Pedal Morphology and Locomotor Behavior of the Subfossil Lemurs of Madagascar

  • Chapter
  • First Online:
The Evolution of the Primate Foot

Part of the book series: Developments in Primatology: Progress and Prospects ((DIPR))

  • 512 Accesses

Abstract

The subfossil lemurs of Madagascar have been discussed and studied in great detail due to their remarkable preservation, phylogenetic history, and locomotor convergence with a number of extant taxa. This chapter highlights these discussions with particular focus on the variation in pedal morphology observed across the three extinct families of subfossil lemur. Special attention is given to locomotor and foot loading behavior of the palaeopropithecids, colloquially known as the sloth lemurs. These animals represent the only primate lineage to become specialized for below branch quadrupedal locomotion, and, by necessity, the ability to bear tensile loads in the foot. Unfortunately, discussion of the anatomy of the sloth lemur foot, and its ability to bear tensile loads in general has been limited, and a thorough discussion of the mechanical and anatomical traits associated with tensile loading in a primate foot has yet to be compiled. This chapter is broken down into distinct sections focusing on phylogeny, anatomy, and mechanics that will come together for the reader into a holistic view of the locomotor adaptations in the feet of the extinct subfossil lemurs of Madagascar.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Beard, K. C. (1990). Gliding behaviour and palaeoecology of the alleged primate family Paromomyidae (Mammalia, Dermoptera). Nature, 345, 340–341.

    Article  Google Scholar 

  • Beck, B. R. (2009). Muscle forces or gravity–what predominates mechanical loading on bone? Introduction. Medicine Science Sports Exercise, 41, 2033–2036.

    Article  Google Scholar 

  • Berg, H. E., Dudley, G. A., Haggmark, T., Ohlsen, H., & Tesch, P. A. (1991). Effects of lower limb unloading on skeletal muscle mass and function in humans. Journal of Applied Physiology, 70, 1882–1885.

    Article  CAS  Google Scholar 

  • Bergeson, D. J. (1998). Patterns of suspensory feeding in Alouatta palliata, Ateles geoffroyi, and Cebus capucinus. In E. Strasser, J. G. Fleagle, A. L. Rosenberger, & H. M. McHenry (Eds.), Primate locomotion (pp. 45–60). Springer.

    Chapter  Google Scholar 

  • Boyer, D. M., & Bloch, J. I. (2008). Evaluating the mitten-gliding hypothesis for Paromomyidae and Micromomyidae (Mammalia,“Plesiadapiformes”) using comparative functional morphology of new Paleogene skeletons. In E. J. Sargis & M. Dagosto (Eds.), Mammalian evolutionary morphology (pp. 233–284). Springer.

    Chapter  Google Scholar 

  • Boyer, D. M., Patel, B. A., Larson, S. G., & Stern, J. T. (2007). Telemetered electromyography of peroneus longus in Varecia variegata and Eulemur rubriventer: Implications for the functional significance of a large peroneal process. Journal of Human Evolution, 53, 119–134.

    Article  Google Scholar 

  • Boyer, D. M., Seiffert, E. R., Gladman, J. T., & Bloch, J. I. (2013). Evolution and allometry of calcaneal elongation in living and extinct primates. PLoS One, 8, e67792.

    Article  CAS  Google Scholar 

  • Boyer, D. M., Yapuncich, G. S., Butler, J. E., Dunn, R. H., & Seiffert, E. R. (2015). Evolution of postural diversity in primates as reflected by the size and shape of the medial tibial facet of the talus. American Journal of Physical Anthropology, 157, 134–177.

    Article  Google Scholar 

  • Boyette, D. P., & London, A. H. (1948). Subluxation of the head of the radius “nursemaid’s elbow”. Journal of Pediatrics, 32, 278–281.

    Article  CAS  Google Scholar 

  • Brainerd, E. L., Baier, D. B., Gatesy, S. M., Hedrick, T. L., Metzger, K. A., Gilbert, S. L., & Crisco, J. J. (2010). X-ray reconstruction of moving morphology (XROMM): Precision, accuracy and applications in comparative biomechanics research. Journal of Experimental Zoology Part A, 313, 262–279.

    Google Scholar 

  • Byron, C. D., Granatosky, M. C., & Covert, H. H. (2017). An anatomical and mechanical analysis of the douc monkey (genus Pygathrix), and its role in understanding the evolution of brachiation. American Journal of Physical Anthropology, 164(4), 801–820. https://doi.org/10.1002/ajpa.23320.

    Google Scholar 

  • Cant, J. G. H. (1986). Locomotion and feeding postures of spider and howling monkeys: Field study and evolutionary interpretation. Folia Primatologica, 46, 1–14.

    Article  CAS  Google Scholar 

  • Carlson, K. J., & Patel, B. A. (2006). Habitual use of the primate forelimb is reflected in the material properties of subchondral bone in the distal radius. Journal of Anatomy, 208, 659–670.

    Article  Google Scholar 

  • Carter, D. R., & Hayes, W. C. (1976). Bone compressive strength: The influence of density and strain rate. Science, 194, 1174–1176.

    Article  CAS  Google Scholar 

  • Cartmill, M. (1974). Pads and claws in arboreal locomotion. In F. A. Jenkins (Ed.), Primate locomotion (pp. 45–83). Academic Press.

    Google Scholar 

  • Cartmill, M. (1985). Climbing. In M. Hildebrand, D. M. Bramble, K. F. Liem, & D. B. Wake (Eds.), Functional vertebrate morphology (pp. 73–88). Belknap.

    Chapter  Google Scholar 

  • Cartmill, M. (1992). New views on primate origins. Evolutionary Anthropology, 1, 105–111.

    Article  Google Scholar 

  • Cartmill, M., & Milton, K. (1977). The lorisiform wrist joint and the evolution of “brachiating” adaptations in the hominoidea. American Journal of Physical Anthropology, 47, 249–272.

    Article  CAS  Google Scholar 

  • Cartmill, M., Lemelin, P., & Schmitt, D. (2002). Support polygons and symmetrical gaits in mammals. Zoological Journal of the Linnean Society, 136, 401–420.

    Article  Google Scholar 

  • Cheyne, S. M. (2011). Gibbon locomotion research in the field: Problems, possibilities, and benefits for conservation. In K. D’Août & E. E. Vereecke (Eds.), Primate locomotion: Linking field and laboratory research (pp. 201–213). Springer-Verlag.

    Chapter  Google Scholar 

  • Choung, W., & Heinrich, S. D. (1995). Acute annular ligament interposition into the radiocapitellar joint in children (nursemaid’s elbow). Journal of Pediatric Orthopaedics, 15, 454–456.

    Article  CAS  Google Scholar 

  • Congdon, K. A. (2012). Interspecific and ontogenetic variation in proximal pedal phalangeal curvature of great apes (Gorilla gorilla, Pan troglodytes, and Pongo pygmaeus). International Journal of Primatology, 33, 418–427.

    Article  Google Scholar 

  • Crowninshield, R. D., & Pope, M. H. (1974). The response of compact bone in tension at various strain rates. Annals of Biomedical Engineering, 2, 217–225.

    Article  Google Scholar 

  • Demes, B., Larson, S. G., Stern, J. T., Jungers, W. L., Biknevicius, A. R., & Schmitt, D. (1994). The kinetics of primate quadrupedalism: “hindlimb drive” reconsidered. Journal of Human Evolution, 26, 353–374.

    Article  Google Scholar 

  • Demes, B., Qin, Y.-X., Stern, J. T., Larson, S. G., & Rubin, C. T. (2001). Patterns of strain in the macaque tibia during functional activity. American Journal of Physical Anthropology, 116, 257–265.

    Article  CAS  Google Scholar 

  • Dickinson, E., Young, M. W., & Granatosky, M. C. (2022). Testing mechanisms for weight support distribution during inverted quadrupedalism in primates. Journal of Experimental Zoology Part A: Ecological and Integrative Physiology, 337(7), 699–708. https://doi.org/10.1002/jez.2605.

    Google Scholar 

  • Fleagle, J. G. (2013). Primate adaptation and evolution (3rd ed.). Academic Press.

    Google Scholar 

  • Fung, Y.-C. (1993). Bone and cartilage. In Biomechanics (pp. 500–544). Springer.

    Chapter  Google Scholar 

  • Gebo, D. L. (1985). The nature of the primate gras** foot. American Journal of Physical Anthropology, 67, 269–277.

    Article  Google Scholar 

  • Granatosky, M. C. (2018). A Review of Locomotor Diversity in Mammals with Analyses Exploring the Influence of Substrate-Use, Body Mass, and Intermembral Index in Primates. Journal of Zoology, 306(4), 207–216.

    Google Scholar 

  • Granatosky, Michael C., & Schmitt, D. (2019). The mechanical origins of arm-swinging. Journal of Human Evolution, 130, 61–71. https://doi.org/10.1016/j.jhevol.2019.02.001.

    Google Scholar 

  • Granatosky, M. C. (2018). Forelimb and hindlimb loading patterns during quadrupedal locomotion in the large flying fox (Pteropus vampyrus) and common vampire bat (Desmodus rotundus). Journal of Zoology, 305(1), 63–72. https://doi.org/10.1111/jzo.12538.

    Google Scholar 

  • Granatosky, M. C. (2020). Primate Locomotion. In J. Vonk & T. Shackelford (Eds.), Encyclopedia of Animal Cognition and Behavior (pp. 1–7). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-47829-6_1833-1

    Google Scholar 

  • Granatosky, Michael C., & Schmitt, D. (2019). The mechanical origins of arm-swinging. Journal of Human Evolution, 130, 61–71. https://doi.org/10.1016/j.jhevol.2019.02.001

    Google Scholar 

  • Gebo, D. L. (1986). Miocene lorisids–the foot evidence. Folia Primatologica, 47, 217–225.

    Article  Google Scholar 

  • Gebo, D. L. (1989). Postcranial adaptation and evolution in lorisidae. Primates, 30, 347–367.

    Article  Google Scholar 

  • Gebo, D. (2014). Primate comparative anatomy. Johns Hopkins University Press.

    Google Scholar 

  • Godfrey, L. R., & Jungers, W. L. (2003). The extinct sloth lemurs of Madagascar. Evolutionary Anthropology, 12, 252–263.

    Article  Google Scholar 

  • Godfrey, L. R., Sutherland, M. R., Paine, R. R., Williams, F. L., Boy, D. S., & Vuillaume-Randriamanantena, M. (1995). Limb joint surface areas and their ratios in Malagasy lemurs and other mammals. American Journal of Physical Anthropology, 97, 11–36.

    Article  CAS  Google Scholar 

  • Godfrey, L. R., Granatosky, M. C., & Jungers, W. L. (2016). The hands of subfossil lemurs. In T. L. Kivell, P. Lemelin, B. G. Richmond, & D. Schmitt (Eds.), The evolution of the primate hand (pp. 421–453). Springer.

    Chapter  Google Scholar 

  • Gommery, D., Ramanivosoa, B., Tombomiadana-Raveloson, S., Randrianantenaina, H., & Kerloc’h, P. (2009). Une nouvelle espèce de lémurien géant subfossile du Nord-Ouest de Madagascar (Palaeopropithecus kelyus, Primates). Comptes Rendus Palevol, 8, 471–480.

    Article  Google Scholar 

  • Granatosky, M. C. (2016). A mechanical analysis of suspensory locomotion in primates and other mammals. Ph.D. dissertation, Duke University.

    Google Scholar 

  • Granatosky, M. C., & Schmitt, D. (2017). Forelimb and hind limb loading patterns during below branch quadrupedal locomotion in the two-toed sloth. Journal of Zoology, 302, 271–278.

    Article  Google Scholar 

  • Granatosky, M. C., Lemelin, P., Chester, S. G. B., Pampush, J. D., & Schmitt, D. (2014a). Functional and evolutionary aspects of axial stability in euarchontans and other mammals. Journal of Morphology, 275, 313–327.

    Article  Google Scholar 

  • Granatosky, M. C., Miller, C. E., Boyer, D. M., & Schmitt, D. (2014b). Lumbar vertebral morphology of flying, gliding, and suspensory mammals: Implications for the locomotor behavior of the subfossil lemurs Palaeopropithecus and Babakotia. Journal of Human Evolution, 75, 40–52.

    Article  Google Scholar 

  • Granatosky, M. C., Tripp, C. H., & Schmitt, D. (2016). Gait kinetics of above and below branch quadrupedal locomotion in lemurid primates. Journal of Experimental Biology, 219, 53–63.

    Article  Google Scholar 

  • Grand, T. I. (1967). The functional anatomy of the ankle and foot of the slow loris (Nycticebus coucang). American Journal of Physical Anthropology, 26, 207–218.

    Article  Google Scholar 

  • Grand, T. I. (1972). A mechanical interpretation of terminal branch feeding. Journal of Mammalogy, 53, 198–201.

    Article  Google Scholar 

  • Hamilton, W., & Parkes, J. C. (1973). Isolated dislocation of the radial head without fracture of the ulna. Clinical Orthopaedics and Related Research, 97, 94–96.

    Article  Google Scholar 

  • Hamrick, M. W., Rosenman, B. A., & Brush, J. A. (1999). Phalangeal morphology of the Paromomyidae (?Primates, Plesiadapiformes): The evidence for gliding behavior reconsidered. American Journal of Physical Anthropology, 109, 397–413.

    Article  CAS  Google Scholar 

  • Hamrick, M. W., Simons, E. L., & Jungers, W. L. (2000). New wrist bones of the Malagasy giant subfossil lemurs. Journal of Human Evolution, 38, 635–650.

    Article  CAS  Google Scholar 

  • Hunt, K. D., Cant, J. G. H., Gebo, D. L., Rose, M. D., Walker, S. E., & Youlatos, D. (1996). Standardized descriptions of primate locomotor and postural modes. Primates, 37, 363–387.

    Article  Google Scholar 

  • Ishida, H., Jouffroy, F., & Nakano, Y. (1990). Comparative dynamics of pronograde and upside down horizontal quadrupedalism in the slow loris (Nycticebus coucang). In F. Jouffroy, M. Stack, & C. Niemitz (Eds.), Gravity, posture and locomotion in primates (pp. 209–220). Il Sedicesimo.

    Google Scholar 

  • Jenkins, F. A., & McClearn, D. (1984). Mechanisms of hind foot reversal in climbing mammals. Journal of Morphology, 182, 197–219.

    Article  Google Scholar 

  • Jouffroy, F. K., & Petter, A. (1990). Gravity-related kinematic changes in lorisine horizontal locomotion in relation to position of the body. In F. Jouffroy, M. Stack, & C. Niemitz (Eds.), Gravity, posture and locomotion in primates (pp. 199–208). Il Sedicesimo.

    Google Scholar 

  • Jouffroy, F., & Stern, J. (1990). Telemetered EMG study of the antigravity versus propulsive actions of knee and elbow muscles in the slow loris (Nycticebus coucang). In F. Jouffroy, M. Stack, & C. Niemitz (Eds.), Gravity, posture and locomotion in primates (pp. 221–236). Il Sedicesimo.

    Google Scholar 

  • Judex, S., & Carlson, K. J. (2009). Is bone’s response to mechanical signals dominated by gravitational loading. Medicine & Science in Sports & Exercise, 41, 2037–2043.

    Article  Google Scholar 

  • Jungers, W. L. (1978). The functional significance of skeletal allometry in Megaladapis in comparison to living prosimians. American Journal of Physical Anthropology, 49, 303–314.

    Article  Google Scholar 

  • Jungers, W. L., Godfrey, L. R., Simons, E. L., & Chatrath, P. S. (1997). Phalangeal curvature and positional behavior in extinct sloth lemurs (Primates, Palaeopropithecidae). Proceedings of the National Academy of Sciences USA, 94, 11998–12001.

    Article  CAS  Google Scholar 

  • Jungers, W. L., Godfrey, L. R., Simons, E. L., Wunderlich, R. E., Richmond, B. G., & Chatrath, P. S. (2002). Ecomorphology and behavior of giant extinct lemurs from Madagascar. In J. M. Plavcan, R. F. Kay, W. Jungers, & C. P. van Schaik (Eds.), Reconstructing behavior in the primate fossil record (pp. 371–411). Springer.

    Chapter  Google Scholar 

  • Jungers, W. L., Lemelin, P., Godfrey, L. R., Wunderlich, R. E., Burney, D. A., Simons, E. L., Chatrath, P. S., James, H. F., & Randria, G. F. N. (2005). The hands and feet of Archaeolemur: Metrical affinities and their functional significance. Journal of Human Evolution, 49, 36–55.

    Article  CAS  Google Scholar 

  • Jungers, W. L., Demes, B., & Godfrey, L. R. (2008). How big were the “Giant” extinct lemurs of Madagascar? In J. G. Fleagle & C. C. Gilbert (Eds.), Elwyn Simons: A search for origins (pp. 343–360). Springer-Verlag.

    Chapter  Google Scholar 

  • Karanth, K. P., Delefosse, T., Rakotosamimanana, B., Parsons, T. J., & Yoder, A. D. (2005). Ancient DNA from giant extinct lemurs confirms single origin of Malagasy primates. Proceedings of the National Academy of Sciences USA, 102, 5090–5095.

    Article  CAS  Google Scholar 

  • Kingston, A. K., Boyer, D. M., Patel, B. A., Larson, S. G., & Stern, J. T. (2010). Hallucal gras** in Nycticebus coucang: Further implications for the functional significance of a large peroneal process. Journal of Human Evolution, 58, 33–42.

    Article  Google Scholar 

  • Kistler, L., Ratan, A., Godfrey, L. R., Crowley, B. E., Hughes, C. E., Lei, R., Cui, Y., Wood, M. L., Muldoon, K. M., Andriamialison, H., McGraw, J. J., Tomsho, L. P., Schuster, S. C., Miller, W., Louis, E. E., Yoder, A. D., Malhi, R. S., & Perry, G. H. (2015). Comparative and population mitogenomic analyses of Madagascar’s extinct, giant “subfossil” lemurs. Journal of Human Evolution, 79, 45–54.

    Article  Google Scholar 

  • Lammers, A. R., & Gauntner, T. (2008). Mechanics of torque generation during quadrupedal arboreal locomotion. Journal of Biomechanics, 41, 2388–2395.

    Article  Google Scholar 

  • Macias, C. G., Bothner, J., & Wiebe, R. (1998). A comparison of supination/flexion to hyperpronation in the reduction of radial head subluxations. Pediatrics, 102, e10–e10.

    Article  CAS  Google Scholar 

  • Mcclure, N. K., Phillips, A. C., Vogel, E. R., & Tocheri, M. W. (2012). Unexpected pollex and hallux use in wild Pongo pygmaeus wurmbii. American Journal of Physical Anthropology, S147, 208.

    Google Scholar 

  • Meldrum, D. J., Dagosto, M., & White, J. (1997). Hindlimb suspension and hind foot reversal in Varecia variegata and other arboreal mammals. American Journal of Physical Anthropology, 103, 85–102.

    Article  CAS  Google Scholar 

  • Mendel, F. C. (1979). The wrist joint of two-toed sloths and its relevance to brachiating adaptations in the hominoidea. Journal of Morphology, 162, 413–424.

    Article  Google Scholar 

  • Mendel, F. C. (1981a). Foot of two-toed sloths: Its anatomy and potential uses relative to size of support. Journal of Morphology, 170, 357–372.

    Article  Google Scholar 

  • Mendel, F. C. (1981b). Use of hands and feet of two-toed sloths (Choloepus hoffmanni) during climbing and terrestrial locomotion. Journal of Mammalogy, 62, 413–421.

    Article  Google Scholar 

  • Mendel, F. C. (1985). Use of hands and feet of three-toed Sloths (Bradypus variegatus) during climbing and terrestrial locomotion. Journal of Mammalogy, 66, 359–366.

    Article  Google Scholar 

  • Michaels, M. G. (1989). A case of bilateral nursemaid’s elbow. Pediatric Emergency Care, 5, 226–227.

    Article  CAS  Google Scholar 

  • Muldoon, K. M. (2010). Paleoenvironment of Ankilitelo Cave (late Holocene, southwestern Madagascar): Implications for the extinction of giant lemurs. Journal of Human Evolution, 58, 338–352.

    Article  Google Scholar 

  • Napier, J. R. (1967). Evolutionary aspects of primate locomotion. American Journal of Physical Anthropology, 27, 333–341.

    Article  CAS  Google Scholar 

  • Newman, J. (1985). “Nursemaid’s elbow” in infants six months and under. Journal of Emergency Medicine, 2, 403–404.

    Article  CAS  Google Scholar 

  • Nyakatura, J. A. (2011). The convergent evolution of suspensory posture and locomotion in tree sloths. Journal of Mammalian Evolution, 19, 225–234.

    Article  Google Scholar 

  • Nyakatura, J. A., Petrovitch, A., & Fischer, M. S. (2010). Limb kinematics during locomotion in the two-toed sloth (Choloepus didactylus, Xenarthra) and its implications for the evolution of the sloth locomotor apparatus. Zoology, 113, 221–234.

    Article  Google Scholar 

  • O’Driscoll, S. W., Jupiter, J. B., King, G. J. W., Hotchkiss, R. N., & Morrey, B. F. (2000). The unstable elbow. Journal of Bone and Joint Surgery, 82, 724.

    Article  Google Scholar 

  • Orlando, L., Calvignac, S., Schnebelen, C., Douady, C. J., Godfrey, L. R., & Hänni, C. (2008). DNA from extinct giant lemurs links archaeolemurids to extant indriids. BMC Evolutionary Biology, 8, 121.

    Article  Google Scholar 

  • Parsons, P., & Taylor, C. (1977). Energetics of brachiation versus walking: A comparison of a suspended and an inverted pendulum mechanism. Physiological Zoology, 50, 182–188.

    Article  Google Scholar 

  • Patel, B. A., & Carlson, K. J. (2008). Apparent density patterns in subchondral bone of the sloth and anteater forelimb. Biology Letters, 4, 486–489.

    Article  Google Scholar 

  • Rafferty, K. L., & Ruff, C. B. (1994). Articular structure and function in Hylobates, Colobus, and Papio. American Journal of Physical Anthropology, 94, 395–408.

    Article  CAS  Google Scholar 

  • Read, C. S. (2001). A comparative analysis of the wrist and ankle morphology of hominoids and lorisids, with implications for the evolution of hominoid locomotion. Masters thesis, Durham University.

    Google Scholar 

  • Reynolds, T. (1985a). Stresses on the limbs of quadrupedal primates. American Journal of Physical Anthropology, 67, 351–362.

    Article  CAS  Google Scholar 

  • Reynolds, T. (1985b). Mechanics of increased support weight by the hindlimbs in primates. American Journal of Physical Anthropology, 67, 335–349.

    Article  CAS  Google Scholar 

  • Richmond, B. G. (2007). Biomechanics of phalangeal curvature. Journal of Human Evolution, 53, 678–690.

    Article  Google Scholar 

  • Ruff, C. (1988). Hindlimb articular surface allometry in hominoidea and Macaca, with comparisons to diaphyseal scaling. Journal of Human Evolution, 17, 687–714.

    Article  Google Scholar 

  • Ryan, T. M., & Walker, A. (2010). Trabecular bone structure in the humeral and femoral heads of anthropoid primates. The Anatomical Record, 293, 719–729.

    Article  Google Scholar 

  • Sacchetti, A., Ramoska, E. E., & Glascow, C. (1990). Nonclassic history in children with radial head subluxations. Journal of Emergency Medicine, 8, 151–153.

    Article  CAS  Google Scholar 

  • Schaffler, M. B., & Burr, D. B. (1984). Primate cortical bone microstructure: Relationship to locomotion. American Journal of Physical Anthropology, 65, 191–197.

    Article  CAS  Google Scholar 

  • Schmitt, D., & Lemelin, P. (2002). Origins of primate locomotion: Gait mechanics of the woolly opossum. American Journal of Physical Anthropology, 118, 231–238.

    Article  Google Scholar 

  • Schmitt, D., & Lemelin, P. (2004). Locomotor mechanics of the slender loris (Loris tardigradus). Journal of Human Evolution, 47, 85–94.

    Article  Google Scholar 

  • Schunk, J. F. (1990). Radial head subluxation: Epidemiology and treatment of 87 episodes. Annals of Emergency Medicine, 19, 1019–1023.

    Article  CAS  Google Scholar 

  • Schwartz, J. H., & Tattersall, I. (1985). Evolutionary relationships of living lemurs and lorises (Mammalia, Primates) and their potential affinities with European Eocene Adapidae. American Museum of Natural History.

    Google Scholar 

  • Schwartz, G. T., Samonds, K. E., Godfrey, L. R., Jungers, W. L., & Simons, E. L. (2002). Dental microstructure and life history in subfossil Malagasy lemurs. Proceedings of the National Academy of Sciences USA, 99, 6124–6129.

    Article  CAS  Google Scholar 

  • Schwartz, G. T., Mahoney, P., Godfrey, L. R., Cuozzo, F. P., Jungers, W. L., & Randria, G. F. N. (2005). Dental development in Megaladapis edwardsi (Primates, Lemuriformes): Implications for understanding life history variation in subfossil lemurs. Journal of Human Evolution, 49, 702–721.

    Article  Google Scholar 

  • Shapiro, L. J. (2007). Morphological and functional differentiation in the lumbar spine of lorisids and galagids. American Journal of Primatology, 69, 86–102.

    Article  Google Scholar 

  • Shapiro, L. J., Seiffert, C. V. M., Godfrey, L. R., Jungers, W. L., Simons, E. L., & Randria, G. F. N. (2005). Morphometric analysis of lumbar vertebrae in extinct Malagasy strepsirrhines. American Journal of Physical Anthropology, 128, 823–839.

    Article  Google Scholar 

  • Simons, E. L., Godfrey, L. R., Jungers, W. L., Chatrath, P. S., & Rakotosamimanana, B. (1992). A new giant subfossil lemur, Babakotia, and the evolution of the sloth lemurs. Folia Primatologica, 58, 197–203.

    Article  Google Scholar 

  • Stern, J. T., & Susman, R. L. (1983). The locomotor anatomy of Australopithecus afarensis. American Journal of Physical Anthropology, 60, 279–317.

    Article  Google Scholar 

  • Stern, J. T., Jungers, W. L., & Susman, R. L. (1995). Quantifying phalangeal curvature: An empirical comparison of alternative methods. American Journal of Physical Anthropology, 97, 1–10.

    Article  Google Scholar 

  • Sussman, R. W. (1991). Primate origins and the evolution of angiosperms. American Journal of Primatology, 23, 209–223.

    Article  Google Scholar 

  • Swartz, S. (1989). Pendular mechanics and the kinematics and energetics of brachiating locomotion. International Journal of Primatology, 10, 387–418.

    Article  Google Scholar 

  • Swartz, S. M., Bertram, J. E., & Biewener, A. A. (1989). Telemetered in vivo strain analysis of locomotor mechanics of brachiating gibbons. Nature, 342, 270–272.

    Article  CAS  Google Scholar 

  • Tattersall, I. (1973). Subfossil lemuroids and the “adaptive radiation” of the Malagasy lemurs. Transactions of the New York Academy of Sciences, 35, 314–324.

    Article  Google Scholar 

  • Tattersall, I., & Schwartz, J. H. (1974). Craniodental morphology and systematics of the Malagasy lemurs (Primates, Prosimii). Anthropological Papers of the American Museum of Natural History, 52, 137–192.

    Google Scholar 

  • Turnquist, J. E. (1975). The elbow and forearm of Ateles: An anatomical and behavioral study of locomotion. Ph.D. dissertation, University of Pennsylvania.

    Google Scholar 

  • Walker, A., Ryan, T. M., Silcox, M. T., Simons, E. L., & Spoor, F. (2008). The semicircular canal system and locomotion: The case of extinct lemuroids and lorisoids. Evolutionary Anthropology, 17, 135–145.

    Article  Google Scholar 

  • Wall, C. E. (1998). The expanded mandibular condyle of the Megaladapidae. American Journal of Physical Anthropology, 103, 263–276.

    Article  Google Scholar 

  • Wright, T. M., & Hayes, W. C. (1976). Tensile testing of bone over a wide range of strain rates: Effects of strain rate, microstructure and density. Medical and Biological Engineering, 14, 671–680.

    Article  CAS  Google Scholar 

  • Wunderlich, R. E., Simons, E. L., & Jungers, W. L. (1996). New pedal remains of Megaladapis and their functional significance. American Journal of Physical Anthropology, 100, 115–138.

    Article  CAS  Google Scholar 

  • Yoder, A. D., Rakotosamimanana, B., & Parsons, T. J. (1999). Ancient DNA in subfossil lemurs. In B. Rakotosamimanana, H. Rasamimanana, J. U. Ganzhorn, & S. M. Goodman (Eds.), New directions in lemur studies (pp. 1–17). Springer.

    Google Scholar 

Download references

Acknowledgments

I thank the editors of this volume for the opportunity to share my thoughts on the subject, and for improving the overall quality of this work. I thank Gregg Gunnell and Gabriel Yapuncich for helpful discussion and aid in figure preparation. This research was funded in part by the Leakey Foundation, Force and Motion Foundation, and the National Science Foundation’s Graduate Research Fellowship Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael C. Granatosky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Granatosky, M.C. (2022). Pedal Morphology and Locomotor Behavior of the Subfossil Lemurs of Madagascar. In: Zeininger, A., Hatala, K.G., Wunderlich, R.E., Schmitt, D. (eds) The Evolution of the Primate Foot. Developments in Primatology: Progress and Prospects. Springer, Cham. https://doi.org/10.1007/978-3-031-06436-4_16

Download citation

Publish with us

Policies and ethics

Navigation