Polypharmacology in Clinical Applications: Gastrointestinal Polypharmacology

  • Chapter
  • First Online:
Polypharmacology

Abstract

The digestive system comprises the gastrointestinal track (GI track) and accessory organs/glands. Recent research discoveries prove that in addition to GI track itself, gut microbiota also plays crucial roles in regulating digestive function and other human physiological functionalities as well as pathological processes. We therefore proposed to include gut microbiota into the digestive system, making it now comprise three parts: GI track, digestive glands, and gut microbiota. Gastrointestinal diseases (GI diseases) refer to diseases involving the gastrointestinal tract from mouth through the esophagus, stomach, small intestine, large intestine, and rectum to anus, as well as the accessory organs of digestion, the liver, gallbladder, and pancreas. Gut microbiota are the microorganisms including bacteria, archaea, and microscopic eukaryotes that live in the digestive tracts. This chapter aims to introduce the basics of GI disease and highlight clinical applications of the polypharmacological approaches for the treatment of the GI disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 160.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ogobuiro I, Gonzales J, Tuma F. Physiology, gastrointestinal. In: StatPearls [Internet]. Treasure Island (FL), StatPearls Publishing; 2021 Jan.

    Google Scholar 

  2. Arnold M, Abnet CC, Neale RE, et al. Global burden of 5 major types of gastrointestinal cancer. Gastroenterology. 2020;159(1):335–49.e15.

    Article  PubMed  Google Scholar 

  3. Gomaa EZ. Human gut microbiota/microbiome in health and diseases: a review. Antonie Van Leeuwenhoek. 2020;113(12):2019–40.

    Article  PubMed  Google Scholar 

  4. Adak A, Khan MR. An insight into gut microbiota and its functionalities. Cell Mol Life Sci. 2019;76(3):473–93.

    Article  CAS  PubMed  Google Scholar 

  5. Yamada T, Alpers DH, Kalloo AN, et al. Textbook of gastroenterology. 5th ed. Chichester: Blackwell Pub; 2009. p. 2774–84.

    Google Scholar 

  6. Ralston S, Penman I, Strachan M, et al., editors. Davidson’s principles and practice of medicine. 23rd ed. Edinburgh: Churchill Livingstone/Elsevier; 2018. ISBN: 9780702070280

    Google Scholar 

  7. Chey WD, Kurlander J, Eswaran S. Irritable bowel syndrome: a clinical review. JAMA. 2015;313(9):949–58.

    Article  CAS  PubMed  Google Scholar 

  8. American Gastroenterological Association, Bharucha AE, Dorn SD, Lembo A, et al. American Gastroenterological Association medical position statement on constipation. Gastroenterology. 2013;144(1):211–7.

    Article  Google Scholar 

  9. Moszak M, Szulińska M, Bogdański P. You are what you eat-the relationship between diet, microbiota, and metabolic disorders-a review. Nutrients. 2020;12(4):1096.

    Article  CAS  PubMed Central  Google Scholar 

  10. Saxena R, Sharma VK. A metagenomic insight into the human microbiome: its implications in health and disease. In: Kumar D, Antonarakis S, editors. Elsevier Science: Medical and Health Genomics; 2016. p. 117.

    Google Scholar 

  11. Quigley EM. Gut bacteria in health and disease. Gastroenterol Hepatol. 2013;9(9):560–9.

    Google Scholar 

  12. Guarner F, Malagelada J. Gut flora in health and disease. Lancet. 2003;361(9356):512–9.

    Article  PubMed  Google Scholar 

  13. Clarke G, Stilling RM, Kennedy PJ, et al. Minireview: Gut microbiota: The neglected endocrine organ. Mol Endocrinol. 2014;28(8):1221–38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Gibson GR. Fibre and effects on probiotics (the prebiotic concept). Clin Nutr Suppl. 2004;1(2):25–31.

    Article  Google Scholar 

  15. Hopper CP, De La Cruz LK, Lyles KV, et al. Role of carbon monoxide in host–gut microbiome communication. Chem Rev. 2020;120(24):13273–311.

    Article  CAS  PubMed  Google Scholar 

  16. O’Hara AM, Shanahan F. The gut flora as a forgotten organ. EMBO Rep. 2006;7(7):688–93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Rajilić-Stojanović M, De Vos WM. The first 1000 cultured species of the human gastrointestinal microbiota. FEMS Microbiol Rev. 2014;38(5):996–1047.

    Article  PubMed  CAS  Google Scholar 

  18. Litou C, Effinger A, Kostewicz ES, et al. Effects of medicines used to treat gastrointestinal diseases on the pharmacokinetics of coadministered drugs: a PEARRL Review. J Pharm Pharmacol. 2019;71(4):643–73.

    Article  CAS  PubMed  Google Scholar 

  19. Longo WE, Vernava AM. Prokinetic agents for lower gastrointestinal motility disorders. Dis Colon Rectum. 1993;36:696–708.

    Article  CAS  PubMed  Google Scholar 

  20. Tonini M. Recent advances in the pharmacology of gastrointestinal prokinetics. Pharmacol Res. 1996;33:217–26.

    Article  CAS  PubMed  Google Scholar 

  21. Cash BD, Lacy BE. Systematic review: FDA-approved prescription medications for adults with constipation. Gastroenterol Hepatol (N Y). 2006;2:736–49.

    Google Scholar 

  22. Tack J, et al. Diagnosis and treatment of chronic constipation – a European perspective. Neurogastroenterol Motil. 2011;23:697–710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Andresen V, et al. Effect of 5 days linaclotide on transit and bowel function in females with constipation-predominant irritable bowel syndrome. Gastroenterology. 2007;133:761–8.

    Article  CAS  PubMed  Google Scholar 

  24. Ippoliti C. Antidiarrheal agents for the management of treatment-related diarrhea in cancer patients. Am J Health Syst Pharm. 1998;55:1573–80.

    Article  CAS  PubMed  Google Scholar 

  25. Blanton WP, Wolfe MM. Proton pump inhibitors. In: Wolfe MM, Lowe RC, editors. Pocket Guide to Gastrointestinal Drugs. Chichester, UK: Wiley; 2014. p. 15–30.

    Chapter  Google Scholar 

  26. Sugano K. Histamine H2-receptor antagonists. In: Wolf MM, Lowe RC, editors. Pocket Guide to Gastrointestinal Drugs. Chichester, UK: Wiley; 2014. p. 31–43.

    Chapter  Google Scholar 

  27. Fröhlich EE, et al. Cognitive impairment by antibiotic-induced gut dysbiosis: analysis of gut microbiota–brain communication. Brain Behav Immun. 2016;56:140–55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Sullivan A, et al. Effect of antimicrobial agents on the ecological balance of human microflora. Lancet Infect Dis. 2001;1:101–14.

    Article  CAS  PubMed  Google Scholar 

  29. Edlund C, Nord CE. Effect on the human normal microflora of oral antibiotics for treatment of urinary tract infections. J Antimicrob Chemother. 2000;46(Suppl 1):41–8. discussion 63–5

    Article  CAS  PubMed  Google Scholar 

  30. Beaugerie L, Petit J-C. Antibiotic-associated diarrhoea. Best Pract Res Clin Gastroenterol. 2004;18:337–52.

    Article  CAS  PubMed  Google Scholar 

  31. Orlicka K, et al. Prevention of infection caused by immunosuppressive drugs in gastroenterology. Ther Adv Chronic Dis. 2013;4:167–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zenlea T, Peppercorn MA. Immunosuppressive therapies for inflammatory bowel disease. World J Gastroenterol. 2014;20:3146–52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Scaldaferri F, et al. Use and indications of cholestyramine and bile acid sequestrants. Intern Emerg Med. 2013;8:205–10.

    Article  PubMed  Google Scholar 

  34. Wedlake L, et al. Effectiveness and tolerability of colesevelam hydrochloride for bile-acid malabsorption in patients with cancer: a retrospective chart review and patient questionnaire. Clin Ther. 2009;31:2549–58.

    Article  CAS  PubMed  Google Scholar 

  35. Odunsi-Shiyanbade ST, et al. Effects of chenodeoxycholate and a bile acid sequestrant, colesevelam, on intestinal transit and bowel function. Clin Gastroenterol Hepatol. 2010;8:159–165.e5.

    Article  CAS  PubMed  Google Scholar 

  36. Stephen AM, Cummings JH. The microbial contribution to human faecal mass. J Med Microbiol. 1980;13(1):45–56.

    Article  CAS  PubMed  Google Scholar 

  37. Sommer F, Bäckhed F. The gut microbiota—masters of host development and physiology. Nat Rev Microbiol. 2013;11(4):227–38.

    Article  CAS  PubMed  Google Scholar 

  38. Segata N, Boernigen D, Tickle TL, et al. Computational meta’omics for microbial community studies. Mol Syst Biol. 2013;9:666.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Faderl M, Noti M, Corazza N, et al. Kee** bugs in check: the mucus layer as a critical component in maintaining intestinal homeostasis. IUBMB Life. 2015;67(4):275–85.

    Article  CAS  PubMed  Google Scholar 

  40. Gibson GR. Fibre and effects on probiotics (the prebiotic concept). Clin Nutrition Supplements. 2004;1(2):25–31.

    Article  Google Scholar 

  41. Yatsunenko T, Rey FE, Manary MJ, et al. Human gut microbiome viewed across age and geography. Nature. 2012;486(7402):222–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. McNamara MP, Singleton JM, Cadney MD, et al. Early-life effects of juvenile Western diet and exercise on adult gut microbiome composition in mice. J Exp Biol. 2021;224(4):jeb.239699.

    Article  Google Scholar 

  43. Yeh M-C, Glick-Bauer M. The health advantage of a vegan diet: Exploring the gut microbiota connection. Nutrients. 2014;6(11):4822–38.

    Article  PubMed  PubMed Central  Google Scholar 

  44. David LA, Maurice CF, Carmody RN, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2013;505(7484):559–63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Jeffery I, O’Toole P. Diet-microbiota interactions and their implications for healthy living. Nutrients. 2013;5(1):234–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. De Filippo C, Cavalieri D, Di Paola M, et al. Impact of diet in sha** gut microbiota revealed by a comparative study in children from Europe and rural Africa. Pro Nat Acad Sci. 2010;107(33):14691–6.

    Article  Google Scholar 

  47. Jonkers DMAE. Microbial perturbations and modulation in conditions associated with malnutrition and malabsorption. Best Pract Res Clin Gastroenterol. 2016;30(2):161–72.

    Article  CAS  PubMed  Google Scholar 

  48. Million M, Diallo A, Raoult D. Gut microbiota and malnutrition. Microb Pathog. 2017;106:127–38.

    Article  PubMed  Google Scholar 

  49. Khanna S, Tosh PK. A clinician’s primer on the role of the microbiome in human health and disease. Mayo Clin Proc. 2014;89(1):107–14.

    Article  CAS  PubMed  Google Scholar 

  50. Hutkins RW, Krumbeck JA, Bindels LB, et al. Prebiotics: why definitions matter. Curr Opin Biotechnol. 2016;37:1–7.

    Article  CAS  PubMed  Google Scholar 

  51. Gibson GR, Roberfroid MB. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr. 1995;125(6):1401–12.

    Article  CAS  PubMed  Google Scholar 

  52. Gibson GR, Hutkins R, Sanders ME, et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol. 2017;14(8):491–502.

    Article  PubMed  Google Scholar 

  53. Slavin J. Fiber and prebiotics: mechanisms and health benefits. Nutrients. 2013;5(4):1417–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lamsal BP. Production, health aspects and potential food uses of dairy prebiotic galactooligosaccharides. J Sci Food Agricul. 2012;92(10):2020–8.

    Article  CAS  Google Scholar 

  55. Rajendran SR, Okolie CL, Udenigwe CC, et al. Structural features underlying prebiotic activity of conventional and potential prebiotic oligosaccharides in food and health. J Food Biochem. 2017;41(5):e12389.

    Article  CAS  Google Scholar 

  56. Pokusaeva K, Fitzgerald GF, van Sinderen D. Carbohydrate metabolism in Bifidobacteria. Genes Nutrition. 2011;6(3):285–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zaman SA, Sarbini SR. The potential of resistant starch as a prebiotic. Crit Rev Biotechnol. 2015;36(3):578–84.

    PubMed  Google Scholar 

  58. Gómez B, Gullón B, Remoroza C, et al. Purification, characterization, and prebiotic properties of pectic oligosaccharides from orange peel wastes. J Agricul Food Chem. 2014;62(40):9769–82.

    Article  CAS  Google Scholar 

  59. Arena MP, Caggianiello G, Fiocco D, et al. Barley β-glucans-containing food enhances probiotic performances of beneficial bacteria. Int J Mol Sci. 2014;15(2):3025–39.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Linares-Pasten JA, Aronsson A, Karlsson EN. Structural considerations on the use of endo-xylanases for the production of prebiotic Xylooligosaccharides from biomass. Curr Protein Peptide Sci. 2017;19(1):48–67.

    Article  CAS  Google Scholar 

  61. Delcour JA, Aman P, Courtin CM, et al. Prebiotics, fermentable dietary fiber, and health claims. Advances in Nutrition. 2016;7(1):1–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Pandey KR, Naik SR, Vakil BV. Probiotics, prebiotics and synbiotics- a review. J Food Sci Technol. 2015;52(12):7577–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Coxam V. Current data with inulin-type fructans and calcium, targeting bone health in adults. J Nutrition. 2007;137(Suppl11):S2527–33.

    Article  Google Scholar 

  64. Seifert S, Watzl B. Inulin and oligofructose: review of experimental data on immune modulation. J Nutrition. 2007;137(Suppl11):S2563–7.

    Article  Google Scholar 

  65. Wilson B, Whelan K. Prebiotic inulin-type fructans and galacto-oligosaccharides: definition, specificity, function, and application in gastrointestinal disorders. J Gastroenterol Hepatol. 2017;32(Suppl1):64–8.

    Article  CAS  PubMed  Google Scholar 

  66. Prebiotics. Food-Info.net. Wageningen University.

  67. Byrne CS, Chambers ES, Morrison DJ, et al. The role of short chain fatty acids in appetite regulation and energy homeostasis. Int J Obesity. 2015;39(9):1331–8.

    Article  CAS  Google Scholar 

  68. Mack DR. Probiotics: mixed messages. Can Fam Physician. 2005;51(11):1455–7.

    PubMed  PubMed Central  Google Scholar 

  69. Gareau MG, et al. Probiotics and the gut microbiota in intestinal health and disease. Nat Rev Gastroenterol Hepatol. 2010;7:503–14.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Guidelines for the evaluation of probiotics in food report. Joint FAO/WHO Working Group report on drafting guidelines for the evaluation of probiotics in food. 2002. Available at: http://www.who.int/foodsafety/fs_management/en/probiotic_guidelines.pdf. Accessed 5 Sept 2021.

  71. Westendorf AM, et al. Intestinal immunity of Escherichia coli NISSLE 1917: a safe carrier for therapeutic molecules. FEMS Immunol Med Microbiol. 2005;43:373–84.

    Article  CAS  PubMed  Google Scholar 

  72. Resta-Lenert SC, Barrett KE. Modulation of intestinal barrier properties by probiotics: role in reversing colitis. Ann N Y Acad Sci. 2009;1165:175–82.

    Article  PubMed  Google Scholar 

  73. Probiotics. National Health Service. 27 November 2018.

  74. Probiotics: What you need to know. National Center for Complementary and Integrative Health, US National Institutes of Health. 1 August 2019. Retrieved 10 November 2021.

  75. Doron S, Snydman DR. Risk and safety of probiotics. Clin Infect Dis. 2015;60(Suppl2):S129–34.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Singhi SC, Kumar S. Probiotics in critically ill children. F1000Res. 2016;5:407.

    Article  Google Scholar 

  77. Durchschein F, Petritsch W, Hammer HF. Diet therapy for inflammatory bowel diseases: The established and the new. World J Gastroenterol. 2016;22(7):2179–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Brown AC, Valiere A. Probiotics and medical nutrition therapy. Nutr Clin Care. 2004;7(2):56–68.

    PubMed  PubMed Central  Google Scholar 

  79. King CK, Glass R, Bresee JS, et al. Managing acute gastroenteritis among children: oral rehydration, maintenance, and nutritional therapy. MMWR Recomm Rep. 2003;52(RR–16):1–16.

    PubMed  Google Scholar 

  80. Collinson S, Deans A, Padua-Zamora A, et al. Probiotics for treating acute infectious diarrhea. Cochrane Database Syst Rev. 2020;12:CD003048.

    PubMed  Google Scholar 

  81. Saez-Lara MJ, Gomez-Llorente C, Plaza-Diaz J, et al. The role of probiotic lactic acid bacteria and bifidobacteria in the prevention and treatment of inflammatory bowel disease and other related diseases: A systematic review of randomized human clinical trials. Biomed Res Int. 2015;2015:1–15.

    Article  Google Scholar 

  82. Probiotics and prebiotics. World Gastroenterology Organisation Global Guidelines. World Gastroenterology Organisation. October 2011. Archived (PDF) from the original on 9 August 2016. Retrieved 1 November 2021.

  83. Ghouri YA, Richards DM, Rahimi EF, et al. Systematic review of randomized controlled trials of probiotics, prebiotics, and synbiotics in inflammatory bowel disease. Clin Exp Gastroenterol. 2014;7:473–87.

    PubMed  PubMed Central  Google Scholar 

  84. Moayyedi P, Ford AC, Talley NJ, et al. The efficacy of probiotics in the treatment of irritable bowel syndrome: a systematic review. Gut. 2010;59(3):325–32.

    Article  CAS  PubMed  Google Scholar 

  85. Islam MA, Yun CH, Choi YJ, et al. Microencapsulation of live probiotic bacteria. J Microbiol Biotechnol. 2010;20(1367–1377):1367–77.

    Article  CAS  PubMed  Google Scholar 

  86. Timmerman HM, Koning CJ, Mulder L, et al. Monostrain, multistrain and multispecies probiotics – a comparison of functionality and efficacy. Int J Food Microbiol. 2004;96(3):219–33.

    Article  CAS  PubMed  Google Scholar 

  87. Williams EA, Stimpson J, Wang D, et al. Clinical trial: a multistrain probiotic preparation significantly reduces symptoms of irritable bowel syndrome in a double-blind placebo-controlled study. Aliment Pharmacol Ther. 2008;29(1):97–103.

    Article  PubMed  Google Scholar 

  88. Rijkers GT, de Vos WM, Brummer RJ, et al. Health benefits and health claims of probiotics: Bridging science and marketing. Brit J Nutrition. 2011;106(9):1291–6.

    Article  CAS  Google Scholar 

  89. Bee P. Probiotics, not so friendly after all? The Times. London. 2008. Archived from the original on 11 May 2015. Retrieved 18 May 2021.

  90. Cooperative Oesophageal Group. Combination of cimetidine and alginic acid: an improvement in the treatment of oesophageal reflux disease. Gut. 1991;32(7):819–22.

    Article  Google Scholar 

  91. Tytgat GNJ. Medical therapy of reflux esophagitis. In: Siewart JR, Hoelscher AH (eds). Diseases of the esophagus. Berlin, Springer Verlag. 1988: pp1137–47.

    Google Scholar 

  92. Temple JG, Bradby GVH, O’Connor F, et al. Cimetidine and metoclopramide in oesophageal reflux disease. BMJ. 1983;286:1863–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Bennett JR, Buckton GK, Martin HD, et al. The effect of adding cimetidine to alginate–antacid in treating gastrooesophageal reflux. In: Siewert JR, Hoelscher AH, editors. Diseases of the esophagus. Berlin: Springer Verlag; 1988. p. 1111–5.

    Chapter  Google Scholar 

  94. Eriksen CA, Cheadle WG, Cranford CA, et al. Combined cimetidine-alginate antacid therapy versus single agent treatment for reflux oesophagitis: results of prospective double-blind randomised clinical trial. Ann Chir Gynaecol. 1988;77(4):133–7.

    CAS  PubMed  Google Scholar 

  95. Connell AM. Combination drugs in gastroenterology. Am J Gastroenterol. 1986;81(5):392–6.

    CAS  PubMed  Google Scholar 

  96. Alter MJ, Margolis HS, Krawczynski K, et al. The natural history of community-acquired hepatitis C in the United States: the sentinel counties chronic non-A, non-B hepatitis study team. N Engl J Med. 1992;327(27):1899–905.

    Article  CAS  PubMed  Google Scholar 

  97. Thomas DL, Astemborski J, Rai RM, et al. The natural history of hepatitis C virus infection: host, viral, and environmental factors. JAMA. 2000;284(4):450–6.

    Article  CAS  PubMed  Google Scholar 

  98. Poynard T, Bedossa P, Opolon P. Natural history of liver fibrosis progression in patients with chronic hepatitis C. The OBSVIRC, METAVIR, CLINIVIR, and DOSVIRC groups. Lancet. 1997;349(9055):825–32.

    Article  CAS  PubMed  Google Scholar 

  99. Wiley TE, McCarthy M, Breidi L, Layden TJ. Impact of alcohol on the histological and clinical progression of hepatitis C infection. Hepatology. 1998;28(3):805–9.

    Article  CAS  PubMed  Google Scholar 

  100. Graham CS, Baden LR, Yu E, et al. Influence of human immunodeficiency virus infection on the course of hepatitis C virus infection: a meta-analysis. Clin Infect Dis. 2001;33(4):562–9.

    Article  CAS  PubMed  Google Scholar 

  101. Thein HH, Yi Q, Dore GJ, Krahn MD. Natural history of hepatitis C virus infection in HIV-infected individuals and the impact of HIV in the era of highly active antiretroviral therapy: a meta-analysis. AIDS. 2008;22(15):1979–91.

    Article  PubMed  Google Scholar 

  102. Pellicelli A, Messina V, Giannelli V, et al. High efficacy and safety of flat-dose ribavirin plus sofosbuvir/daclatasvir in genotype 3 cirrhotic patients. Gut Liver. 2020;14(3):357–67.

    Article  CAS  PubMed  Google Scholar 

  103. Kawaguchi Y, Mizuta T. Interaction between hepatitis C virus and metabolic factors. World J Gastroenterol. 2014;20:2888–901.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Kanwal F, Kramer JR, Ilyas J, et al. HCV genotype 3 is associated with an increased risk of cirrhosis and hepatocellular cancer in a national sample of U.S. Veterans with HCV. Hepatology. 2014, 60:98–105.

    Google Scholar 

  105. Leroy V, Angus P, Bronowicki JP, et al. Daclatasvir, sofosbuvir, and ribavirin for hepatitis C virus genotype 3 and advanced liver disease: a randomized phase III study (ALLY-3+). Hepatology. 2016;63:1430–41.

    Article  CAS  PubMed  Google Scholar 

  106. Lontok E, Mani N, Harrington PR, Miller V. Closing in on the target: sustained virologic response in hepatitis C virus genotype 1 infection response-guided therapy. Clin Infect Dis. 2013;56:1466–70.

    Article  PubMed  CAS  Google Scholar 

  107. Nelson DR, Cooper JN, Lalezari JP, et al. All-oral 12-week treatment with daclatasvir plus sofosbuvir in patients with hepatitis C virus genotype 3 infection: ALLY-3 phase III study. Hepatology. 2015;61:1127–35.

    Article  CAS  PubMed  Google Scholar 

  108. Zeuzem S, Dusheiko GM, Salupere R, et al. Sofosbuvir and ribavirin in HCV genotypes 2 and 3. N Engl J Med. 2014;370:1993–2001.

    Article  PubMed  CAS  Google Scholar 

  109. Feld JJ, Maan R, Zeuzem S, et al. Effectiveness and safety of sofosbuvir-based regimens for chronic HCV genotype 3 infection: results of the HCV-TARGET study. Clin Infect Dis. 2016;63:776–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Cornberg M, Petersen J, Schober A, et al. Real-world use, effectiveness and safety of anti-viral treatment in chronic hepatitis C genotype 3 infection. Aliment Pharmacol Ther. 2017;45:688–700.

    Article  CAS  PubMed  Google Scholar 

  111. European Association for Study of Liver. EASL clinical practice guidelines: management of hepatitis C virus infection. J Hepatol. 2014;60:392–420.

    Article  Google Scholar 

  112. Alonso S, Riveiro-Barciela M, Fernandez I, et al. Effectiveness and safety of sofosbuvir-based regimens plus an NS5A inhibitor for patients with HCV genotype 3 infection and cirrhosis: results of a multicenter real-life cohort. J Viral Hepat. 2017;24:304–11.

    Article  CAS  PubMed  Google Scholar 

  113. Herzer K, Welzel TM, Spengler U, et al. Real-world experience with daclatasvir plus sofosbuvir ± ribavirin for post-liver transplant HCV recurrence and severe liver disease. Transpl Int. 2017;30:243–55.

    Article  CAS  PubMed  Google Scholar 

  114. Hézode C, Lebray P, De Ledinghen V, et al. Daclatasvir plus sofosbuvir, with or without ribavirin, for hepatitis C virus genotype 3 in a French early access programme. Liver Int. 2017;37:1314–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Curry MP, Charlton M. Sofosbuvir and velpatasvir for patients with HCV infection. N Engl J Med. 2016;374:1688.

    PubMed  Google Scholar 

  116. Pianko S, Flamm SL, Shiffman ML, et al. Sofosbuvir plus velpatasvir combination therapy for treatment-experienced patients with genotype 1 or 3 hepatitis C virus infection: a randomized trial. Ann Intern Med. 2015;163:809–17.

    Article  PubMed  Google Scholar 

  117. European Association for the Study of the Liver. EASL recommendations on treatment of hepatitis C 2018. J Hepatol. 2018;69:461–511.

    Article  Google Scholar 

  118. Wyles D, Poordad F, Wang S, et al. Glecaprevir/pibrentasvir for hepatitis C virus genotype 3 patients with cirrhosis and/or prior treatment experience: a partially randomized phase 3 clinical trial. Hepatology. 2018;67:514–23.

    Article  CAS  PubMed  Google Scholar 

  119. Reig M, Mariño Z, Perelló C, et al. Unexpected high rate of early tumor recurrence in patients with HCV-related HCC undergoing interferon-free therapy. J Hepatol. 2016;65:719–26.

    Article  CAS  PubMed  Google Scholar 

  120. Cabibbo G, Petta S, Calvaruso V, et al. Is early recurrence of hepatocellular carcinoma in HCV cirrhotic patients affected by treatment with direct-acting antivirals? A prospective multicentre study. Aliment Pharmacol Ther. 2017;46:688–95.

    Article  CAS  PubMed  Google Scholar 

  121. Chinchilla-López P, Qi X, Yoshida EM, et al. The direct-acting antivirals for hepatitis C virus and the risk for hepatocellular carcinoma. Ann Hepatol. 2017;16:328–30.

    Article  PubMed  Google Scholar 

  122. Kumari R, Nguyen MH. Fixed-dose combination of sofosbuvir and ledipasvir for the treatment of chronic hepatitis C genotype 1. Expert Opin Pharmacother. 2015;16(5):739–48.

    Article  CAS  PubMed  Google Scholar 

  123. Dehghan Manshadi SA, Merat S, et al. Single-pill sofosbuvir and daclatasvir for treating hepatis C in patients co-infected with human immunodeficiency virus. Int J Clin Pract. 2021;75(8):e14304.

    Article  CAS  PubMed  Google Scholar 

  124. Madisch A, Vinson BR, Abdel-Aziz H, et al. Modulation of gastrointestinal motility beyond metoclopramide and domperidone: pharmacological and clinical evidence for phytotherapy in functional gastrointestinal disorders. Wien Med Wochenschr. 2017;167(7–8):160–8.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Ottillinger B, Storr M, Malfertheiner P, et al. STW 5 (Iberogast®)―a safe and effective standard in the treatment of functional gastrointestinal disorders. Wien Med Wochenschr. 2013;163(3–4):65–72.

    Article  PubMed  Google Scholar 

  126. Vinson B. Development of Iberogast: clinical evidence for multicomponent herbal mixtures. In: Cooper R, Kronenberg F (eds). Botanical medicine: from bench to bedside. New Rochelle, Mary Ann Liebert. 2009; pp167–89.

    Google Scholar 

  127. Wagner H. Multitarget therapy: the future of treatment for more than just functional dyspepsia. Phytomedicine. 2006;13(Suppl. 5):122–99.

    Article  PubMed  Google Scholar 

  128. Wegener T, Wagner H. The active components and the pharmacological multi-target principle of STW 5 (Iberogast). Phytomedicine. 2006;13(Suppl. 5):20–35.

    Article  CAS  PubMed  Google Scholar 

  129. Bundesinstitut für Arzneimittel und Medizinprodukte. Abwehr von Gefahren durch Arzneimittel, Stufe II. Metoclopramid-haltige Arzneimittel: Wirksamkeits- und Sicherheitsbedenken (hinsichtlich neurologischer und kardiovaskulärer Ereignisse). Bonn 2. Jan. 2012.

    Google Scholar 

  130. Arzneimittelkommission der deutschen Ärzteschaft UAW-News International. Ventrikuläre Arrhythmien und plötzlicher Herztod im Zusammenhang mit Domperidon. Deutsches Ärzteblatt. 2012;109(35/36):A1779–80.

    Google Scholar 

  131. Heidelbaugh JJ, Kim AH, Chang R. Overutilization of proton-pump inhibitors: what the clinician needs to know. Ther Adv Gastroenterol. 2012;5(4):219–32.

    Article  Google Scholar 

  132. Malfertheiner P, Holtmann G, Peitz U. Guidelines of the German society of metabolic and digestive diseases for the therapy of dyspepsia. Z Gastroenterol. 2001;39(11):937–56.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, Z., Yang, B. (2022). Polypharmacology in Clinical Applications: Gastrointestinal Polypharmacology. In: Polypharmacology. Springer, Cham. https://doi.org/10.1007/978-3-031-04998-9_8

Download citation

Publish with us

Policies and ethics

Navigation