S}_{\mathfrak {A}}^{*})\),

$$ X^{\oplus \,\ominus }=X~~\text {and}~~Y=Y^{\ominus \,\oplus }. $$

Lemma 7.7

For any \(X\cup Y\subseteq \textsf {S}_{\mathfrak {A}}^{*}\), if \(X\cap \lbrace x_1,x_2\rbrace =\lbrace x_i\rbrace \ne \lbrace x_j\rbrace =Y\cap \lbrace x_1,x_2\rbrace \), then

$$\begin{aligned} (X\cup Y)^{\ominus }=X^{\ominus }\cup Y^{\ominus } \end{aligned}$$
(7.30)

Proof

We consider the following cases.

Case: \(X\cap \lbrace x_1,x_2\rbrace =\lbrace x_1,x_2\rbrace \) or \(Y\cap \lbrace x_1,x_2\rbrace =\lbrace x_1,x_2\rbrace \). Then \((X\cup Y)\cap \lbrace x_1,x_2\rbrace =\lbrace x_1,x_2\rbrace \). This yields:

  • to obtain \(X^{\ominus }\), \(x^{*}\) replaces \(\lbrace x_1,x_2\rbrace \) in X;

  • or to obtain \(Y^{\ominus }\), \(x^{*}\) replaces \(\lbrace x_1,x_2\rbrace \) in Y;

  • and to obtain \((X\cup Y)^{\ominus }\), \(x^{*}\) replaces \(\lbrace x_1,x_2\rbrace \) in \(X\cup Y\).

Thus (7.30) holds.

Case: \(X\cap \lbrace x_1,x_2\rbrace \subset \lbrace x_1,x_2\rbrace \) and \(Y\cap \lbrace x_1,x_2\rbrace \subset \lbrace x_1,x_2\rbrace \). Taking into account the premise, this leads to the following three cases:

  • \(X\cap \lbrace x_1,x_2\rbrace =\lbrace x_i\rbrace \) and \(Y\cap \lbrace x_1,x_2\rbrace =\emptyset \);

  • \(X\cap \lbrace x_1,x_2\rbrace =\emptyset \) and \(Y\cap \lbrace x_1,x_2\rbrace =\lbrace x_i\rbrace \); and

  • \(X\cap \lbrace x_1,x_2\rbrace =\emptyset \) and \(Y\cap \lbrace x_1,x_2\rbrace =\emptyset \).

In all these cases, (7.30) is true.

Lemma 7.8

For any \(X\subseteq \textsf {S}_{\mathfrak {A}}^{*}\), .

Proof

We consider two cases.

Case: \(X\cap \lbrace x_1,x_2\rbrace =\emptyset \). Then .  This also implies that, although ,  \(x^{*}\notin X\) and hence .

Next, we observe that if \(x\ne x^{*}\), then

$$ (\forall y\in \textsf {S}_{\mathfrak {A}}^{*}.~xR y\Longrightarrow y\in X)\Longleftrightarrow (\forall y\in \textsf {S}_{\mathfrak {A}}.~x\subseteq y\Longrightarrow y\in X). \qquad \qquad \qquad {(\text {L}~7.8{\textendash }*)} $$

Indeed, suppose the left-hand implication holds and \(x\subseteq y\) with \(y\in \textsf {S}_{\mathfrak {A}}\). It is clear that \(y\notin \lbrace x_1,x_2\rbrace \) and xRy. This implies that \(y\in X\). Now we assume that the right-hand implication holds and xRy with \(y\in \textsf {S}_{\mathfrak {A}}^{*}\). If it were that \(y\in \lbrace x_1,x_2\rbrace \), then, we would have that \(x\subseteq x^{*}\) and, by the right-hand implication, \(x^{*}\in X\). Thus, \(y\notin \lbrace x_1,x_2\rbrace \). This means that \(y\in \textsf {S}_{\mathfrak {A}}\) and hence, by the right-hand implication, \(y\in X\).

We continue considering the first case as follows.

Case: \(X\cap \lbrace x_1,x_2\rbrace =\lbrace x_i\rbrace \). Without loss of generality, we count that \(X\cap \lbrace x_1,x_2\rbrace =\lbrace x_1\rbrace \). Hence, \(X^{\ominus }\subseteq \textsf {S}_{\mathfrak {A}}\) and \(x^{*}\notin X^{\ominus }\). This implies that \(x^{*}\notin \square X^{\ominus }\). On the other hand, .  Hence  and and, therefore, .

Now, assume that \(x\ne x^{*}\). We obtain:

Case: \(X\cap \lbrace x_1,x_2\rbrace =\lbrace x_1,x_2\rbrace \). Then \(x^{*}\in X^{\ominus }\). It should be clear that

Now assume that \(x\ne x^{*}\). First, we show that

$$ (\forall y\in \textsf {S}_{\mathfrak {A}}^{*}.~xR y\Longrightarrow y\in X)\Longleftrightarrow (\forall y\in \textsf {S}_{\mathfrak {A}}.~x\subseteq y\Longrightarrow y\in X^{\ominus }). \quad \quad {(\text {L}~7.8{\textendash }**)} $$

Indeed, suppose the left-hand side is valid and \(x\subseteq y\) with \(y\in \textsf {S}_{\mathfrak {A}}\). Assume first that \(y\ne x^{*}\). Then, in virtue of the premise, \(y\in X\) and, applying (7.27), we conclude that \(y\in X^{\ominus }\). If \(y=x^{*}\), then, by definition (7.26), \(x^{*}\in X^{\ominus }\).

Next, assume that the right-hand side of (L 7.8\(**\)) is true. Let xRy, where \(y\in \textsf {S}_{\mathfrak {A}}^{*}\). If \(y\in \lbrace x_1,x_2\rbrace \), then, by premise, \(y\in X\). Now assume that \(y\notin \lbrace x_1,x_2\rbrace \), that is \(y\in \textsf {S}_{\mathfrak {A}}\setminus \lbrace x^{*}\). This implies that \(y\in X^{\ominus }\) and, in virtue of (7.27), \(y\in X\).

Now, we obtain for \(x\ne x^{*}\):

Lemma 7.9

For any \(a\in \mathfrak {A}\), \((\textsf {S}_{\mathfrak {A}}^{*}\setminus h(a)^{\oplus })^{\ominus }=\textsf {S}_{\mathfrak {A}}\setminus h(a)\).

Proof

We consider the following two cases.

Case: \(x^{*}\in h(a)\). Then \(\textsf {S}_{\mathfrak {A}}^{*}\setminus h(a)^{\oplus }=\textsf {S}_{\mathfrak {A}}\setminus h(a)\). The conclusion is obvious.

Case: \(x^{*}\notin h(a)\). Then \(h(a)^{\oplus }=h(a)\) and \(\lbrace x_1,x_2\rbrace \subseteq (\textsf {S}_{\mathfrak {A}}^{*}\setminus h(a)^{\oplus })\). The conclusion is obvious again.

Proposition 7.14

Let \(X\subseteq \textsf {S}_{\mathfrak {A}}^{*}\) and the following conditions be satisfied:

$$ \begin{array}{cl} (a) &{}(\textsf {S}_{\mathfrak {A}}^{*}\setminus X)^{\ominus }=\textsf {S}_{\mathfrak {A}}\setminus h(a^{*}),~\text {for some } a^{*}\in \mathfrak {A},\\ (b) &{}X^{\ominus }=h(b^{*}),~\text {for some } b^{*}\in \mathfrak {A}. \end{array} $$

Then, if \(\mathfrak {B}\) is the subalgebra of \(\text {B}(\textsf {S}_{\mathfrak {A}}^{*})\) generated by the set \(\mathbf {Set}{h(a)^{\oplus }}{a\in \mathfrak {A}}\cup \lbrace X\rbrace \), then \(\mathfrak {B}^{\circ }=g(h(\mathfrak {A}))\).

Proof

Generating the algebra \(\mathfrak {B}\), if we use only Boolean operations, according to Rasiowa and Sikorski (1970), Theorem II.2.1, we get meets of terms of the following three categories:

(7.31)

If we apply the operation  to those meets and, then, distribute ,  applying it to each of the terms listed above (which is possible, for \(\text {B}(\textsf {S}_{\mathfrak {A}}^{*})\) is an \(\mathbf {S4}\)-algebra), we obtain meets of terms of the following three forms:

We aim to show that these terms belong to \(g(h(\mathfrak {A}))\). This conclusion will be reached, if we show that the \(g^{-1}\)-images of these terms belong to \(h(\mathfrak {A})\). Thus, according to Proposition 7.13, we have to consider the following terms:

According to Lemma 7.8, we will focus on the terms:

$$ \begin{array}{rl} \bullet &{}\square ((\textsf {S}_{\mathfrak {A}}^{*}\setminus h(a)^{\oplus })\cup h(b)^{\oplus })^{\ominus }, ~\text {for some } a,b\in \mathfrak {A},\\ \bullet &{}\square ((\textsf {S}_{\mathfrak {A}}^{*}\setminus X)\cup h(b)^{\oplus })^{\ominus }, ~\text {for some } b\in \mathfrak {A},\\ \bullet &{}\square ((\textsf {S}_{\mathfrak {A}}^{*}\setminus h(a)^{\oplus })\cup X)^{\ominus }, ~\text {for some } a\in \mathfrak {A}. \end{array} $$

We note that the premise of Lemma 7.7 is satisfied, when we apply the operation \(X\mapsto X^{\ominus }\) to the terms (7.31). Thus, applying successively Lemmas 7.7, 7.9 and Proposition 7.13, we obtain that the above terms are equal, respectively, to the following terms:

$$ \begin{array}{cl} \bullet &{}\square ((\textsf {S}_{\mathfrak {A}}\setminus h(a))\cup h(b))=h(a)\boldsymbol{\rightarrow }h(b),\\ \bullet &{}\square ((\textsf {S}_{\mathfrak {A}}^{*}\setminus X)^{\ominus }\cup h(b))= h(a^{*})\boldsymbol{\rightarrow }h(b)~\text {[by the first premise]},\\ \bullet &{}\square ((\textsf {S}_{\mathfrak {A}}\setminus h(a))\cup X^{\ominus })=h(a)\boldsymbol{\rightarrow }h(b^{*})~\text {[by the second premise]}. \end{array} $$

This completes the proof.

Proposition 7.15

Let \(\mathfrak {A}\) be a finitely generated Heyting algebra. Then there is a prime filter \(x^{*}\in \textsf {S}_{\mathfrak {A}}\) and a set \(X\subseteq \textsf {S}_{\mathfrak {A}}^{*}\) such that the conditions (a) and (b) of Proposition 7.14 are satisfied; in addition, the valuation \(v:p\mapsto X\) refutes the formulas \(\square (\square (p\rightarrow \square p)\rightarrow p)\rightarrow p\) and \(\square \Diamond p\rightarrow \Diamond \square p\) in the algebra \(\mathfrak {B}\) of Proposition 7.14.

Proof

According to Kuznetsov (1973), the algebra \(\mathfrak {A}\) is atomic.Footnote 21 Let \(a^{*}\) be an atom of \(\mathfrak {A}\). Then we define

$$ x^{*}:=[a^{*}). $$

We note that, since \(a^{*}\) is an atom, \(h(a^{*})=\lbrace x^{*}\rbrace \).

Remembering that new elements \(x_1,x_2\) replace \(x^{*}\) in \(\textsf {S}_{\mathfrak {A}}\) to generate \(\textsf {S}_{\mathfrak {A}}^{*}\), we define:

$$ X:=\lbrace x_1\rbrace . $$

It should be clear that \(\textsf {S}_{\mathfrak {A}}^{*}\setminus X=(\textsf {S}_{\mathfrak {A}}\setminus \lbrace x^{*}\rbrace )\cup \lbrace x_2\rbrace \). Therefore, \((\textsf {S}_{\mathfrak {A}}^{*}\setminus X)^{\ominus }=\textsf {S}_{\mathfrak {A}}\setminus h(a^{*})\); that is the condition (a) of Proposition 7.14 is satisfied.

On the other hand, \(X^{\ominus }=\emptyset =h(\mathbf {0})\); that is the condition (b) of Proposition 7.14 is also fulfilled.

In Table 7.1 we show a refutation of the formula \(\square (\square (p\rightarrow \square p)\rightarrow p)\rightarrow p\) in the algebra \(\mathfrak {B}\), where A denotes a subformula of this formula. We aim to prove that \(v(\square (\square (p\rightarrow \square p)\rightarrow p)\rightarrow p)\ne \textsf {S}_{\mathfrak {A}}^{*}\).

Table 7.1 Refutation of \(\square (\square (p\rightarrow \square p)\rightarrow p)\rightarrow p\)

In the next table we show a refutation of the formula \(\square \Diamond p\rightarrow \Diamond \square p\) in \(\mathfrak {B}\). We aim to prove that \(v(\square \Diamond p\rightarrow \Diamond \square p)\ne \textsf {S}_{\mathfrak {A}}^{*}\) (Table 7.2).

Table 7.2 Refutation of \(\square \Diamond p\rightarrow \Diamond \square p\)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Muravitsky, A. (2022). The Lattice NExtS41 as Composed of Replicas of NExtInt, and Beyond. In: Citkin, A., Vandoulakis, I.M. (eds) V.A. Yankov on Non-Classical Logics, History and Philosophy of Mathematics. Outstanding Contributions to Logic, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-031-06843-0_7

Download citation

Publish with us

Policies and ethics

Navigation