PI3K Targeting in Non-solid Cancer

  • Chapter
  • First Online:
PI3K and AKT Isoforms in Immunity

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 436))

Abstract

Despite the therapeutic progress, relapse remains a major problem in the treatment of acute lymphoblastic leukemia (ALL). Most leukemia cells that survive chemotherapy are found in the bone marrow (BM), thus resistance to chemotherapy and other treatments may be partially attributed to pro-survival signaling to leukemic cells mediated by leukemia cell-microenvironment interactions. Adhesion of leukemia cells to BM stromal cells may lead to cell adhesion-mediated drug resistance (CAM-DR) mediating intracellular signaling changes that support survival of leukemia cells. In ALL and chronic lymphocytic leukemia (CLL), adhesion-mediated activation of the PI3K/AKT signaling pathway has been shown to be critical in CAM-DR. PI3K targeting inhibitors have been approved for CLL and have been evaluated preclinically in ALL. However, PI3K inhibition has yet to be approved for clinical use in ALL. Here, we review the role of PI3K signaling for normal hematopoietic and leukemia cells and summarize preclinical inhibitors of PI3K in ALL.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 160.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ALL:

Acute lymphoblastic leukemia

BM:

Bone marrow

CAM-DR:

Cell adhesion mediated drug resistance

CLL:

Chronic lymphocytic leukemia

PI3K:

Phosphoinotiside-3 kinase

RTK:

Receptor tyrosine kinases

GPCRS:

G-protein coupled receptors

PIP2:

Phosphatidylinositol-diphosphate

PIP3:

Phosphatidylinositol-triphosphate

PTEN:

Phosphatase and tensin homolog deleted from chromosome 10

PDK1:

Phosphoinositide-dependent kinase 1

MSC:

Mesenchymal stem cells

T-ALL:

T cell acute lymphoblastic leukemia

CNS:

Central nervous system

References

  • Adam E et al (2017) The PI3Kdelta inhibitor idelalisib inhibits homing in an in vitro and in vivo model of B ALL. Cancers (Basel) 9(9)

    Google Scholar 

  • Ali AY et al (2018) Distinct roles for phosphoinositide 3-kinases gamma and delta in malignant B cell migration. Leukemia 32(9):1958–1969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andersson AK et al (2015) The landscape of somatic mutations in infant MLL-rearranged acute lymphoblastic leukemias. Nat Genet 47(4):330–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Backer JM (2008) The regulation and function of Class III PI3Ks: novel roles for Vps34. Biochem J 410(1):1–17

    Article  CAS  PubMed  Google Scholar 

  • Barr PM et al (2016) Phase 2 study of idelalisib and entospletinib: pneumonitis limits combination therapy in relapsed refractory CLL and NHL. Blood 127(20):2411–2415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergamini G et al (2012) A selective inhibitor reveals PI3Kgamma dependence of T(H)17 cell differentiation. Nat Chem Biol 8(6):576–582

    Article  CAS  PubMed  Google Scholar 

  • Billottet C et al (2006) A selective inhibitor of the p110delta isoform of PI 3-kinase inhibits AML cell proliferation and survival and increases the cytotoxic effects of VP16. Oncogene 25(50):6648–6659

    Article  CAS  PubMed  Google Scholar 

  • Blair HA (2018) Duvelisib: first global approval. Drugs

    Google Scholar 

  • Bonaccorso P et al (2020) Single-cell profiling of pediatric T-cell acute lymphoblastic leukemia: impact of PTEN exon 7 mutation on PI3K/Akt and JAK-STAT signaling pathways. Cytometry B Clin Cytom 98(6):491–503

    Article  CAS  PubMed  Google Scholar 

  • Burger JA, Okkenhaug K (2014) Haematological cancer: idelalisib-targeting PI3Kdelta in patients with B-cell malignancies. Nat Rev Clin Oncol 11(4):184–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burger JA, Wiestner A (2018) Targeting B cell receptor signalling in cancer: preclinical and clinical advances. Nat Rev Cancer 18(3):148–167

    Article  CAS  PubMed  Google Scholar 

  • Burris HA 3rd (2013) Overcoming acquired resistance to anticancer therapy: focus on the PI3K/AKT/mTOR pathway. Cancer Chemother Pharmacol 71(4):829–842

    Article  CAS  PubMed  Google Scholar 

  • Chantry D et al (1997) p110delta, a novel phosphatidylinositol 3-kinase catalytic subunit that associates with p85 and is expressed predominantly in leukocytes. J Biol Chem 272(31):19236–19241

    Article  CAS  PubMed  Google Scholar 

  • Dong S et al (2019) PI3K p110delta inactivation antagonizes chronic lymphocytic leukemia and reverses T cell immune suppression. J Clin Invest 129(1):122–136

    Article  PubMed  Google Scholar 

  • (2018) Duvelisib approved for leukemia, Lymphoma. Cancer Discov

    Google Scholar 

  • Ecker V et al (2021) Targeted PI3K/AKT-hyperactivation induces cell death in chronic lymphocytic leukemia. Nat Commun 12(1):3526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eldfors S et al (2017) Idelalisib sensitivity and mechanisms of disease progression in relapsed TCF3-PBX1 acute lymphoblastic leukemia. Leukemia 31(1):51–57

    Article  CAS  PubMed  Google Scholar 

  • Erb TJ et al (2009) Carboxylation mechanism and stereochemistry of crotonyl-CoA carboxylase/reductase, a carboxylating enoyl-thioester reductase. Proc Natl Acad Sci U S A 106(22):8871–8876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evangelisti C et al (2018) Phosphatidylinositol 3-kinase inhibition potentiates glucocorticoid response in B-cell acute lymphoblastic leukemia. J Cell Physiol 233(3):1796–1811

    Article  CAS  PubMed  Google Scholar 

  • Flinn IW et al (2018) The phase 3 DUO trial: duvelisib versus ofatumumab in relapsed and refractory CLL/SLL. Blood

    Google Scholar 

  • Flinn IW et al (2018) Duvelisib, a novel oral dual inhibitor of PI3K-delta, gamma, is clinically active in advanced hematologic malignancies. Blood 131(8):877–887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flinn IW et al (2016) Dynamo: a phase 2 study demonstrating the clinical activity of duvelisib in patients with relapsed refractory indolent non-Hodgkin lymphoma. 128(22):1218–1218

    Google Scholar 

  • Fruman DA, Cantley LC (2014) Idelalisib–a PI3Kdelta inhibitor for B-cell cancers. N Engl J Med 370(11):1061–1062

    Article  PubMed  PubMed Central  Google Scholar 

  • de la Fuente MT et al (2002) Engagement of alpha4beta1 integrin by fibronectin induces in vitro resistance of B chronic lymphocytic leukemia cells to fludarabine. J Leukoc Biol 71(3):495–502

    Article  PubMed  Google Scholar 

  • Furman RR et al (2014) Idelalisib and rituximab in relapsed chronic lymphocytic leukemia. N Engl J Med 370(11):997–1007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gazi M et al (2017) The dual specificity PI3K/mTOR inhibitor PKI-587 displays efficacy against T-cell acute lymphoblastic leukemia (T-ALL). Cancer Lett 392:9–16

    Article  CAS  PubMed  Google Scholar 

  • Gilbert JA (2014) Idelalisib: targeting PI3Kdelta in B-cell malignancies. Lancet Oncol 15(3):e108

    Article  CAS  PubMed  Google Scholar 

  • Greenwell IB et al (2017a) Clinical use of PI3K inhibitors in B-cell lymphoid malignancies: today and tomorrow. Exp Rev Anticancer Ther 17(3):271–279

    Article  CAS  Google Scholar 

  • Greenwell IB, Ip A, Cohen JB (2017b) PI3K inhibitors: understanding toxicity mechanisms and management. Oncology (williston Park) 31(11):821–828

    Google Scholar 

  • Gulluni F et al (2019) Class II PI3K functions in cell biology and disease. Trends Cell Biol 29(4):339–359

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez A et al (2009) High frequency of PTEN, PI3K, and AKT abnormalities in T-cell acute lymphoblastic leukemia. Blood 114(3):647–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanlon A, Brander DM (2020) Managing toxicities of phosphatidylinositol-3-kinase (PI3K) inhibitors. Hematol Am Soc Hematol Educ Prog 2020(1):346–356

    Article  Google Scholar 

  • Hoellenriegel J et al (2011) The phosphoinositide 3’-kinase delta inhibitor, CAL-101, inhibits B-cell receptor signaling and chemokine networks in chronic lymphocytic leukemia. Blood 118(13):3603–3612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horn S et al (2008) Mutations in the catalytic subunit of class IA PI3K confer leukemogenic potential to hematopoietic cells. Oncogene 27(29):4096–4106

    Article  CAS  PubMed  Google Scholar 

  • Iershov A et al (2019) The class 3 PI3K coordinates autophagy and mitochondrial lipid catabolism by controlling nuclear receptor PPARalpha. Nat Commun 10(1):1566

    Article  PubMed  PubMed Central  Google Scholar 

  • Jou ST et al (2002) Essential, nonredundant role for the phosphoinositide 3-kinase p110delta in signaling by the B-cell receptor complex. Mol Cell Biol 22(24):8580–8591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim HN et al (2020) Cadherins, selectins, and integrins in CAM-DR in leukemia. Front Oncol 10:592733

    Article  PubMed  PubMed Central  Google Scholar 

  • Kok K et al (2009) Regulation of p110delta PI 3-kinase gene expression. PLoS ONE 4(4):e5145

    Article  PubMed  PubMed Central  Google Scholar 

  • Konopleva MY, Jordan CT (2011) Leukemia stem cells and microenvironment: biology and therapeutic targeting. J Clin Oncol 29(5):591–599

    Article  PubMed  PubMed Central  Google Scholar 

  • Konopleva MY et al (2014) Preclinical and early clinical evaluation of the oral AKT inhibitor, MK-2206, for the treatment of acute myelogenous leukemia. Clin Cancer Res 20(8):2226–2235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krause G, Hassenruck F, Hallek M (2018) Copanlisib for treatment of B-cell malignancies: the development of a PI3K inhibitor with considerable differences to idelalisib. Drug Des Devel Ther 12:2577–2590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kruth KA et al (2017) Suppression of B-cell development genes is key to glucocorticoid efficacy in treatment of acute lymphoblastic leukemia. Blood 129(22):3000–3008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lenz G et al (2020) Single-agent activity of phosphatidylinositol 3-kinase inhibition with copanlisib in patients with molecularly defined relapsed or refractory diffuse large B-cell lymphoma. Leukemia 34(8):2184–2197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Leo A et al (2018) Buparlisib plus fulvestrant in postmenopausal women with hormone-receptor-positive, HER2-negative, advanced breast cancer progressing on or after mTOR inhibition (BELLE-3): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol 19(1):87–100

    Article  PubMed  Google Scholar 

  • Liu X et al (2016) Characterization of selective and potent PI3Kdelta inhibitor (PI3KDIN-015) for B-cell malignances. Oncotarget 7(22):32641–32651

    Article  PubMed  PubMed Central  Google Scholar 

  • Lonetti A et al (2015) PI3K pan-inhibition impairs more efficiently proliferation and survival of T-cell acute lymphoblastic leukemia cell lines when compared to isoform-selective PI3K inhibitors. Oncotarget 6(12):10399–10414

    Article  PubMed  PubMed Central  Google Scholar 

  • Lonetti A et al (2016) Improving nelarabine efficacy in T cell acute lymphoblastic leukemia by targeting aberrant PI3K/AKT/mTOR signaling pathway. J Hematol Oncol 9(1):114

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu JW et al (2015) MK-2206 induces apoptosis of AML cells and enhances the cytotoxicity of cytarabine. Med Oncol 32(7):206

    Article  PubMed  Google Scholar 

  • Luders CJ (1971) Recognition of non-ossifying bone fibroma (Jaffe-Lichtenstein) especially pathogenesis of “sclerotic marginal area.” Z Orthop Ihre Grenzgeb 109(1):129–137

    CAS  PubMed  Google Scholar 

  • Mauro FR et al (2018) Balancing efficacy and toxicity of targeted agents currently used for the treatment of patients with chronic lymphocytic leukemia. Exp Rev Hematol 11(8):601–611

    Article  CAS  Google Scholar 

  • Migault C et al (2018) Pulmonary adverse events related to idelalisib therapy: a single centre experience. J Chemother 1–5

    Google Scholar 

  • Miller BW et al (2015) FDA approval: idelalisib monotherapy for the treatment of patients with follicular lymphoma and small lymphocytic lymphoma. Clin Cancer Res 21(7):1525–1529

    Article  CAS  PubMed  Google Scholar 

  • Montano A et al (2018) New challenges in targeting signaling pathways in acute lymphoblastic leukemia by NGS approaches: an update. Cancers (Basel) 10(4)

    Google Scholar 

  • Morishita N et al (2012) Activation of Akt is associated with poor prognosis and chemotherapeutic resistance in pediatric B-precursor acute lymphoblastic leukemia. Pediatr Blood Cancer 59(1):83–89

    Article  PubMed  Google Scholar 

  • Muranyi AL, Dedhar S, Hogge DE (2010) Targeting integrin linked kinase and FMS-like tyrosine kinase-3 is cytotoxic to acute myeloid leukemia stem cells but spares normal progenitors. Leuk Res 34(10):1358–1365

    Article  CAS  PubMed  Google Scholar 

  • Nepstad I et al (2020) The PI3K-Akt-mTOR signaling pathway in human acute myeloid leukemia (AML) cells. Int J Mol Sci 21(8)

    Google Scholar 

  • Nguyen LX, Sesay A, Mitchell BS (2014) Effect of CAL-101, a PI3Kdelta inhibitor, on ribosomal RNA synthesis and cell proliferation in acute myeloid leukemia cells. Blood Cancer J 4:e228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nikolaenko L, Liu T, Danilov AV (2021) Duvelisib (Copiktra) in relapsed or refractory chronic lymphocytic leukemia: safety and efficacy. Exp Rev Anticancer Ther 21(5):481–488

    Article  CAS  Google Scholar 

  • O’Brien S et al (2018) Duvelisib, an oral dual PI3K-delta, gamma inhibitor, shows clinical and pharmacodynamic activity in chronic lymphocytic leukemia and small lymphocytic lymphoma in a phase 1 study. Am J Hematol 93(11):1318–1326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park S et al (2010) Role of the PI3K/AKT and mTOR signaling pathways in acute myeloid leukemia. Haematologica 95(5):819–828

    Article  CAS  PubMed  Google Scholar 

  • Piddock RE, Bowles KM, Rushworth SA (2017) The role of PI3K isoforms in regulating bone marrow microenvironment signaling focusing on acute myeloid leukemia and multiple myeloma. Cancers (Basel) 9(4)

    Google Scholar 

  • Pillinger G et al (2016) Targeting PI3Kdelta and PI3Kgamma signalling disrupts human AML survival and bone marrow stromal cell mediated protection. Oncotarget 7(26):39784–39795

    Article  PubMed  PubMed Central  Google Scholar 

  • Ragon BK et al (2017) Buparlisib, a PI3K inhibitor, demonstrates acceptable tolerability and preliminary activity in a phase I trial of patients with advanced leukemias. Am J Hematol 92(1):7–11

    Article  CAS  PubMed  Google Scholar 

  • Rhodes J, Mato A, Sharman JP (2018) Monitoring and management of toxicities of novel B cell signaling agents. Curr Oncol Rep 20(6):49

    Article  PubMed  Google Scholar 

  • Richter A et al (2021) Combined application of Pan-AKT inhibitor MK-2206 and BCL-2 antagonist venetoclax in B-cell precursor acute lymphoblastic leukemia. Int J Mol Sci 22(5)

    Google Scholar 

  • Roversi FM et al (2021) Hematopoietic cell kinase (HCK) is a player of the crosstalk between hematopoietic cells and bone marrow niche through CXCL12/CXCR4 axis. Front Cell Dev Biol 9:634044

    Article  PubMed  PubMed Central  Google Scholar 

  • Safaroghli-Azar A et al (2017) PI3K-delta inhibition using CAL-101 exerts apoptotic effects and increases doxorubicin-induced cell death in pre-B-acute lymphoblastic leukemia cells. Anticancer Drugs 28(4):436–445

    Google Scholar 

  • Sanchez VE et al (2019) Targeting PI3K signaling in acute lymphoblastic leukemia. Int J Mol Sci 20(2)

    Google Scholar 

  • Sawyer C et al (2003) Regulation of breast cancer cell chemotaxis by the phosphoinositide 3-kinase p110delta. Cancer Res 63(7):1667–1675

    CAS  PubMed  Google Scholar 

  • Shishido S, Bonig H, Kim YM (2014) Role of integrin alpha4 in drug resistance of leukemia. Front Oncol 4:99

    Article  PubMed  PubMed Central  Google Scholar 

  • Simioni C et al (2012) Cytotoxic activity of the novel Akt inhibitor, MK-2206, in T-cell acute lymphoblastic leukemia. Leukemia 26(11):2336–2342

    Article  CAS  PubMed  Google Scholar 

  • Sklarz LM et al (2020) Combination of the PI3K inhibitor Idelalisib with the conventional cytostatics cytarabine and dexamethasone leads to changes in pathway activation that induce anti-proliferative effects in B lymphoblastic leukaemia cell lines. Cancer Cell Int 20:390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stefanzl G et al (2017) The pan-BCL-2-blocker obatoclax (GX15-070) and the PI3-kinase/mTOR-inhibitor BEZ235 produce cooperative growth-inhibitory effects in ALL cells. Oncotarget 8(40):67709–67722

    Article  PubMed  PubMed Central  Google Scholar 

  • Tabe Y et al (2007) Activation of integrin-linked kinase is a critical prosurvival pathway induced in leukemic cells by bone marrow-derived stromal cells. Cancer Res 67(2):684–694

    Article  CAS  PubMed  Google Scholar 

  • Tarantelli C et al (2020) Copanlisib synergizes with conventional and targeted agents including venetoclax in B- and T-cell lymphoma models. Blood Adv 4(5):819–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tasian SK et al (2017) Potent efficacy of combined PI3K/mTOR and JAK or ABL inhibition in murine xenograft models of Ph-like acute lymphoblastic leukemia. Blood 129(2):177–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thorpe LM, Yuzugullu H, Zhao JJ (2015) PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting. Nat Rev Cancer 15(1):7–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ultimo S et al (2017) PI3K isoform inhibition associated with anti Bcr-Abl drugs shows in vitro increased anti-leukemic activity in Philadelphia chromosome-positive B-acute lymphoblastic leukemia cell lines. Oncotarget 8(14):23213–23227

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang L, Fortney JE, Gibson LF (2004) Stromal cell protection of B-lineage acute lymphoblastic leukemic cells during chemotherapy requires active Akt. Leuk Res 28(7):733–742

    Article  PubMed  Google Scholar 

  • Wang X, Ding J, Meng LH (2015) PI3K isoform-selective inhibitors: next-generation targeted cancer therapies. Acta Pharmacol Sin 36(10):1170–1176

    Article  PubMed  PubMed Central  Google Scholar 

  • Yao H et al (2018) Leukaemia hijacks a neural mechanism to invade the central nervous system. Nature 560(7716):55–60

    Article  CAS  PubMed  Google Scholar 

  • Yuan T et al (2017) Regulation of PI3K signaling in T-cell acute lymphoblastic leukemia: a novel PTEN/Ikaros/miR-26b mechanism reveals a critical targetable role for PIK3CD. Leukemia 31(11):2355–2364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

NIH RO1 CA172896 and Curing Kids’ Cancer Award to Y.K.

Author Contributions

Writing—Original Draft Preparation, HNK, and YMK.; Writing—Review and Editing: HNK, HAO, VS, CN, and YMK.

Conflicts of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Mi Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kim, H.N., Ogana, H., Sanchez, V., Nichols, C., Kim, YM. (2022). PI3K Targeting in Non-solid Cancer. In: Dominguez-Villar, M. (eds) PI3K and AKT Isoforms in Immunity . Current Topics in Microbiology and Immunology, vol 436. Springer, Cham. https://doi.org/10.1007/978-3-031-06566-8_17

Download citation

Publish with us

Policies and ethics

Navigation