Abstract

As seen in previous chapters, in 1996 a new class of codes, now known as CSS codes, was proposed by Robert Calderbank, Peter Shor, and Andrew Steane. These codes were generalized into a rich code structure, which is the stabilizer quantum codes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 46.00
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 58.84
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C.D. Albuquerque, R. Palazzo Jr., and E.B. Silva. Topological quantum codes on compact surfaces with genus g ≥ 2. J. Mathematical Physics, 50:023513-1-20, 2009.

    Google Scholar 

  2. C.D. Albuquerque, R. Palazzo Jr., and E.B. Silva. On toric quantum codes. International Journal of Pure and Applied Mathematics, 50(2):221–226, 2009.

    MathSciNet  MATH  Google Scholar 

  3. A.F. Beardon. The Geometry of Discrete Groups. Springer-Verlag, 1983.

    Book  Google Scholar 

  4. H. Bombin, and M. A. Martin-Delgado. Topological quantum distillation. Phys. Rev. Letters, 97:180501, 2006.

    Article  Google Scholar 

  5. H. Bombin, and M.A. Martin-Delgado. Topological Quantum Error Correction with Optimal Encoding Rate. Phys. Rev. A, 73(6):062303, 2007.

    Google Scholar 

  6. H. Bombin. An Introduction to Topological Quantum Codes. ar**v:1311.0277, 2013.

    Google Scholar 

  7. N.P. Breuckmann, and B.M. Terhal. Constructions and noise threshold of hyperbolic surface codes. IEEE Trans. Inform. Theory, 62(6):3731–3744, 2016.

    Article  MathSciNet  Google Scholar 

  8. A. R. Calderbank, and P. W. Shor. Good quantum error-correcting codes exist. Phys. Rev. A, 54:1098–1105, 1996.

    Article  Google Scholar 

  9. N. Delfosse. Tradeoffs for reliable quantum information storage in surface codes and color codes. IEEE International Symposium on Information Theory, pp. 917, 2013.

    Google Scholar 

  10. D. Gottesman. Class of quantum error-correcting codes saturating the quantum Hamming bound. Phys. Rev. A, 54:1862, 1996.

    Article  MathSciNet  Google Scholar 

  11. A.Yu Kitaev. Fault-tolerant quantum computation by anyons. Ann. Phys., 303(1):2–30, 2003.

    Article  MathSciNet  Google Scholar 

  12. W.S. Soares Jr., and E.B. Silva. Construction of color codes from polygons. J. Phys. Communications, 2(9):095011, 2018.

    Google Scholar 

  13. A.M. Steane. Simple quantum error correcting codes. Phys. Rev. Lett., 77:793–797, 1996.

    Article  MathSciNet  Google Scholar 

  14. A.M. Steane. Error correcting codes in quantum theory. Phys. Rev. Letters, 77:793, 1996.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Albuquerque, C.D.d., Silva, E.B.d., Soares Jr., W.S. (2022). Color Codes. In: Quantum Codes for Topological Quantum Computation. SpringerBriefs in Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-031-06833-1_4

Download citation

Publish with us

Policies and ethics

Navigation