Review of Mathematical Concepts

  • Chapter
  • First Online:
Quantum Codes for Topological Quantum Computation

Abstract

With classical physics, or Newtonian physics, it is not possible to explain phenomena that occur on an atomic scale. The reason is the incommensurability of microscopic particles, which cannot be described mathematically using classical mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 46.00
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 58.84
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.F. Beardon. The Geometry of Discrete Groups. Springer-Verlag, 1983.

    Book  Google Scholar 

  2. A.F. Beardon. An Introduction to Hyperbolic Geometry. In Ergodic Theory, Symbolic Dynamics and Hyperbolic Spaces, Oxford University Press, 1991.

    Google Scholar 

  3. C.H. Bennett, D.P. DiVincenzo, J.A. Smolin, and W.K. Wootters, W. K. Mixed state entanglement and quantum error correction. Phys. Rev. A, 54:3824, 1996.

    Google Scholar 

  4. E.R. Berlekamp. Algebraic Coding Theory. McGraw-Hill Book Company, 1968.

    MATH  Google Scholar 

  5. A. R. Calderbank, and P. W. Shor. Good quantum error-correcting codes exist. Phys. Rev. A, 54:1098–1105, 1996.

    Article  Google Scholar 

  6. A. R. Calderbank, E.M Rains, P.W. Shor, and N.J.A. Sloane. Quantum error correction via codes over GF(4). IEEE Trans. Inf. Theory, 44:1369, 1998.

    Google Scholar 

  7. R. Cleve. Quantum stabilizer codes and classical linear codes. arxiv:9612048, 1996.

    Google Scholar 

  8. D. Dieks. Communication by EPR devices. Phys. Letters A, 92(6):271–272, 1982.

    Article  Google Scholar 

  9. K. Fujii. Quantum Computation with Topological Codes: From Qubit to Topological Fault-Tolerance. Springer, 2015.

    Book  Google Scholar 

  10. D. Gottesman. Class of quantum error-correcting codes saturating the quantum Hamming bound. Phys. Rev. A, 54:1862, 1996.

    Article  MathSciNet  Google Scholar 

  11. D. Gottesman. Stabilizer code and quantum error correction. www.arxiv.org/abs/quantph/9705052 , 1997.

  12. S. Katok. Fuchsian Groups. The University of Chicago Press, 1992.

    MATH  Google Scholar 

  13. E. Knill, and R. Laflamme. Theory of quantum error-correcting codes. Phys. Rev. A, 55:900, 1997.

    Article  MathSciNet  Google Scholar 

  14. R. Landauer. Irreversibility and heat generation in the computing process. IBM J. Research and Development, 5(3):183–191, 1961.

    Article  MathSciNet  Google Scholar 

  15. D.A. Lidar, and T.A. Brun. Quantum Error Correction. Cambridge University Press, 2013.

    Book  Google Scholar 

  16. S. Lin, and D. J. Costello. Error Control Coding. Prentice-Hall, 1983.

    MATH  Google Scholar 

  17. J.H. van Lint. Coding Theory. Springer-Verlag, 1973.

    Book  Google Scholar 

  18. F.J. MacWilliams, and N.J.A. Sloane. The Theory of Error-Correcting Codes. Bell Laboratories, Murray Hill, 1977.

    Google Scholar 

  19. M.A. Nielsen, and I.L. Chuang. Quantum Computation and Quantum Information. Cambridge University Press, 2010.

    MATH  Google Scholar 

  20. V. Pless. Introduction to the Theory of Error-Correcting Codes. Wiley, 1998.

    Book  Google Scholar 

  21. J. Preskill. Quantum Information and Computation. Lectures Notes for Physics, 229, Caltech, 1999.

    Google Scholar 

  22. J. Preskill. Quantum Computation. Lectures Notes for Physics, 219, Caltech, 2004.

    Google Scholar 

  23. J.J. Sakurai. Modern Quantum Mechanics. Addison-Wesley Longman, 1994.

    Google Scholar 

  24. A. Scott. The limits of quantum computers. Scientific American, 63, 2008.

    Google Scholar 

  25. C.E. Shannon. A mathematical theory of communication. The Bell System Technical Journal, 27:379–423,623–656 1948.

    Google Scholar 

  26. P.W. Shor. Scheme for reducing decoherence in quantum memory. Phys. Rev. A, 52:2493, 1995.

    Article  Google Scholar 

  27. E.B. Silva, M. Firer, S.R. Costa and R. Palazzo Jr., Signal constellations in the hyperbolic plane. Journal the Franklin Institute, 343:69, 2006.

    Article  Google Scholar 

  28. A.M. Steane. Simple quantum error correcting codes. Phys. Rev. Lett., 77:793–797, 1996.

    Article  MathSciNet  Google Scholar 

  29. C.C. Tannoudji, B. Diu, and F. Laloe. Quantum Mechanics - Volume One. John Wiley and Sons, 1977.

    MATH  Google Scholar 

  30. W.G. Unruh. Black Holes, Dumb Holes, and Entropy. In: Callender, C., Ed., Physics Meets Philosophy at the Planck Scale, Cambridge University Press, 152–173, 2001.

    Google Scholar 

  31. W. K. Wootters, and W.H. Zurek. A single quantum cannot be cloned. Nature, 299:802–803, 1982.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Albuquerque, C.D.d., Silva, E.B.d., Soares Jr., W.S. (2022). Review of Mathematical Concepts. In: Quantum Codes for Topological Quantum Computation. SpringerBriefs in Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-031-06833-1_2

Download citation

Publish with us

Policies and ethics

Navigation