Energy Minimization vs. Deep Learning Approaches for Protein Structure Prediction

  • Conference paper
  • First Online:
Bio-inspired Systems and Applications: from Robotics to Ambient Intelligence (IWINAC 2022)

Abstract

This article discusses the advantages and problems of different approaches to ab initio protein structure prediction. Recent successful approaches based on deep learning are compared with those based on protein fragment replacements and energy minimization with different search strategies, including ours based on evolutionary algorithms. Selected proteins are considered to analyze the approaches, focusing on the problems of those based on deep learning.

This study was funded by the Xunta de Galicia and the European Union (European Regional Development Fund - Galicia 2014–2020 Program), with grants CITIC (ED431G 2019/01), GPC ED431B 2019/03 and IN845D-02 (funded by the “Agencia Gallega de Innovación”, co-financed by Feder funds, supported by the “Consellería de Economía, Empleo e Industria” of Xunta de Galicia), and by the Spanish Ministry of Science and Innovation (project PID2020-116201GB-I00).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 74.89
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 94.94
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. AlphaFold2 server. https://colab.research.google.com/github/sokrypton/ColabFold/blob/main/AlphaFold2.ipynb

  2. RoseTTAFold server. https://colab.research.google.com/github/sokrypton/ColabFold/blob/main/RoseTTAFold.ipynb

  3. Baek, M., DiMaio, F., Anishchenko, I., et al.: Accurate prediction of protein structures and interactions using a three-track neural network. Science 373(6557), 871–876 (2021). https://doi.org/10.1126/science.abj8754

    Article  Google Scholar 

  4. Protein structure prediction center. http://predictioncenter.org/

  5. Evans, R., et al.: De novo structure prediction with deep-learning based scoring. In: 13th Critical Assessment of Techniques for PSP, pp. 1–4 (2018)

    Google Scholar 

  6. Garza-Fabre, M., Kandathil, S., Handl, J., Knowles, J., Lovell, S.: Generating, maintaining, and exploiting diversity in a memetic algorithm for protein structure prediction. Evol. Comput. 24(4), 577–607 (2016)

    Article  Google Scholar 

  7. Prediction results of the SARS-CoV-2 unsolved proteins. https://www.dc.fi.udc.es/ir/in845d-02/SARS-CoV-2_protein_prediction/index.html

  8. Jumper, J., Evans, R., Pritzel, A., et al.: Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021). https://doi.org/10.1038/s41586-021-03819-2

    Article  Google Scholar 

  9. Kaufmann, K., Lemmon, G., DeLuca, S., Sheehan, J., Meiler, J.: Practically useful: what the Rosetta protein modeling suite can do for you. Biochemistry 49, 2987–2998 (2010). https://doi.org/10.1021/bi902153g

    Article  Google Scholar 

  10. Protein Data Bank. http://www.wwpdb.org

  11. Price, K., Storn, R., Lampinen, J.: Differential evolution. A practical approach to global optimization (2005)

    Google Scholar 

  12. Rohl, C., Strauss, C., Misura, K., Baker, D.: Protein structure prediction using Rosetta. Meth. Enzymol. 383, 66–93 (2004). https://doi.org/10.1016/S0076-6879(04)83004-0

    Article  Google Scholar 

  13. Rosetta system. http://www.rosettacommons.org

  14. Santos, J., Diéguez, M.: Differential evolution for protein structure prediction using the HP model. In: Ferrández, J.M., Álvarez Sánchez, J.R., de la Paz, F., Toledo, F.J. (eds.) IWINAC 2011. LNCS, vol. 6686, pp. 323–333. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21344-1_34

    Chapter  Google Scholar 

  15. Senior, A., Evans, R., Jumper, J., et al.: Improved protein structure prediction using potentials from deep-learning. Nature 577, 706–710 (2020). https://doi.org/10.1038/s41586-019-1923-7

    Article  Google Scholar 

  16. Varela, D., Santos, J.: A hybrid evolutionary algorithm for protein structure prediction using the face-centered cubic lattice model. In: Liu, D., **e, S., Li, Y., Zhao, D., El-Alfy, E.S. (eds.) Neural Information Processing, ICONIP 2017. Lecture Notes in Computer Science, vol. 10634. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70087-8_65

  17. Varela, D., Santos, J.: Crowding differential evolution for protein structure prediction. In: Ferrández Vicente, J.M., Álvarez-Sánchez, J.R., de la Paz López, F., Toledo Moreo, J., Adeli, H. (eds.) IWINAC 2019. LNCS, vol. 11487, pp. 193–203. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19651-6_19

    Chapter  Google Scholar 

  18. Varela, D., Santos, J.: Protein structure prediction in an atomic model with differential evolution integrated with the crowding niching method. Nat. Comput., 1–15 (2020). https://doi.org/10.1007/s11047-020-09801-7

  19. Yang, J., Anishchenko, I., Park, H., Peng, Z., Ovchinnikov, S., Baker, D.: Improved protein structure prediction using predicted interresidue orientations. PNAS 117, 1496–1503 (2020). https://doi.org/10.1073/pnas.1914677117

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Santos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Filgueiras, J.L., Varela, D., Santos, J. (2022). Energy Minimization vs. Deep Learning Approaches for Protein Structure Prediction. In: Ferrández Vicente, J.M., Álvarez-Sánchez, J.R., de la Paz López, F., Adeli, H. (eds) Bio-inspired Systems and Applications: from Robotics to Ambient Intelligence. IWINAC 2022. Lecture Notes in Computer Science, vol 13259. Springer, Cham. https://doi.org/10.1007/978-3-031-06527-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06527-9_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06526-2

  • Online ISBN: 978-3-031-06527-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation