Solutions to Data Science Problems

  • Chapter
  • First Online:
Dimensionality Reduction in Data Science

Abstract

This chapter presents a review of statistical and machine learning models to tackle data science problems, arguably the most popular approaches. Both supervised and unsupervised algorithms are described along with practical considerations when using these methods. Empirical results on exemplar datasets are also presented where applicable to illustrate the application of these methods to real-world problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 39.58
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 64.19
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 69.54
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arthur, D., & Vassilvitskii, S. (2007). k-Means++: The advantages of careful seeding. In SODA ’07: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms (pp. 1027–1035).

    Google Scholar 

  2. Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet allocation. Journal of Machine Learning Research, 3, 993–1022.

    MATH  Google Scholar 

  3. Bottou, L., & Bengio, Y. (1995). Convergence properties of the k-means algorithms. In G. Tesauro, D. Touretzky, & T. Leen (Eds.), Advances in neural information processing systems (Vol. 7). MIT Press.

    Google Scholar 

  4. Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.

    Article  Google Scholar 

  5. Chen, C., Liu, Y., & Peng, L. (2019). How to develop machine learning models for healthcare. Nature Materials, 18, 410–414.

    Article  Google Scholar 

  6. Christopher, M. (2006). Pattern recognition and machine learning. Springer.

    MATH  Google Scholar 

  7. Cristianini, N., & Shawe-Taylor, J. (2000). An introduction to support vector machines and other Kernel-based learning methods. Cambridge University Press.

    Book  Google Scholar 

  8. Domingos, P., & Pazzani, M. (1997). On the optimality of the simple Bayesian classifier under zero-one loss. Machine Learning, 29(2), 103–130.

    Article  Google Scholar 

  9. Fernández-Delgado, M., Cernadas, E., Barro, S., & Amorim, D. (2014). Do we need hundreds of classifiers to solve real world classification problems? Journal of Machine Learning Research, 15(1), 3133–3181.

    MathSciNet  MATH  Google Scholar 

  10. Friedman, J. B. (2001). Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29, 1189–1232.

    Article  MathSciNet  Google Scholar 

  11. Funahashi, K. I. (1989). On the approximate realization of continuous map**s by neural networks. Neural Networks, 2(3), 183–192.

    Article  Google Scholar 

  12. Garzon, M., & Botelho, F. (1999). Dynamical approximation by recurrent neural networks. Neurocomputing, 29(1), 25–46.

    Article  Google Scholar 

  13. Glantz, S. A., Slinker, B. K., & Neilands, T. B. (1990). Primer of applied regression and analysis of variance. McGraw-Hill Inc.

    Google Scholar 

  14. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.

    MATH  Google Scholar 

  15. Gideon, S., et al. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2), 461–464.

    MathSciNet  MATH  Google Scholar 

  16. Hastie, T. J., & Tibshirani, R. J. (1986). Generalized additive models. Statistical Science, 43(3), 297–310.

    MathSciNet  MATH  Google Scholar 

  17. Hinton, G. E., Osindero, S., & Teh, Y. W. (2006). A fast learning algorithm for deep belief nets. Neural Computation, 18, 1527–1554.

    Article  MathSciNet  Google Scholar 

  18. Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are universal approximators. Neural Networks, 2(5), 359–366.

    Article  Google Scholar 

  19. Kelleher, J. D., MacNamee, B., & D’Arcy, A. (2015). Fundamentals of machine learning for predictive data analytics: Algorithms, worked examples, and case studies. MIT Press.

    MATH  Google Scholar 

  20. Mitchell, T. M. (1997). Machine learning. McGraw-Hill.

    MATH  Google Scholar 

  21. Mount, J., & Zumel, N. (2019). Practical data science with R. Simon & Schuster.

    Google Scholar 

  22. Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1, 81–106.

    Google Scholar 

  23. Ripley, B. D. (2007). Pattern recognition and neural networks. Cambridge University Press.

    MATH  Google Scholar 

  24. Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20, 53–65.

    Article  Google Scholar 

  25. Schapire, R. E. (2013). Explaining AdaBoost. In Empirical inference (pp. 37–52). Springer.

    Google Scholar 

  26. Taddy, M. (2019). Business data science: Combining machine learning and economics to optimize, automate, and accelerate business decisions. McGraw Hill Professional.

    Google Scholar 

  27. Titterington, D. M., Smith, A. F. M., & Makov, U. E. (1985). Statistical analysis of finite mixture distributions. New York: Wiley.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Venugopal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Venugopal, D., Deng, LY., Garzon, M. (2022). Solutions to Data Science Problems. In: Garzon, M., Yang, CC., Venugopal, D., Kumar, N., Jana, K., Deng, LY. (eds) Dimensionality Reduction in Data Science. Springer, Cham. https://doi.org/10.1007/978-3-031-05371-9_2

Download citation

Publish with us

Policies and ethics

Navigation