Electroplating as an Innovative Joining Method for Laser Additive Manufactured Components Made of AlSi10Mg

  • Conference paper
  • First Online:
Innovative Product Development by Additive Manufacturing 2021

Abstract

Powder bed fusion (PBF) enables the manufacturing of complex structures. While part consolidation is a widespread method of utilizing the design potentials of additive manufacturing, new approaches in research suggest a systematic separation of parts. Conclusively, separated parts must be joined after the manufacturing process. In this paper, electroplating is proposed as a joining process for PBF fabricated components. The joining by electroplating process is described and successfully used to join PBF manufactured tension rods. The influence of the joining geometry on the buildup of the joint is investigated. Furthermore, tensile strength and failure causes of the joined specimens are determined. Tensile strength for nickel joined specimens is 127.4 MPa and for copper joined specimens 83.2 MPa. Causes of failure are delamination in the zinc layer and fracture of the base body. The tool-free character of the process holds potential for joining complex geometries in PBF.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 128.39
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 171.19
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Biffi, C. A., Fiocchi, J., & Tuissi, A. (2019). Laser Weldability of AlSi10Mg alloy produced by selective laser melting: microstructure and mechanical behavior. Journal of Materials Engineering and Performance, 28(11), 6714–6719. https://doi.org/10.1007/s11665-019-04402-7

    Article  Google Scholar 

  2. Cavalcanti, D. K. K., Banea, M. D., & de Queiroz, H. F. M. (2019). Mechanical characterization of bonded joints made of additive manufactured adherends. Annals of Dunarea De Jos University of Galati Fascicle XII Welding Equipment and Technology, 30, 27–33. https://doi.org/10.35219/awet.2019.04

  3. Deka, A., & Behdad, S. (2019). Part separation technique for assembly-based design in additive manufacturing using genetic algorithm. Procedia Manufacturing, 34, 764–771. https://doi.org/10.1016/j.promfg.2019.06.208

    Article  Google Scholar 

  4. DIN e.V. DIN 50125:2016-12, Prüfung metallischer Werkstoffe_- Zugproben. Berlin: Beuth Verlag GmbH.

    Google Scholar 

  5. Dini, J. W., & Johnson, H. R. (1974). Joining by electroplating. Metals Engineering Quarterly, 14(1), 6–12.

    Google Scholar 

  6. Frascio, M., Jilich, M., Pizzorni, M., Monti, M., Avalle, M., & Zoppi, M. (2019). The use of low pressure plasma surface modification for bonded joints to assembly a robotic gripper designed to be additive manufactured. Procedia Structural Integrity, 24, 204–212. https://doi.org/10.1016/j.prostr.2020.02.017

    Article  Google Scholar 

  7. Gibson, I., Rosen, D., & Stucker, B. (2015). Additive manufacturing technologies: 3D printing, rapid prototy** and direct digital manufacturing (Second Edition). Springer. https://www.loc.gov/catdir/enhancements/fy1617/2014953293-b.html.

  8. Gill, M., Terry, E., Abdi, Y., Hawkes, S., Rindler, J., Schick, D., Ramirez, A., & Herderick, E. D. (2020). Joining technologies for metal additive manufacturing in the energy industry. JOM Journal of the Minerals Metals and Materials Society, 72(12), 4214–4220. https://doi.org/10.1007/s11837-020-04441-9

    Article  Google Scholar 

  9. Hassanin, A. E., Velotti, C., Scherillo, F., Astarita, A., Squillace, A., & Carrino, L. (2017). Study of the solid state joining of additive manufactured components. In 2017 IEEE 3rd International Forum on Research and Technologies for Society and Industry (RTSI) (pp. 1–4). IEEE. https://doi.org/10.1109/RTSI.2017.8065967

  10. Kanani, N. (2020). Galvanotechnik: Grundlagen, Verfahren und Praxis einer Schlüsseltechnologie (3., aktualisierte Auflage). Hanser.

    Google Scholar 

  11. Kim, S., & Moon, S. K. (2020). A part consolidation design method for additive manufacturing based on product disassembly complexity. Applied Sciences, 10(3), 1100. https://doi.org/10.3390/app10031100

    Article  Google Scholar 

  12. Kranz, J. (2017). Methodik und Richtlinien für die Konstruktion von laseradditiv gefertigten Leichtbaustrukturen. Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-662-55339-8.

  13. Krause, D., & Gebhardt, N. (2018). Methodische Entwicklung Modularer Produktfamilien: Hohe Produktvielfalt Beherrschbar Entwickeln. Vieweg. https://ebookcentral.proquest.com/lib/gbv/detail.action?docID=5215463.

  14. Krauss, W., Lorenz, J., & Konys, J. (2014). Joining of HHF materials applying electroplating technology. Fusion Engineering and Design, 89(7–8), 1213–1218. https://doi.org/10.1016/j.fusengdes.2014.04.042

    Article  Google Scholar 

  15. Kuklik, J., Wippo, V., Jaeschke, P., Kaierle, S., & Overmeyer, L. (2020). Laser Transmission Welding of additive manufactured parts: Process modifications to reduce cavities inside the weld seam. Procedia CIRP, 94, 139–143. https://doi.org/10.1016/j.procir.2020.09.027

    Article  Google Scholar 

  16. Kumke, M. Methodisches Konstruieren von additiv gefertigten Bauteilen [Dissertation]. Wiesbaden: Springer Fachmedien Wiesbaden.

    Google Scholar 

  17. Laverne, F., Segonds, F., Anwer, N., & Le Coq, M. (2015). Assembly based methods to support product innovation in design for additive manufacturing: An exploratory case study. Journal of Mechanical Design, 137(12), Article 121701. https://doi.org/10.1115/1.4031589.

  18. Moeini, G., Sajadifar, S. V., Wegener, T., Brenne, F., Niendorf, T., & Böhm, S. (2019). On the low-cycle fatigue behavior of friction stir welded Al–Si12 parts produced by selective laser melting. Materials Science and Engineering: A, 764, 138189. https://doi.org/10.1016/j.msea.2019.138189

    Article  Google Scholar 

  19. Nie, Z., Jung, S., Kara, L. B., & Whitefoot, K. S. (2020). Optimization of part consolidation for minimum production costs and time using additive manufacturing. Journal of Mechanical Design, 142(7), Article 072001. https://doi.org/10.1115/1.4045106.

  20. Oh, Y., Zhou, C., & Behdad, S. (2018). Part decomposition and 2D batch placement in single-machine additive manufacturing systems. Journal of Manufacturing Systems, 48, 131–139. https://doi.org/10.1016/j.jmsy.2018.07.006

    Article  Google Scholar 

  21. Pimentel, A., Noversa, T., Freitas, L., Nunes J. P., Brito, A. M., Lima, R., Alves, T. (2018). Mechanical joining methods for additive manufactured assembly tools. In Proceedings of the 8th international conference on polymers and moulds innovation—PMI 2018.

    Google Scholar 

  22. Prashanth, K. G., Damodaram, R., Maity, T., Wang, P., & Eckert, J. (2017). Friction welding of selective laser melted Ti6Al4V parts. Materials Science and Engineering: A, 704, 66–71. https://doi.org/10.1016/j.msea.2017.08.004

    Article  Google Scholar 

  23. Ramírez, E. A., Caicedo, F., Hurel, J., Helguero, C. G., & Amaya, J. L. (2019). Methodology for design process of a snap-fit joint made by additive manufacturing. Procedia CIRP, 79, 113–118. https://doi.org/10.1016/j.procir.2019.02.021

    Article  Google Scholar 

  24. Reichwein, J., & Kirchner, E. (2021). Part orientation and separation to reduce process costs in additive manufacturing. Proceedings of the Design Society, 1, 2399–2408. https://doi.org/10.1017/pds.2021.501

    Article  Google Scholar 

  25. Reichwein, J., Vogel, S., Schork, S., & Kirchner, E. (2020). On the applicability of agile development methods to design for additive manufacturing. Procedia CIRP, 91, 653–658. https://doi.org/10.1016/j.procir.2020.03.112

    Article  Google Scholar 

  26. Reichwein, J., Rudolph, K., Geis, J., & Kirchner, E. (2021a). Adapting product architecture to additive manufacturing through consolidation and separation. Procedia CIRP, 100, 79–84. https://doi.org/10.1016/j.procir.2021.05.013

    Article  Google Scholar 

  27. Reichwein, J., Steffan, K.-E., & Eckhard, K. (2021b). Bauteiltrennung zur Reduzierung der Prozesszeit und—kosten in der Additiven Fertigung. In D. Roth (Chair), Stuttgarter Symposium für Produktentwicklung SSP 2021. Symposium conducted at the meeting of Fraunhofer—Institut für Arbeitswissenschaft und Organisation IAO, Stuttgart.

    Google Scholar 

  28. Tavlovich, B., Shirizly, A., & Katz, R. (2018). EBW and LBW of Additive Manufactured Ti6Al4V Products. Welding Journal, 97(6), 179–190. https://doi.org/10.29391/2018.97.016.

  29. Wits, W. W., & Becker, J. J. (2015). Laser beam welding of titanium additive manufactured parts. Procedia CIRP, 28, 70–75. https://doi.org/10.1016/j.procir.2015.04.013

    Article  Google Scholar 

  30. Wohlers, T. T. (2018). WOHLERS REPORT: 3d printing and additive manufacturing state of the industry. WOHLERS Associates.

    Google Scholar 

  31. Würtenberger, J., Reichwein, J., & Kirchner, E. (2018). Using the potentials of additive manufacturing by a systematic linkage of the manufacturing process to product design. In Design conference proceedings, proceedings of the DESIGN 2018 15th international design conference (pp. 1465–1476). Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Croatia; The Design Society, Glasgow, UK. https://doi.org/10.21278/idc.2018.0225.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kris Rudolph .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rudolph, K., Noack, M., Hausmann, M., Kirchner, E., Babaei, P. (2023). Electroplating as an Innovative Joining Method for Laser Additive Manufactured Components Made of AlSi10Mg. In: Lachmayer, R., Bode, B., Kaierle, S. (eds) Innovative Product Development by Additive Manufacturing 2021. Springer, Cham. https://doi.org/10.1007/978-3-031-05918-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-05918-6_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-05917-9

  • Online ISBN: 978-3-031-05918-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation