Polypharmacology in Clinical Applications: Neurological Polypharmacology

  • Chapter
  • First Online:
Polypharmacology
  • 825 Accesses

Abstract

Neurological disorders include diverse subgroups, including neuromuscular diseases, genetic and metabolic disorders, developmental delay, traumatic brain disorders and injuries, and degenerative diseases. Polypharmacological treatment of neurological disorders is getting popular and, on some occasions, has become the mainstay therapeutic strategy. This chapter introduces the basic knowledge of polypharmacology-based therapeutic approaches for neurological disorders, as well as new multitarget drugs under development for the treatment of neurological disorders. Focus is given to CDT, FDC, and MTD approaches for the treatment of Alzheimer’s disease, Parkinson’s disease, epilepsy, multiple sclerosis, and schizophrenia, which represent some of the most difficult and challenging neurological disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 160.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Feigin VL, Vos T, Nichols E, et al. The global burden of neurological disorders: translating evidence into policy. Lancet Neurol. 2020;19(3):255–65.

    Article  PubMed  Google Scholar 

  2. Lehn A, Gelauff J, Hoeritzauer I, et al. Functional neurological disorders: mechanisms and treatment. J Neurol. 2016;263(3):611–20.

    Article  CAS  PubMed  Google Scholar 

  3. Pena SA, Iyengar R, Eshraghi RS, et al. Gene therapy for neurological disorders: challenges and recent advancements. J Drug Target. 2020;28(2):111–28.

    Article  CAS  PubMed  Google Scholar 

  4. Gilman C, McSweeney C, Mao Y. The applications of pharmacogenomics to neurological disorders. Curr Mol Med. 2014;14(7):880–90.

    Article  CAS  PubMed  Google Scholar 

  5. Hesdorffer DC. Comorbidity between neurological illness and psychiatric disorders. CNS Spectr. 2016;21(3):230–8.

    Article  PubMed  Google Scholar 

  6. Hellmann-Regen J, Piber D, Hinkelmann K, et al. Depressive syndromes in neurological disorders. Eur Arch Psychiatry Clin Neurosci. 2013;263(Suppl 2):S123–36.

    Article  PubMed  Google Scholar 

  7. Benedetti F, Bernasconi A, Pontiggia A. Depression and neurological disorders. Curr Opin Psychiatry. 2006;19(1):14–8.

    Article  PubMed  Google Scholar 

  8. Lopez JA, González HM, Léger GC. Alzheimer’s disease. Handb Clin Neurol. 2019;167:231–55.

    Article  Google Scholar 

  9. Serý O, Povová J, Míšek I, et al. Molecular mechanisms of neuropathological changes in Alzheimer’s disease: a review. Folia Neuropathol. 2013;51(1):1–9.

    Article  PubMed  CAS  Google Scholar 

  10. Briggs R, Kennelly SP, O’Neill D. Drug treatments in Alzheimer’s disease. Clin Med (Lond). 2016;16(3):247–53.

    Article  Google Scholar 

  11. Mufson EJ, Counts SE, Perez SE, et al. Cholinergic system during the progression of Alzheimer’s disease: therapeutic implications. Expert Rev Neurother. 2008;8:1703–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Manning FC. Tacrine therapy for the dementia of Alzheimer’s disease. Am Fam Physician. 1994;50:819–26.

    CAS  PubMed  Google Scholar 

  13. National Institute for Health and Care Excellence Donepezil, galantamine, rivastigmine and memantine for the treatment of Alzheimer’s disease. London: NICE; 2011. Available online at www.nice.org.uk/guidance/ta217/chapter/3-The-technologies

  14. Birks JS, Harvey R. Donepezil for dementia due to Alzheimer’s disease. Cochrane Database Syst Rev. 2003;(3):CD001190.

    Google Scholar 

  15. Lipton SA. Paradigm shift in neuroprotection by NMDA receptor blockade: memantine and beyond. Nat Rev Drug Discov. 2006;5(2):160–70.

    Article  CAS  PubMed  Google Scholar 

  16. Robinson DM, Keating GM. Memantine: a review of its use in Alzheimer’s disease. Drugs. 2006;66(11):1515–34.

    Article  CAS  PubMed  Google Scholar 

  17. Areosa SA, Sherriff F. Memantine for dementia. Cochrane Database Syst Rev. 2003;3:CD003154.

    Google Scholar 

  18. Atri A, Molinuevo JL, Lemming O, et al. Memantine in patients with Alzheimer’s disease receiving donepezil: new analyses of efficacy and safety for combination therapy. Alzheimers Res Ther. 2013;5:6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cavazzoni P. FDA’s decision to approve new treatment for Alzheimer’s disease. The US Food and Drug Administration Website https://www.fda.gov/drugs/news-events-human-drugs/fdas-decision-approve-new-treatment-alzheimers-disease. Accessed on 17 July 2021.

  20. Selkoe DJ, Hardy J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med. 2016;8(6):595–608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sevigny J, Chiao P, Bussière T, et al. The antibody aducanumab reduces Abeta plaques in Alzheimer’s disease. Nature. 2016;537(7618):50–6.

    Article  CAS  PubMed  Google Scholar 

  22. Tolar M, Abushakra S, Hey JA, et al. Aducanumab, gantenerumab, BAN2401, and ALZ-801-the first wave of amyloid-targeting drugs for Alzheimer’s disease with potential for near term approval. Alzheimers Res Ther. 2020;12(1):95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kandiah N, Ong PA, Yuda T, et al. Treatment of dementia and mild cognitive impairment with or without cerebrovascular disease: expert consensus on the use of Ginkgo biloba extract, EGb 761. CNS Neurosci Ther. 2019;25(2):288–98.

    Article  PubMed  PubMed Central  Google Scholar 

  24. McKeage K, Lyseng-Williamson KA. Ginkgo Biloba extract EGb 761 in the symptomatic treatment of mild-to-moderate dementia: a profile of its use. Drugs Ther Perspect. 2018;34(8):358–66.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Vaz M, Silvestre S. Alzheimer’s disease: recent treatment strategies. Eur J Pharmacol. 2020;887:173554.

    Article  CAS  PubMed  Google Scholar 

  26. Schmitt B, Bernhardt T, Moeller H-J, et al. Combination therapy in Alzheimer’s disease: a review of current evidence. CNS Drugs. 2004;18(13):827–44.

    Article  CAS  PubMed  Google Scholar 

  27. Kabir MT, Uddin MS, Mamun AA, et al. Combination drug therapy for the management of Alzheimer’s disease. Int J Mol Sci. 2020;21(9):3272.

    Article  CAS  PubMed Central  Google Scholar 

  28. Patel L, Grossberg GT. Combination therapy for Alzheimerʼs disease. Drugs Aging. 2011;28:539–56.

    Article  CAS  PubMed  Google Scholar 

  29. Atri A, Shaughnessy LW, Locascio JJ, et al. Long-term course and effectiveness of combination therapy in Alzheimer disease. Alzheimer Dis Assoc Disord. 2008;22:209–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Choi SH, Park KW, Na DL, et al. EXPECT Study Group tolerability and efficacy of memantine add-on therapy to rivastigmine transdermal patches in mild to moderate Alzheimer’s disease: a multicenter, randomized, open-label, parallel-group study. Curr Med Res Opin. 2011;27:1375–83.

    Article  CAS  PubMed  Google Scholar 

  31. Cummings JL, Schneider E, Tariot PN, et al. Memantine MEM-MD-02 Study Group. Behavioral effects of memantine in Alzheimer disease patients receiving donepezil treatment. Neurology. 2006;67:57–63.

    Article  CAS  PubMed  Google Scholar 

  32. Farlow MR, Alva G, Meng X, et al. A 25-week, open-label trial investigating rivastigmine transdermal patches with concomitant memantine in mild-to-moderate Alzheimer’s disease: a post hoc analysis. Curr Med Res Opin. 2010;26:263–9.

    Article  CAS  PubMed  Google Scholar 

  33. Dantoine T, Auriacombe S, Sarazin M, et al. Rivastigmine monotherapy and combination therapy with memantine in patients with moderately severe Alzheimer’s disease who failed to benefit from previous cholinesterase inhibitor treatment. Int J Clin Pract. 2005;60:110–8.

    Article  CAS  Google Scholar 

  34. Feldman HH, Schmitt FA, Olin JT. Memantine MEM-MD-02 Study Group. Activities of daily living in moderate-to-severe Alzheimer disease: an analysis of the treatment effects of memantine in patients receiving stable donepezil treatment. Alzheimer Dis Assoc Disord. 2006;20:263–8.

    Article  CAS  PubMed  Google Scholar 

  35. Lopez OL, Becker JT, Wahed AS, et al. Long-term effects of the concomitant use of memantine with cholinesterase inhibition in Alzheimer disease. J Neurol Neurosurg Psychiatry. 2009;80:600–7.

    Article  CAS  PubMed  Google Scholar 

  36. Porsteinsson A, Grossberg G, Mintzer J, et al. Memantine MEM-MD-12 Study Group. Memantine treatment in patients with mild to moderate Alzheimer’s disease already receiving a cholinesterase inhibitor: a randomized, double-blind, placebo-controlled trial. Curr Alzheimer Res. 2008;5:83–9.

    Article  CAS  PubMed  Google Scholar 

  37. Schmitt FA, van Dyck CH, Wichems CH, et al. Memantine MEM-MD-02 Study Group. Cognitive response to memantine in moderate to severe Alzheimer disease patients already receiving donepezil: an exploratory reanalysis. Alzheimer Dis Assoc Disord. 2006;20:255–62.

    Article  CAS  PubMed  Google Scholar 

  38. Riepe MW, Adler G, Ibach B, et al. Domain-specific improvement of cognition on memantine in patients with Alzheimer’s disease treated with rivastigmine. Dement Geriatr Cogn Disord. 2007;23:301–6.

    Article  CAS  PubMed  Google Scholar 

  39. Tariot PN, Farlow MR, Grossberg GT, et al. Memantine Study Group. Memantine treatment in patients with moderate to severe Alzheimer disease already receiving donepezil: a randomized controlled trial. JAMA. 2004;291:317.

    Article  CAS  PubMed  Google Scholar 

  40. Weiner MW, Sadowsky C, Saxton J, et al. Magnetic resonance imaging and neuropsychological results from a trial of memantine in Alzheimer’s disease. Alzheimer’s Dement. 2011;7:425–35.

    Article  Google Scholar 

  41. Wilkinson D. A review of the effects of memantine on clinical progression in Alzheimer’s disease. Int J Geriatr Psychiatry. 2012;27:769–76.

    Article  PubMed  Google Scholar 

  42. Parsons CG, Danysz W, Dekundy A, et al. Memantine and cholinesterase inhibitors: complementary mechanisms in the treatment of Alzheimer’s disease. Neurotox Res. 2013;24:358–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Posadas I, Lopez-Hernandez B, Cena V. Nicotinic receptors in neurodegeneration. Curr Neuropharmacol. 2013;11:298–314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Takada-Takatori Y, Kume T, Sugimoto M, et al. Acetylcholinesterase inhibitors used in treatment of Alzheimer’s disease prevent glutamate neurotoxicity via nicotinic acetylcholine receptors and phosphatidylinositol 3-kinase cascade. Neuropharmacology. 2006;51:474–86.

    Article  CAS  PubMed  Google Scholar 

  45. Simoni E, Daniele S, Bottegoni G, et al. Combining galantamine and memantine in multitargeted, new chemical entities potentially useful in Alzheimer’s disease. J Med Chem. 2012;55:9708–21.

    Article  CAS  PubMed  Google Scholar 

  46. Koola MM. Galantamine-Memantine combination in the treatment of Alzheimer’s disease and beyond. Psychiatry Res. 2020;293:113409.

    Article  CAS  PubMed  Google Scholar 

  47. Matsunaga S, Kishi T, Nomura I, et al. The efficacy and safety of memantine for the treatment of Alzheimer’s disease. Expert Opin Drug Saf. 2018;17(10):1053–61.

    Article  CAS  PubMed  Google Scholar 

  48. Matsunaga S, Kishi T, Iwata N. Combination therapy with cholinesterase inhibitors and memantine for Alzheimer’s disease: a systematic review and meta-analysis. Int J Neuropsychopharmacol. 2014;18(5):pyu115.

    PubMed  Google Scholar 

  49. Lipton SA, Choi YB, Pan ZH, et al. A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds. Nature. 1993;364:626–32.

    Article  CAS  PubMed  Google Scholar 

  50. Zheng H, Fridkin M, Youdim M. From single target to multitarget/network therapeutics in Alzheimer’s therapy. Pharmaceuticals. 2014;7:113–35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Serrano-Pozo A, William CM, Ferrer I, et al. Beneficial effect of human anti-amyloid-β active immunization on neurite morphology and tau pathology. Brain. 2010;133:1312–27.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Dodel R, Rominger A, Bartenstein P, et al. Intravenous immunoglobulin for treatment of mild-to-moderate Alzheimer’s disease: a phase 2, randomised, double-blind, placebo-controlled, dose-finding trial. Lancet Neurol. 2013;12:233–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Talantova M, Sanz-Blasco S, Zhang X, et al. Aβ induces astrocytic glutamate release, extrasynaptic NMDA receptor activation, and synaptic loss. Proc Natl Acad Sci USA. 2013;110:E2518–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Prati F, Bergamini C, Fato R, et al. Novel 8-hydroxyquinoline derivatives as multitarget compounds for the treatment of Alzheimer’s disease. ChemMedChem. 2016;11:1284–95.

    Article  CAS  PubMed  Google Scholar 

  55. Suh SW, Jensen KB, Jensen MS, et al. Histochemically-reactive zinc in amyloid plaques, angiopathy, and degenerating neurons of Alzheimer’s diseased brains. Brain Res. 2000;852:274–8.

    Article  CAS  PubMed  Google Scholar 

  56. Curtain CC, Ali F, Volitakis I, et al. Alzheimer’s disease Amyloid-β binds copper and zinc to generate an allosterically ordered membrane-penetrating structure containing superoxide dismutase-like subunits. J Biol Chem. 2001;276:20466–73.

    Article  CAS  PubMed  Google Scholar 

  57. Fernández-Bachiller MI, Peérez C, González-Munñoz GC, et al. Novel Tacrine−8-Hydroxyquinoline hybrids as multifunctional agents for the treatment of Alzheimer’s disease, with neuroprotective, cholinergic, antioxidant, and copper-complexing properties. J. Med. Chem. 2010;53:4927–37.

    Article  PubMed  CAS  Google Scholar 

  58. Peña-Altamira E, Prati F, Massenzio F, et al. Changing paradigm to target microglia in neurodegenerative diseases: from anti-inflammatory strategy to active immunomodulation. Expert Opin Ther Targets. 2016;20:627–40.

    Article  PubMed  CAS  Google Scholar 

  59. Weinstock M, Bejar C, Wang R-H, et al. TV3326, a novel neuroprotective drug with cholinesterase and monoamine oxidase inhibitory activities for the treatment of Alzheimer’s disease. In: Advances in Research on Neurodegeneration. Vienna: Springer; 2000. p. 157–69.

    Chapter  Google Scholar 

  60. Bar-Am O, Weinreb O, Amit T, et al. The novel cholinesterase-monoamine oxidase inhibitor and antioxidant, ladostigil, confers neuroprotection in neuroblastoma cells and aged rats. J Mol Neurosci. 2009;37:135–45.

    Article  CAS  PubMed  Google Scholar 

  61. Bar-Am O, Yogev-Falach M, Amit T, et al. Regulation of protein kinase C by the anti-Parkinson drug, MAO-B inhibitor, rasagiline and its derivatives, in vivo. J Neurochem. 2004;89:1119–25.

    Article  CAS  PubMed  Google Scholar 

  62. Weinreb O, Amit T, Bar-Am O, et al. Rasagiline: a novel anti-Parkinsonian monoamine oxidase-B inhibitor with neuroprotective activity. Prog Neurobiol. 2010;92:330–44.

    Article  CAS  PubMed  Google Scholar 

  63. Faux NG, Ritchie CW, Gunn A, et al. PBT2 rapidly improves cognition in Alzheimer’s disease: additional phase II analyses. J. Alzheimer’s Dis. 2010;20:509–16.

    Article  CAS  Google Scholar 

  64. Savelieff MG, Detoma AS, Derrick JS, et al. The ongoing search for small molecules to study metal-Associated amyloid-β species in alzheimer’s disease. Acc Chem Res. 2014;47:2475–82.

    Article  CAS  PubMed  Google Scholar 

  65. Gal S, Zheng H, Fridkin M, et al. Novel multifunctional neuroprotective iron chelator-monoamine oxidase inhibitor drugs for neurodegenerative diseases. In vivo selective brain monoamine oxidase inhibition and prevention of MPTP-induced striatal dopamine depletion. J Neurochem. 2005;95:79–88.

    Article  CAS  PubMed  Google Scholar 

  66. Huat TJ, Camats-Perna J, Newcombe EA, et al. Metal toxicity links to Alzheimer’s disease and Neuroinflammation. J Mol Biol. 2019;431:1843–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lee HJ, Park MK, Seo YR. Pathogenic mechanisms of heavy metal induced-Alzheimer’s disease. Toxicol Environ Health Sci. 2018;10:1–10.

    Article  CAS  Google Scholar 

  68. Lannfelt L, Blennow K, Zetterberg H, et al. Safety, efficacy, and biomarker findings of PBT2 in targeting Aβ as a modifying therapy for Alzheimer’s disease: a phase IIa, double-blind, randomised, placebo-controlled trial. Lancet Neurol. 2008;7:779–86.

    Article  CAS  PubMed  Google Scholar 

  69. Gannon M, Wang Q. Complex noradrenergic dysfunction in Alzheimer’s disease: low norepinephrine input is not always to blame. Brain Res. 2019;1702:12–6.

    Article  CAS  PubMed  Google Scholar 

  70. Gannon M, Che P, Chen Y, et al. Noradrenergic dysfunction in Alzheimer’s disease. Front Neurosci. 2015;9:220.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Mohs RC, Shiovitz TM, Tariot PN, et al. Atomoxetine augmentation of cholinesterase inhibitor therapy in patients with alzheimer disease: 6-month, randomized, double-blind, placebo-controlled, parallel-trial study. Am J Geriatr Psychiatry. 2009;17:752–9.

    Article  PubMed  Google Scholar 

  72. Kalia LV, Lang AE. Parkinson’s disease. Lancet. 2015;386(9996):896–912.

    Article  CAS  PubMed  Google Scholar 

  73. Tysnes OB, Storstein A. Epidemiology of Parkinson’s disease. J Neural Transm (Vienna). 2017;124(8):901–5.

    Article  Google Scholar 

  74. Poewe W, Seppi K, Tanner CM, et al. Parkinson disease. Nat Rev Dis Primers. 2017;3:17013.

    Article  PubMed  Google Scholar 

  75. Axelsen TM, Woldbye DPD. Gene therapy for Parkinson’s disease, an update. J Parkinsons Dis. 2018;8(2):195–215.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Elkouzi A, Vedam-Mai V, Eisinger RS, et al. Emerging therapies in Parkinson disease – repurposed drugs and new approaches. Nat Rev Neurol. 2019;15(4):204–23.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Greenland JC, Williams-Gray CH, Barker RA. The clinical heterogeneity of Parkinson’s disease and its therapeutic implications. Eur J Neurosci. 2019;49(3):328–38.

    Article  PubMed  Google Scholar 

  78. Lenka A, Padmakumar C, Pal PK. Treatment of older Parkinson’s disease. Int Rev Neurobiol. 2017;132:381–405.

    Article  CAS  PubMed  Google Scholar 

  79. The National Collaborating Centre for Chronic Conditions, editor. Symptomatic pharmacological therapy in Parkinson’s disease. Parkinson’s Disease. London: Royal College of Physicians; 2006. p. 59–100.

    Google Scholar 

  80. Armstrong MJ, Okun MS. Diagnosis and treatment of Parkinson disease: a review. JAMA. 2020;323(6):548–60.

    Article  PubMed  Google Scholar 

  81. Akhtar MJ, Yar MS, Grover G, et al. Neurological and psychiatric management using COMT inhibitors: a review. Bioorganic Chem. 2020;94:103418.

    Article  CAS  Google Scholar 

  82. Goldenberg MM. Medical management of Parkinson’s disease. P & T. 2008;33(10):590–606.

    Google Scholar 

  83. Crosby N, Deane KH, Clarke CE. Amantadine in Parkinson’s disease. The. Cochrane Database Syst Rev. 2003;(1):CD003468.

    Google Scholar 

  84. The National Collaborating Centre for Chronic Conditions, editor. Non-motor features of Parkinson’s disease. Parkinson’s Disease. London: Royal College of Physicians; 2006. p. 113–33.

    Google Scholar 

  85. Elbers RG, Verhoef J, van Wegen EE, et al. Interventions for fatigue in Parkinson’s disease. Cochrane Database Systemat Rev. 2015;(10):CD010925.

    Google Scholar 

  86. Oertel WH. Recent advances in treating Parkinson’s disease. F1000Research. 2017;6:260.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Hauser RA, Hsu A, Kell S, et al. IPX066 ADVANCE-PD investigators. Extended-release carbidopa-levodopa (IPX066) compared with immediate-release carbidopa-levodopa in patients with Parkinson’s disease and motor fluctuations: a phase 3 randomised, double-blind trial. Lancet Neurol. 2013;12(4):346–56.

    Article  CAS  PubMed  Google Scholar 

  88. Verhagen Metman L, Stover N, Chen C, et al. Gastroretentive carbidopa/levodopa, DM-1992, for the treatment of advanced Parkinson’s disease. Mov Disord. 2015;30(9):1222–8.

    Article  CAS  PubMed  Google Scholar 

  89. Nyholm D, Lewander T, Gomes-Trolin C, et al. Pharmacokinetics of levodopa/carbidopa microtablets versus levodopa/benserazide and levodopa/carbidopa in healthy volunteers. Clin Neuropharmacol. 2012;35(3):111–7.

    Article  CAS  PubMed  Google Scholar 

  90. Da Prada M, Keller HH, Pieri L, et al. The pharmacology of Parkinson’s disease: basic aspects and recent advances. Experientia. 1984;40(11):1165–72.

    Article  PubMed  Google Scholar 

  91. Barbeau A, Roy M. Six-year results of treatment with levodopa plus benzerazide in Parkinson’s disease. Neurology. 1976;26(5):399–404.

    Article  CAS  PubMed  Google Scholar 

  92. Binde CD, Tvete IF, Gåsemyr J, et al. A multiple treatment comparison meta-analysis of monoamine oxidase type B inhibitors for Parkinson’s disease. Br J Clin Pharmacol. 2018;84(9):1917–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Jiang DQ, Li MX, Jiang LL, et al. Comparison of selegiline and levodopa combination therapy versus levodopa monotherapy in the treatment of Parkinson’s disease: a meta-analysis. Aging Clin Exp Res. 2020;32(5):769–79.

    Article  PubMed  Google Scholar 

  94. Jiang DQ, Wang HK, Wang Y, et al. Rasagiline combined with levodopa therapy versus levodopa monotherapy for patients with Parkinson’s disease: a systematic review. Neurol Sci. 2020;41(1):101–9.

    Article  PubMed  Google Scholar 

  95. Rascol O, Brooks DJ, Melamed E, et al. LARGO Study Group. Rasagiline as an adjunct to levodopa in patients with Parkinson’s disease and motor fluctuations (LARGO, Lasting effect in Adjunct therapy with Rasagiline Given Once daily, study): a randomised, double-blind, parallel-group trial. Lancet. 2005;365(9463):947–54.

    Article  CAS  PubMed  Google Scholar 

  96. Cattaneo C, Sardina M, Bonizzoni E. Safinamide as add-on therapy to levodopa in mid- to late-stage Parkinson’s disease fluctuating patients: post hoc analyses of studies 016 and SETTLE. J Parkinsons Dis. 2016;6(1):165–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Hattori N, Tsuboi Y, Yamamoto A, et al. ME2125-3 Study Group. Efficacy and safety of safinamide as an add-on therapy to L-dopa for patients with Parkinson’s disease: a randomized, double-blind, placebo-controlled, phase II/III study. Parkinsonism Relat Disord. 2020;75:17–23.

    Article  PubMed  Google Scholar 

  98. Talati R, Baker WL, Patel AA, et al. Adding a dopamine agonist to preexisting levodopa therapy vs. levodopa therapy alone in advanced Parkinson’s disease: a meta analysis. Int J Clin Pract. 2009;63(4):613–23.

    Article  CAS  PubMed  Google Scholar 

  99. Jiang DQ, Zang QM, Jiang LL, Wang Y, Li MX, Qiao JY. Comparison of pramipexole and levodopa/benserazide combination therapy versus levodopa/benserazide monotherapy in the treatment of Parkinson’s disease: a systematic review and meta-analysis. Naunyn Schmiedebergs Arch Pharmacol. 2021;394:1893–905.

    Article  CAS  PubMed  Google Scholar 

  100. Salat D, Tolosa E. Levodopa in the treatment of Parkinson’s disease: current status and new developments. J Parkinsons Dis. 2013;3(3):255–69.

    Article  CAS  PubMed  Google Scholar 

  101. Seeberger LC, Hauser RA. Levodopa/carbidopa/entacapone in Parkinson’s disease. Expert Rev Neurother. 2009;9(7):929–40.

    Article  CAS  PubMed  Google Scholar 

  102. Kumari S, Mishra C, Tiwari M. Polypharmacological drugs in the treatment of Epilepsy: the comprehensive review of marketed and new emerging molecules. Curr Pharm Des. 2016;22(21):3212–25.

    Article  CAS  PubMed  Google Scholar 

  103. Fisher R, van Emde BW, Blume W, et al. Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia. 2005;46(4):470–2.

    Article  PubMed  Google Scholar 

  104. WHO. Epilepsy Fact sheet. Archived from the original on 11 March 2016. Retrieved 4 March 2016.

    Google Scholar 

  105. Hammer GD, McPhee SJ, editors. Pathophysiology of disease: an introduction to clinical medicine. 6th ed. New York: McGraw-Hill Medical; 2010. ISBN 978-0-07-162167-0

    Google Scholar 

  106. Goldberg EM, Coulter DA. Mechanisms of epileptogenesis: a convergence on neural circuit dysfunction. Nat Rev Neurosci. 2013;14(5):337–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Pandolfo M. Genetics of epilepsy. Semin Neurol. 2011;31(5):506–18.

    Article  PubMed  Google Scholar 

  108. Ghosh S, Sinha JK, Khan T, et al. Pharmacological and therapeutic approaches in the treatment of epilepsy. Biomedicines. 2021;9(5):470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. GBD 2013 Mortality Causes of Death Collaborators. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015;385(9963):117–71.

    Article  Google Scholar 

  110. Brodie MJ, Elder AT, Kwan P. Epilepsy in later life. Lancet Neurol. 2009;8(11):1019–30.

    Article  PubMed  Google Scholar 

  111. Holmes TR, Browne GL. Handbook of epilepsy. 4th ed. Philadelphia: Lippincott Williams & Wilkins; 2008. p. 7. ISBN 978-0-7817-7397-3

    Google Scholar 

  112. Wyllie’s treatment of epilepsy: principles and practice (5th ed). Philadelphia: Wolters Kluwer/Lippincott Williams & Wilkins; 2010. ISBN 978-1-58255-937-7. Archived from the original on 24 June 2016.

  113. Newton CR, Garcia HH. Epilepsy in poor regions of the world. Lancet. 2012;380(9848):1193–201.

    Article  PubMed  Google Scholar 

  114. Wilden JA, Cohen-Gadol AA. Evaluation of first nonfebrile seizures. Am Family Physician. 2012;86(4):334–40.

    Google Scholar 

  115. Berg AT. Risk of recurrence after a first unprovoked seizure. Epilepsia. 2008;49(Suppl1):13–8.

    Article  PubMed  Google Scholar 

  116. Devlin A, Odell M, Charlton J, et al. Epilepsy and driving: current status of research. Epilepsy Res. 2012;102(3):135–52.

    Article  Google Scholar 

  117. National Clinical Guideline Centre. The Epilepsies: the diagnosis and management of the epilepsies in adults and children in primary and secondary care. National Institute for Health and Clinical Excellence; 2012. p. 21–8.

    Google Scholar 

  118. Wyllie E. Wyllie’s treatment of Epilepsy: principles and practice. Lippincott Williams & Wilkins; 2012. p. 187. ISBN 978-1-4511-5348-4

    Google Scholar 

  119. National Clinical Guideline Centre. The Epilepsies: the diagnosis and management of the epilepsies in adults and children in primary and secondary care. National Institute for Health and Clinical Excellence; 2012. p. 57–83.

    Google Scholar 

  120. Kumar GP, Rambhau D, Apte SS. Development of NDDS of carbamazepine in epilepsy for medical discovery of formulation significance. J Med Discov. 2017;2(2):1–13.

    CAS  Google Scholar 

  121. Nevitt SJ, Marson AG, Tudur SC. Carbamazepine versus phenytoin monotherapy for epilepsy: an individual participant data review. Cochrane Database Syst Rev. 2019;7:CD001911.

    PubMed  Google Scholar 

  122. Nevitt SJ, Marson AG, Weston J, et al. Sodium valproate versus phenytoin monotherapy for epilepsy: an individual participant data review. Cochrane Database Syst Rev. 2018;2018(8):CD001769.

    PubMed Central  Google Scholar 

  123. Powell G, Saunders M, Rigby A, et al. Immediate-release versus controlled-release carbamazepine in the treatment of epilepsy. Cochrane Database Syst Rev. 2016;12:CD007124.

    PubMed  Google Scholar 

  124. Mani J. Combination therapy in epilepsy: what, when, how and what not! J Assoc Physicians India. 2013;61(8 Suppl):40–4.

    PubMed  Google Scholar 

  125. Leppik IE. Monotherapy and polypharmacy. Neurology. 2000;55(11 Suppl 3):S25–9.

    CAS  PubMed  Google Scholar 

  126. Moeller JJ, Rahey SR, Sadler RM. Lamotrigine-valproic acid combination therapy for medically refractory epilepsy. Epilepsia. 2009;50(3):475–9.

    Article  CAS  PubMed  Google Scholar 

  127. Ferrie CD, Robinson RO, Knott C, Panayiotopoulos CP. Lamotrigine as an add-on drug in typical absence seizures. Acta Neurol Scand. 1995;91:200–2.

    Article  CAS  PubMed  Google Scholar 

  128. Panayiotopoulos CP, Ferrie CD, Knott C, et al. Interaction of lamotrigine with sodium valproate. Lancet. 1993;341:445.

    Article  CAS  PubMed  Google Scholar 

  129. Pisani F, DiPerri R, Perucca E, et al. Interaction of lamotrigine with sodium valproate. Lancet. 1993;341:1224.

    Article  CAS  PubMed  Google Scholar 

  130. Ferrie CD, Panayiotopoulos CP. Therapeutic interaction of lamotrigine and sodium valproate in intractable myoclonic epilepsy. Seizure. 1994;3:157–9.

    Article  CAS  PubMed  Google Scholar 

  131. Deckers CL, Czuczwar SJ, Hekster YA, et al. Selection of antiepileptic drug polytherapy based on mechanisms of action: the evidence reviewed. Epilepsia. 2000;41:1364–74.

    Article  CAS  PubMed  Google Scholar 

  132. Jonker DM, Voskuyl RA, Danhof M. Synergistic combinations of anticonvulsant agents: what is the evidence from animal experiments? Epilepsia. 2007;48:412–34.

    Article  CAS  PubMed  Google Scholar 

  133. Klitgaard H, Knudsen ML, Jackson HC. Synergism between drugs with diffrent mechanisms of action against audiogenic seizures in DBA/2 mice. Epilepsia. 1993;34(Suppl. 6):93–4.

    Google Scholar 

  134. Löscher W, Rundfeldt C, Honack D. Low doses of NMDA receptor antagonists synergistically increase the anticonvulsant effect of the AMPA receptor antagonist NBQX in the kindling model of epilepsy. Eur J Neurosci. 1993;5:1545–50.

    Article  PubMed  Google Scholar 

  135. Löscher W, Honack D. Over-additive anticonvulsant effect of memantine and NBQX in kindled rats. Eur J Pharmacol. 1994;259:R3–5.

    Article  PubMed  Google Scholar 

  136. Gasior M, Carter RB, Goldberg SR, et al. Anticonvulsant and behavioral effects of neuroactive steroids alone and in conjunction with diazepam. J Pharmacol Exp Ther. 1997;282:543–53.

    CAS  PubMed  Google Scholar 

  137. Kaminski RM, Matagne A, Patsalos PN, et al. Benefit of combination therapy in epilepsy: a review of the preclinical evidence with levetiracetam. Epilepsia. 2009;50(3):387–97.

    Article  CAS  PubMed  Google Scholar 

  138. De Smedt T, Raedt R, Vonck K, et al. Levetiracetam: part II, the clinical profile of a novel anticonvulsant drug. CNS Drug Rev. 2007;13:57–8.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Compston A, Coles A. Multiple sclerosis. Lancet. 2008;372(9648):1502–17.

    Article  CAS  PubMed  Google Scholar 

  140. Compston A, Coles A. Multiple sclerosis. Lancet. 2002;359(9313):1221–31.

    Article  PubMed  Google Scholar 

  141. Murray ED, Buttner EA, Price BH. Depression and psychosis in neurological practice. In: Daroff R, Fenichel G, Jankovic J, Mazziotta J, editors. Bradley’s neurology in clinical practice. 6th ed. Philadelphia: Elsevier/Saunders; 2012. ISBN 978-1-4377-0434-1.

    Google Scholar 

  142. Ascherio A, Munger KL. Environmental risk factors for multiple sclerosis. Part I: the role of infection. Ann Neurol. 2007;61(4):288–99.

    Article  PubMed  Google Scholar 

  143. Tsang BK, Macdonell R. Multiple sclerosis- diagnosis, management and prognosis. Aust Fam Physician. 2011;40(12):948–55.

    PubMed  Google Scholar 

  144. Berer K, Krishnamoorthy G. Microbial view of central nervous system autoimmunity. FEBS Lett. 2014;588(22):4207–13.

    Article  CAS  PubMed  Google Scholar 

  145. GBD 2015 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388(10053):1545–602.

    Article  Google Scholar 

  146. World Health Organization. Atlas: multiple sclerosis resources in the World 2008. Geneva: World Health Organization; 2008. p. 15–6.

    Google Scholar 

  147. GBD 2015 Mortality and Causes of Death Collaborators. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388(10053):1459–544.

    Article  Google Scholar 

  148. Milo R, Kahana E. Multiple sclerosis: geoepidemiology, genetics and the environment. Autoimmunity Rev. 2010;9(5):A387–94.

    Article  CAS  Google Scholar 

  149. Clanet M. Jean-Martin Charcot. 1825 to 1893. Int MS J. 2008;15(2):59–61.

    CAS  PubMed  Google Scholar 

  150. Cohen JA. Emerging therapies for relapsing multiple sclerosis. Arch Neurol. 2009;66(7):821–8.

    Article  PubMed  Google Scholar 

  151. Tavazzi E, Rovaris M, La Mantia L. Drug therapy for multiple sclerosis. CMAJ. 2014;186(11):833–40.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Huntley A. A review of the evidence for efficacy of complementary and alternative medicines in MS. Int MS J. 2006;13(1):5–12.

    CAS  PubMed  Google Scholar 

  153. Weinshenker BG. Natural history of multiple sclerosis. Ann Neurol. 1994;36(Suppl):S6–11.

    Article  PubMed  Google Scholar 

  154. Miller AE. Multiple sclerosis: where will we be in 2020? The Mount Sinai J Med. 2011;78(2):268–79.

    Article  Google Scholar 

  155. Jeffrey S. CONCERTO: a Third Phase 3 trial for Laquinimod in MS. Medscape Medical News. Archived from the original on 17 September 2012. Retrieved 21 May 2013.

    Google Scholar 

  156. He D, Han K, Gao X, et al. Laquinimod for multiple sclerosis. Cochrane Database Syst Rev. 2013;(8):CD010475.

    Google Scholar 

  157. Kieseier BC, Calabresi PA. PEGylation of interferon-β-1a: a promising strategy in multiple sclerosis. CNS Drugs. 2012;26(3):205–14.

    Article  CAS  PubMed  Google Scholar 

  158. Biogen Idec announces positive top-line results from Phase 3 study of Peginterferon Beta-1a in Multiple Sclerosis (Press release). Biogen Idec. 24 January 2013. Archived from the original on 4 October 2013. Retrieved 21 May 2013.

    Google Scholar 

  159. Gold SM, Voskuhl RR. Estrogen treatment in multiple sclerosis. J Neurological Sci. 2009;286(1–2):99–103.

    Article  CAS  Google Scholar 

  160. Voskuhl RR, Wang H, Wu TC, et al. Estriol combined with glatiramer acetate for women with relapsing-remitting multiple sclerosis: a randomised, placebo-controlled, phase 2 trial. Lancet Neurol. 2016;15(1):35–46.

    Article  CAS  PubMed  Google Scholar 

  161. He D, Guo R, Zhang F, et al. Rituximab for relapsing-remitting multiple sclerosis. Cochrane Database Syst Rev. 2013;2013(12):CD009130.

    Google Scholar 

  162. Saidha S, Eckstein C, Calabresi PA. New and emerging disease modifying therapies for multiple sclerosis. Ann New York Acad Sci. 2012;1247(1):117–37.

    Article  CAS  Google Scholar 

  163. Winslow R. After 40-year odyssey, first drug for aggressive MS wins FDA approval. STAT. Archived from the original on 1 April 2017.

    Google Scholar 

  164. Milo R, Panitch H. Combination therapy in multiple sclerosis. J Neuroimmunol. 2011;231(1–2):23–31.

    Article  CAS  PubMed  Google Scholar 

  165. Luessi F, Siffrin V, Zipp F. Neurodegeneration in multiple sclerosis: novel treatment strategies. Expert Rev Neurotherapeutics. 2012;12(9):1061–76.

    Article  CAS  Google Scholar 

  166. Yang C, Hao Z, Zhang L, et al. Sodium channel blockers for neuroprotection in multiple sclerosis. Cochrane Database Syst Rev. 2015;2015(10):CD010422.

    PubMed Central  Google Scholar 

  167. Fernández O. Combination therapy in multiple sclerosis. J Neurol Sci. 2007;259(1–2):95–103.

    Article  PubMed  CAS  Google Scholar 

  168. Conway D, Cohen JA. Combination therapy in multiple sclerosis. Lancet Neurol. 2010;9(3):299–308.

    Article  PubMed  Google Scholar 

  169. Stuart WH. Combination therapy for the treatment of multiple sclerosis: challenges and opportunities. Curr Med Res Opin. 2007;23(6):1199–208.

    Article  CAS  PubMed  Google Scholar 

  170. Jeffery DR. Use of combination therapy with immunomodulators and immunosuppressants in treating multiple sclerosis. Neurology. 2004;63(12 Suppl 6):S41–6.

    Article  CAS  PubMed  Google Scholar 

  171. Etemadifar M, Kazemi M, Chitsaz A, et al. Mycophenolate mofetil in combination with interferon beta-1a in the treatment of relapsing-remitting multiple sclerosis: a preliminary study J Res Med Sci 2011; 16(1): 1–5.

    Google Scholar 

  172. Remington GM, Treadaway K, Frohman T, et al. A one-year prospective, randomized, placebo-controlled, quadruple-blinded, phase II safety pilot trial of combination therapy with interferon beta-1a and mycophenolate mofetil in early relapsing-remitting multiple sclerosis (TIME MS). Ther Adv Neurol Disord. 2010;3(1):3–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Ravnborg M, Sørensen PS, Andersson M, et al. Methylprednisolone in combination with interferon beta-1a for relapsing-remitting multiple sclerosis (MECOMBIN study): a multicentre, double-blind, randomised, placebo-controlled, parallel-group trial Lancet Neurol 2010 l; 9(7): 672–680.

    Google Scholar 

  174. van Os J, Kapur S. Schizophrenia. Lancet. 2009;374(9690):635–45.

    Article  PubMed  CAS  Google Scholar 

  175. Insel TR. Rethinking schizophrenia. Nature. 2010;468(7321):187–93.

    Article  CAS  PubMed  Google Scholar 

  176. Elert E. Aetiology: searching for schizophrenia’s roots. Nature. 2014;508(7494):S2–3.

    Article  CAS  PubMed  Google Scholar 

  177. Owen MJ, Sawa A, Mortensen PB. Schizophrenia. Lancet. 2016;388(10039):86–97.

    Article  PubMed  PubMed Central  Google Scholar 

  178. Laursen TM, Nordentoft M, Mortensen PB. Excess early mortality in schizophrenia. Ann Rev Clin Psychol. 2014;10:425–48.

    Article  Google Scholar 

  179. Javitt DC. Balancing therapeutic safety and efficacy to improve clinical and economic outcomes in schizophrenia: a clinical overview. Am J Managed Care. 2014;20(8 Suppl):S160–5.

    Google Scholar 

  180. James SL, Abate D. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392(10159):1789–858.

    Article  Google Scholar 

  181. Schizophrenia Fact sheet. www.who.int. 4 October 2019. Retrieved 22 January 2020.

  182. Saha S, Chant D, McGrath J. A systematic review of mortality in schizophrenia: is the differential mortality gap worsening over time? Arch General Psychiatry. 2007;4(10):1123–31.

    Article  Google Scholar 

  183. van de Leemput J, Hess JL, Glatt SJ, et al. Genetics of schizophrenia: historical insights and prevailing evidence. Adv Genetics. 2016;96:99–141.

    Article  CAS  Google Scholar 

  184. Siskind D, Siskind V, Kisely S. Clozapine response rates among people with treatment-resistant schizophrenia: data from a systematic review and meta-analysis. Can J Psychiatry. 2017;62(11):772–7.

    Article  PubMed  PubMed Central  Google Scholar 

  185. Leucht S, Cipriani A, Spineli L, et al. Comparative efficacy and tolerability of 15 antipsychotic drugs in schizophrenia: a multiple-treatments meta-analysis. Lancet. 2013;382(9896):951–62.

    Article  CAS  PubMed  Google Scholar 

  186. Becker T, Kilian R. Psychiatric services for people with severe mental illness across western Europe: what can be generalized from current knowledge about differences in provision, costs and outcomes of mental health care? Acta Psychiatrica Scandinavica Supplementum. 2006;113(429):9–16.

    Article  Google Scholar 

  187. Narayan KK, Kumar DS. Disability in a group of long-stay patients with schizophrenia: experience from a mental hospital. Indian J Psychological Med. 2012;34(1):70–5.

    Article  Google Scholar 

  188. Schizophrenia – Treatment. nhs.uk. 23 October 2017. Retrieved 8 January 2020.

    Google Scholar 

  189. Ortiz-Orendain J, Covarrubias-Castillo SA, Vazquez-Alvarez AO, et al. Modafinil for people with schizophrenia or related disorders. Cochrane Database Syst Rev. 2019;12:CD008661.

    PubMed  Google Scholar 

  190. Lally J, JH MC. Antipsychotic medication in schizophrenia: a review. Br Med Bull. 2015;114(1):169–79.

    Article  CAS  PubMed  Google Scholar 

  191. Harrow M, Jobe TH. Does long-term treatment of schizophrenia with antipsychotic medications facilitate recovery? Schizophrenia Bull. 2013;39(5):962–5.

    Article  Google Scholar 

  192. Li P, Snyder GL, Vanover KE. Dopamine targeting drugs for the treatment of schizophrenia: past, present and future. Curr Topics Medicinal Chem. 2016;16(29):3385–403.

    Article  CAS  Google Scholar 

  193. Lowe EJ, Ackman ML. Impact of tobacco smoking cessation on stable clozapine or olanzapine treatment. Ann Pharmacotherapy. 2010;44(4):727–32.

    Article  CAS  Google Scholar 

  194. Wolff-Menzler C, Hasan A, Malchow B, et al. Combination therapy in the treatment of schizophrenia. Pharmacopsychiatry. 2010;43(4):122–9.

    Article  CAS  PubMed  Google Scholar 

  195. Baandrup L. Polypharmacy in schizophrenia. Basic Clin Pharmacol Toxicol. 2020;126(3):183–92.

    Article  CAS  PubMed  Google Scholar 

  196. Faden J, Kiryankova-Dalseth N, Barghini R, et al. Does antipsychotic combination therapy reduce the risk of hospitalization in schizophrenia? Expert Opin Pharmacother. 2021;22(5):635–46.

    Article  CAS  PubMed  Google Scholar 

  197. Lader M. Effectiveness of benzodiazepines: do they work or not? Expert Rev Neurotherapeutics. 2008;8(8):1189–91.

    Article  CAS  Google Scholar 

  198. Gallego JA, Bonetti J, Zhang J, et al. Prevalence and correlates of antipsychotic polypharmacy: a systematic review and meta-regression of global and regional trends from the 1970s to 2009. Schizophr Res. 2012;138:18–28.

    Article  PubMed  PubMed Central  Google Scholar 

  199. Taylor DM, Smith L. Augmentation of clozapine with a second antipsychotic–a meta-analysis of randomized, placebo-controlled studies. Acta Psychiatr Scand. 2009;119:419–25.

    Article  CAS  PubMed  Google Scholar 

  200. Baandrup L, Gasse C, Jensen VD, et al. Antipsychotic polypharmacy and risk of death from natural causes in patients with schizophrenia: a population-based nested case-control study. J Clin Psychiatry. 2010;71:103–8.

    Article  PubMed  Google Scholar 

  201. Lin CH, Wang FC, Lin SC, et al. Antipsychotic combination using low-dose antipsychotics is as efficacious and safe as, but cheaper, than optimal-dose monotherapy in the treatment of schizophrenia: a randomized, double-blind study. Int Clin Psychopharmacol. 2013;28(5):267–74.

    Article  PubMed  Google Scholar 

  202. Lin CH, Wang FC, Lin SC, et al. A randomized, double-blind, comparison of the efficacy and safety of low-dose olanzapine plus low-dose trifluoperazine versus full-dose olanzapine in the acute treatment of schizophrenia. Schizophr Res. 2017;185:80–7.

    Article  PubMed  Google Scholar 

  203. Tiihonen J, Suokas JT, Suvisaari JM, et al. Polypharmacy with antipsychotics, antidepressants, or benzodiazepines and mortality in schizophrenia. Arch Gen Psychiatry. 2012;69:476–83.

    Article  CAS  PubMed  Google Scholar 

  204. Tiihonen J, Mittendorfer-Rutz E, Torniainen M, et al. Mortality and cumulative exposure to antipsychotics, antidepressants, and benzodiazepines in patients with schizophrenia: an observational follow-up study. Am J Psychiatry. 2016;173:600–6.

    Article  PubMed  Google Scholar 

  205. Jennings L. Chapter 4: Antidepressants. In: Grossberg GT, Kinsella LJ, editors. Clinical psychopharmacology for neurologists: a practical guide. Springer; 2018. p. 45–71.

    Chapter  Google Scholar 

  206. Correll CU, Rubio JM, Inczedy-Farkas G, et al. Efficacy of 42 pharmacologic cotreatment strategies added to antipsychotic monotherapy in schizophrenia: systematic overview and quality appraisal of the meta-analytic evidence. JAMA Psychiatry. 2017;74:675–84.

    Article  PubMed  PubMed Central  Google Scholar 

  207. Huband N, Ferriter M, Nathan R, et al. Antiepileptics for aggression and associated impulsivity. Cochrane Database Syst Rev. 2010;2010:CD003499.

    PubMed Central  Google Scholar 

  208. Stroup TS, Gerhard T, Crystal S, et al. Comparative effectiveness of adjunctive psychotropic medications in patients with schizophrenia. JAMA Psychiatry. 2019;76:508–15.

    Article  PubMed  PubMed Central  Google Scholar 

  209. Calhoun A, King C, Khoury R, et al. An evaluation of memantine ER + donepezil for the treatment of Alzheimer’s disease. Expert Opin Pharmacother. 2018;19(15):1711–7.

    Article  CAS  PubMed  Google Scholar 

  210. Deardorff WJ, Grossberg GT. A fixed-dose combination of memantine extended-release and donepezil in the treatment of moderate-to-severe Alzheimer’s disease. Drug Des Devel Ther. 2016;10:3267–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Greig SL. Memantine ER/donepezil: a review in Alzheimer’s disease. CNS Drugs. 2015;29(11):963–70.

    Article  CAS  PubMed  Google Scholar 

  212. Boinpally R, Chen L, Zukin SR, et al. A novel once-daily fixed-dose combination of memantine extended release and donepezil for the treatment of moderate to severe Alzheimer’s disease: two phase I studies in healthy volunteers. Clin Drug Investig. 2015;35(7):427–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Chen R, Chan PT, Chu H, et al. Treatment effects between monotherapy of donepezil versus combination with memantine for Alzheimer disease: a meta-analysis. PLoS One. 2017;12(8):e0183586.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  214. Owen RT. Memantine and donepezil: a fixed drug combination for the treatment of moderate to severe Alzheimer’s dementia. Drugs Today (Barc). 2016;52(4):239–48.

    CAS  Google Scholar 

  215. Shua-Haim J, Smith J, Picard F, et al. Steady-state pharmacokinetics of rivastigmine in patients with mild to moderate Alzheimer’s disease not affected by co-administration of memantine: an open-label, crossover, single-centre study. Clin Drug Investig. 2008;28(6):361–74.

    Article  CAS  PubMed  Google Scholar 

  216. Stocchi F, Vacca L. A systematic review on the clinical experience with melevodopa/carbidopa fixed combination in patients with Parkinson disease. Minerva Med. 2019;110(6):575–58.

    PubMed  Google Scholar 

  217. Sun L, McDonnell D, von Moltke L. Pharmacokinetics and short-term safety of ALKS 3831, a fixed-dose combination of Olanzapine and Samidorphan, in adult subjects with Schizophrenia. Clin Ther. 2018;40(11):1845–54.e2

    Article  CAS  PubMed  Google Scholar 

  218. Ramsay RR, Popovic-Nikolic MR, Nikolic K, et al. A perspective on multi-target drug discovery and design for complex diseases. Clin Transl Med. 2018;7:3.

    Article  PubMed  PubMed Central  Google Scholar 

  219. Bannwart LM, Carter DS, Cai HY, et al. Novel 3,3-disubstituted pyrrolidines as selective triple serotonin/norepinephrine/dopamine reuptake inhibitors. Bioorg Med Chem Lett. 2008;18(23):6062–6.

    Article  CAS  PubMed  Google Scholar 

  220. Seeger TF, Seymour PA, Schmidt AW, et al. Ziprasidone (CP-88,059): a new antipsychotic with combined dopamine and serotonin receptor antagonist activity. J Pharmacol Exp Ther. 1995;275(1):101–13.

    CAS  PubMed  Google Scholar 

  221. Felice D, Gardier AM, Sanchez C, et al. Innovative solutions to the development of novel antidepressants. In: Carvalho AF, Reus GZ, de Quevedo JL, editors. Frontiers in drug discovery: the search for antidepressants – an integrative view of drug discovery. Bentham Science Publishers, United Arab Emirates. 2017; V2: p. 1–40.

    Google Scholar 

  222. Marotta G, Basagni F, Rosini M, et al. Memantine derivatives as multitarget agents in Alzheimer’s disease. Molecules. 2020;25(17):4005.

    Article  CAS  PubMed Central  Google Scholar 

  223. Gontijo VS, Viegas FPD, Ortiz CJC, et al. Molecular hybridization as a tool in the design of multi-target directed drug candidates for neurodegenerative diseases. Curr Neuropharmacol. 2020;18(5):348–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Spilovska K, Korabecny J, Nepovimova E, et al. Multitarget tacrine hybrids with neuroprotective properties to confront Alzheimer’s disease. Curr Top Med Chem. 2017;17(9):1006–26.

    Article  CAS  PubMed  Google Scholar 

  225. Maramai S, Benchekroun M, Gabr MT, et al. Multitarget therapeutic strategies for Alzheimer’s disease: review on emerging target combinations. Biomed Res Int. 2020;2020:5120230.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  226. Ibrahim MM, Gabr MT. Multitarget therapeutic strategies for Alzheimer’s disease. Neural Regen Res. 2019;14(3):437–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Benek O, Korabecny J, Soukup O. A perspective on multi-target drugs for Alzheimer’s disease. Trends Pharmacol Sci. 2020;41(7):434–45.

    Article  CAS  PubMed  Google Scholar 

  228. Rosini M. Polypharmacology: the rise of multitarget drugs over combination therapies. Future Med Chem. 2014;6:485–7.

    Article  CAS  PubMed  Google Scholar 

  229. Romero A, Cacabelos R, Oset-Gasque MJ, et al. Novel tacrine-related drugs as potential candidates for the treatment of Alzheimer’s Disease. Bioorg Med Chem Lett. 2013;23:1916–22.

    Article  CAS  PubMed  Google Scholar 

  230. Spilovska K, Korabecny J, Kral J, et al. 7-Methoxytacrine-adamantylamine heterodimers as cholinesterase inhibitors in Alzheimer’s disease treatment–synthesis, biological evaluation and molecular modeling studies. Molecules. 2013;18:2397–418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Spilovska K, Korabecny J, Horova A, et al. Design, synthesis and in vitro testing of 7-methoxytacrine-amantadine analogues: a novel cholinesterase inhibitors for the treatment of Alzheimer’s disease. Med Chem Res. 2015;24:2645–55.

    Article  CAS  Google Scholar 

  232. Giménez-Llort L, Ratia M, Pérez B, et al. Behavioural effects of novel multitarget anticholinesterasic derivatives in Alzheimer’s disease. Behav Pharmacol. 2017;28(2 and 3-Spec Issue):124–31.

    Article  PubMed  CAS  Google Scholar 

  233. McGehee DS, Heath MJ, Gelber S, et al. Nicotine enhancement of fast excitatory synaptic transmission in CNS by presynaptic receptors. Science. 1995;269:1692–6.

    Article  CAS  PubMed  Google Scholar 

  234. Pieper AA, McKnight SL, Ready JM. P7C3 and an unbiased approach to drug discovery for neurodegenerative diseases. Chem Soc Rev. 2014;43:6716–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Bachurin SO, Shevtsova EF, Makhaeva GF, et al. Novel conjugates of aminoadamantanes with carbazole derivatives as potential multitarget agents for AD treatment. Sci Rep. 2017;7:45627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Ballatore C, Brunden KR, Huryn DM, et al. Microtubule stabilizing agents as potential treatment for Alzheimer’s disease and related neurodegenerative tauopathies. J Med Chem. 2012;55:8979–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Benchekroun M, Romero A, Egea J, et al. The antioxidant additive approach for Alzheimer’s disease therapy: new Ferulic (Lipoic) acid plus Melatonin modified Tacrines as Cholinesterases inhibitors, direct antioxidants, and nuclear factor (Erythroid-Derived 2)-Like 2 activators. J Med Chem. 2016;59:9967–73.

    Article  CAS  PubMed  Google Scholar 

  238. Rosini M, Simoni E, Caporaso R, et al. Merging memantine and ferulic acid to probe connections between NMDA receptors, oxidative stress and amyloid-β peptide in Alzheimer’s disease. Eur J Med Chem. 2019;180:111–20.

    Article  CAS  PubMed  Google Scholar 

  239. Jalili-Baleh L, Forootanfar H, Küçükkılınç TT, et al. Design, synthesis and evaluation of novel multi-target-directed ligands for treatment of Alzheimer’s disease based on coumarin and lipoic acid scaffolds. Eur J Med Chem. 2018;152:600–14.

    Article  CAS  PubMed  Google Scholar 

  240. Sozio P, Cerasa LS, Laserra S, et al. Memantine-sulfur containing antioxidant conjugates as potential prodrugs to improve the treatment of Alzheimer’s disease. Eur J Pharm Sci. 2013;49:187–98.

    Article  CAS  PubMed  Google Scholar 

  241. Edmonson DE, Binda C. Monoamine oxidases. In: Harris JR, Boekema EJ, editors. Membrane protein complexes: structure and function. Singapore: Springer; 2018. p. 117–40.

    Chapter  Google Scholar 

  242. Kumamoto T, Nakajima M, Uga R, et al. Design, synthesis, and evaluation of polyamine-memantine hybrids as NMDA channel blockers. Bioorg Med Chem. 2018;26:603–8.

    Article  CAS  PubMed  Google Scholar 

  243. ** L, Sugiyama H, Takigawa M, et al. Comparative studies of anthraquinone- and anthracene-tetraamines as blockers of N-methyl-D-aspartate receptors. J Pharmacol Exp Ther. 2007;320:47–55.

    Article  CAS  PubMed  Google Scholar 

  244. Takayama H, Yaegashi Y, Kitajima M, et al. Design, synthesis, and biological evaluation of tricyclic heterocycle-tetraamine conjugates as potent NMDA channel blockers. Bioorg Med Chem Lett. 2007;17:4729–32.

    Article  CAS  PubMed  Google Scholar 

  245. Sestito S, Nesi G, Pi R, et al. Hydrogen sulfide: a worthwhile tool in the design of new multitarget drugs. Front Chem. 2017;5:72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  246. Basagni F, Lanni C, Minarini A, et al. Lights and shadows of electrophile signaling: focus on the Nrf2-Keap1 pathway. Future Med Chem. 2019;11:707–21.

    Article  CAS  PubMed  Google Scholar 

  247. Shefa U, Yeo SG, Kim MS, et al. Role of gasotransmitters in oxidative stresses, neuroinflammation, and neuronal repair. Biomed Res Int. 2017;2017:1689341.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  248. Sestito S, Daniele S, Pietrobono D, et al. Memantine prodrug as a new agent for Alzheimer’s disease. Sci Rep. 2019;9:4612.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  249. Marzo A, Dal Bo L, Monti NC, Crivelli F, Ismaili S, Caccia C, et al. Pharmacokinetics and pharmacodynamics of safinamide, a neuroprotectant with antiparkinsonian and anticonvulsant activity. Pharmacol Res. 2004;50(1):77–85.

    Article  CAS  PubMed  Google Scholar 

  250. Fabbri M, Rosa MM, Abreu D, et al. Clinical pharmacology review of safinamide for the treatment of Parkinson’s disease. Neurodegener Dis Manag. 2015;5(6):481–96.

    Article  PubMed  Google Scholar 

  251. Youdim MB, Kupershmidt L, Amit T, et al. Promises of novel multi-target neuroprotective and neurorestorative drugs for Parkinson’s disease. Parkinsonism Relat Disord. 2014 Jan;20(Suppl 1):S132–6.

    Article  PubMed  Google Scholar 

  252. Weinreb O, Amit T, Mandel S, et al. Novel therapeutic approach for neurodegenerative pathologies: multitarget iron-chelating drugs regulating hypoxia-inducible factor 1 signal transduction pathway. Neurodegener Dis. 2012;10(1–4):112–5.

    Article  CAS  PubMed  Google Scholar 

  253. Zheng H, Gal S, Weiner LM, et al. Novel multifunctional neuroprotective iron chelator-monoamine oxidase inhibitor drugs for neurodegenerative diseases: in vitro studies on antioxidant activity, prevention of lipid peroxide formation and monoamine oxidase inhibition. J Neurochem. 2005;95:68–78.

    Article  CAS  PubMed  Google Scholar 

  254. Kupershmidt L, Amit T, Bar-Am O, et al. Multi-target, neuroprotective and neurorestorative M30 improves cognitive impairment and reduces Alzheimer’s-like neuropathology and age-related alterations in mice. Mol Neurobiol. 2012;46:217–20.

    Article  CAS  PubMed  Google Scholar 

  255. Kupershmidt L, Amit T, Bar-Am O, et al. Neuroprotection by the multitarget iron chelator M30 on age-related alterations in mice. Mech Ageing Dev. 2012;133:267–74.

    Article  CAS  PubMed  Google Scholar 

  256. Löscher W. Single-target versus multi-target drugs versus combinations of drugs with multiple targets: preclinical and clinical evidence for the treatment or prevention of epilepsy. Front Pharmacol. 2021;12:730257.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  257. Chen Z, Brodie MJ, Liew D, et al. Treatment outcomes in patients with newly diagnosed epilepsy treated with established and new antiepileptic drugs: a 30-Year longitudinal cohort study. JAMA Neurol. 2018;75:279–86.

    Article  PubMed  Google Scholar 

  258. Devinsky O, Vezzani A, O’Brien TJ, et al. Epilepsy. Nat Rev Dis Primers. 2018;4:18024.

    Article  PubMed  Google Scholar 

  259. Muglia P, Hannestad J, Brandt C, et al. Padsevonil randomized phase IIa trial in treatment-resistant focal epilepsy: a translational approach. Brain Commun. 2020;2:fcaa183.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  260. French JA. Cenobamate for focal seizures – a game changer? Nat Rev Neurol. 2020;1:133–4.

    Article  CAS  Google Scholar 

  261. Werhahn K, Toledo M, Rademacher M, et al. Efficacy and safety of adjunctive padsevonil in adults with drug-resistant focal seizures: a double-blind, randomized, placebo-controlled dose-finding trial. 2020; AES Abstr.. Available at: https://cms.aesnet.org/abstractslisting/efficacy-and-safety-of-adjunctive-padsevonil-in-adults-with-drug-resistant-focal-seizures%2D%2Da-double-blind%2D%2Drandomized%2D%2Dplacebo-controlled-dose-finding-trial

  262. French JA. Do you believe in magic (bullets)? Epilepsy Curr. 2020;20:S24–6.

    Article  Google Scholar 

  263. Löscher W, Sills GJ, White HS. The ups and downs of alkyl-carbamates in epilepsy therapy: how does cenobamate differ? Epilepsia. 2021;62:596–614.

    Article  PubMed  CAS  Google Scholar 

  264. Rogawski MA, Löscher W, Rho JM. Mechanisms of action of antiseizure drugs and the ketogenic diet. Cold Spring Harb Perspect Med. 2016;6:a022780.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  265. Sills GJ, Rogawski MA. Mechanisms of action of currently used antiseizure drugs. Neuropharmacology. 2020;168:107966.

    Article  CAS  PubMed  Google Scholar 

  266. Maeda K, Sugino H, Akazawa H, et al. Brexpiprazole I: in vitro and in vivo characterization of a novel serotonin-dopamine activity modulator. J Pharmacol Exp Ther. 2014;350(3):589–604.

    Article  PubMed  CAS  Google Scholar 

  267. Frankel JS, Schwartz TL. Brexpiprazole and cariprazine: distinguishing two new atypical antipsychotics from the original dopamine stabilizer aripiprazole. Ther Adv Psychopharm. 2017;7(1):29–41.

    Article  CAS  Google Scholar 

  268. FDA Approves Caplyta (lumateperone) for the Treatment of Schizophrenia in Adults. drugs.com. 23 December 2019.

  269. Blair HA. Lumateperone: first approval. Drugs. 2020;80(4):417–23.

    Article  CAS  PubMed  Google Scholar 

  270. Edinoff A, Wu N, deBoisblanc C, et al. Lumateperone for the Treatment of Schizophrenia. Psychopharmacol Bull. 2020;50(4):32–59.

    PubMed  PubMed Central  Google Scholar 

  271. Mendonça Júnior FJ, Scotti L, Ishiki H, et al. Benzo- and thienobenzo- diazepines: multi-target drugs for CNS disorders. Mini Rev Med Chem. 2015;15(8):630–4.

    Article  PubMed  CAS  Google Scholar 

  272. Ivachtchenko AV, Lavrovsky Y, Okun I. AVN-101: a multi-target drug candidate for the treatment of CNS disorders. J Alzheimers Dis. 2016;53(2):583–620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, Z., Yang, B. (2022). Polypharmacology in Clinical Applications: Neurological Polypharmacology. In: Polypharmacology. Springer, Cham. https://doi.org/10.1007/978-3-031-04998-9_6

Download citation

Publish with us

Policies and ethics

Navigation