Self-supervised Learning Through Colorization for Microscopy Images

  • Conference paper
  • First Online:
Image Analysis and Processing – ICIAP 2022 (ICIAP 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13232))

Included in the following conference series:

Abstract

Training effective models for segmentation or classification of microscopy images is a hard task, complicated by the scarcity of adequately labeled data sets. In this context, self-supervised learning strategies can be deployed to learn suitable image representations from the available large quantity of unlabeled data, e.g. the 500k electron microscopy images that compose the CEM500k data sets.

In this work, we investigate a self-supervised strategy for representation learning based on a colorization pre-text task on microscopy images. We integrate the colorization task into the BYOL (Bootstrap your own latent) self-supervised contrastive pre-training strategy. We train the self-supervised architecture on the CEM500k data set of electron microscopy images. As backbone of the BYOL framework, we investigate the use of Resnet50 and a Stand-alone Self-Attention network, and subsequently test them as feature extractors for downstream classification and segmentation tasks.

The Self-Attention encoders pre-trained with the colorization-based BYOL method are able to learn effective features for segmentation of microscopy images, achieving higher results than those of encoders, both Resnet- and Self-Attention-based, trained with the original BYOL. This shows the effectiveness of colorization as pre-text for a downstream segmentation task on microscopy images. We release the code at https://github.com/nis-research/selfsup-byol-colorization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 93.08
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 117.69
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Github repository: https://github.com/nis-research/selfsup-byol-colorization.

References

  1. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. cite arxiv:2005.12872 (2020)

  2. Casser, V., Kang, K., Pfister, H., Haehn, D.: Fast mitochondria detection for connectomics. Nat. Methods 16(12), 1247–1253 (2019)

    Article  Google Scholar 

  3. Chen, L., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. CoRR abs/1706.05587 (2017). http://arxiv.org/abs/1706.05587

  4. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations (2020)

    Google Scholar 

  5. Chen, X., He, K.: Exploring simple Siamese representation learning. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 15745–15753 (2021). https://doi.org/10.1109/CVPR46437.2021.01549

  6. Conrad, R., Narayan, K.: CEM500k, a large-scale heterogeneous unlabeled cellular electron microscopy image dataset for deep learning. eLife 10, e65894 (2021). https://doi.org/10.7554/eLife.65894

  7. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  8. Grill, J.B., et al.: Bootstrap your own latent: A new approach to self-supervised learning (2020)

    Google Scholar 

  9. Hausler, S., Garg, S., Xu, M., Milford, M., Fischer, T.: Patch-NetVLAD: multi-scale fusion of locally-global descriptors for place recognition. In: CVPR, pp. 14141–14152 (2021)

    Google Scholar 

  10. He, K., Fan, H., Wu, Y., **e, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9726–9735 (2020). https://doi.org/10.1109/CVPR42600.2020.00975

  11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  12. Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A., Brox, T.: FlowNet 2.0: evolution of optical flow estimation with deep networks. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017

    Google Scholar 

  13. **g, L., Tian, Y.: Self-supervised visual feature learning with deep neural networks: A survey. CoRR abs/1902.06162 (2019). http://arxiv.org/abs/1902.06162

  14. Kasthuri, N., et al.: Saturated reconstruction of a volume of neocortex. Cell 162(3), 648–661 (2015). https://doi.org/10.1016/j.cell.2015.06.054

    Article  Google Scholar 

  15. Kim, D., Cho, D., Yoo, D., Kweon, I.S.: Learning image representations by completing damaged jigsaw puzzles (2018)

    Google Scholar 

  16. Larsson, G., Maire, M., Shakhnarovich, G.: Learning representations for automatic colorization. CoRR abs/1603.06668 (2016). http://arxiv.org/abs/1603.06668

  17. Leyva-Vallina, M., Strisciuglio, N., Petkov, N.: Generalized contrastive optimization of Siamese networks for place recognition. CoRR abs/2103.06638 (2021). https://arxiv.org/abs/2103.06638

  18. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. CoRR abs/1411.4038 (2014). http://arxiv.org/abs/1411.4038

  19. Lucchi, A., Smith, K., Achanta, R., Knott, G., Fua, P.: Supervoxel-based segmentation of mitochondria in EM image stacks with learned shape features. IEEE Trans. Med. Imag. 31(2), 474–486 (2012). https://doi.org/10.1109/TMI.2011.2171705

    Article  Google Scholar 

  20. Mayer, N., et al.: A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation. In: IEEE CVPR, pp. 4040–4048. ar**v:1512.02134 (2016)

  21. Neuhold, G., Ollmann, T., Rota Bulo, S., Kontschieder, P.: The Mapillary Vistas dataset for semantic understanding of street scenes. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), October 2017

    Google Scholar 

  22. Noroozi, M., Favaro, P.: Unsupervised learning of visual representations by solving jigsaw puzzles (2017)

    Google Scholar 

  23. Pathak, D., Krähenbühl, P., Donahue, J., Darrell, T., Efros, A.A.: Context encoders: Feature learning by inpainting. CoRR abs/1604.07379 (2016). http://arxiv.org/abs/1604.07379

  24. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 779–788 (2016). https://doi.org/10.1109/CVPR.2016.91

  25. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  26. Singh, S., et al.: Self-supervised feature learning for semantic segmentation of overhead imagery. In: BMVC (2018)

    Google Scholar 

  27. Tulyakov, S., Liu, M.Y., Yang, X., Kautz, J.: MoCoGAN: decomposing motion and content for video generation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1526–1535 (2018)

    Google Scholar 

  28. Zhang, R., Isola, P., Efros, A.A.: Colorful image colorization. CoRR abs/1603.08511 (2016). http://arxiv.org/abs/1603.08511

  29. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. CoRR abs/1612.01105 (2016). http://arxiv.org/abs/1612.01105

  30. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)

    Google Scholar 

  31. Zhu, J., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. CoRR abs/1703.10593 (2017). http://arxiv.org/abs/1703.10593

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Strisciuglio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pandey, V., Brune, C., Strisciuglio, N. (2022). Self-supervised Learning Through Colorization for Microscopy Images. In: Sclaroff, S., Distante, C., Leo, M., Farinella, G.M., Tombari, F. (eds) Image Analysis and Processing – ICIAP 2022. ICIAP 2022. Lecture Notes in Computer Science, vol 13232. Springer, Cham. https://doi.org/10.1007/978-3-031-06430-2_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06430-2_52

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06429-6

  • Online ISBN: 978-3-031-06430-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation