Polypharmacology in Clinical Applications: Metabolic Disease Polypharmacology

  • Chapter
  • First Online:
Polypharmacology

Abstract

Metabolic diseases consisting of different groups of disorders are becoming increasingly prevalent and have a major impact on public health worldwide. The major metabolic diseases include metabolic syndrome (mainly characterized by insulin resistance), diabetes (particularly type 2 diabetes), overweight and obesity, and nonalcoholic fatty liver disease. Despite current therapies that offer some protection through tight serum glucose control, ultimately such treatments cannot block the progression of disability and death realized with metabolic disorders. Oppositely, current treatment options have proven insufficient to cope with obesity and diabetes. One of the critical issues is that metabolic diseases are in general multietiologic, multifaceted, and multifactorial complex disorders that may not respond well to single-target drug (STD) therapy. It has now been commonly accepted that polypharmacology will offer better effectiveness and safety profiles for the treatment of metabolic diseases. This chapter will focus on the applications of polypharmacology, at three different forms (CDT, FDC, and MTD), to the management of diabetes and obesity. For each form of polypharmacological approaches, an introduction to the basics of diabetes and obesity and the conventional approaches of drug treatment of these two disorders will precede for better understanding of the main theme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 158.24
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 158.24
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Henao-Mejia J, Elinav E, Thaiss CA, Flavell RA. Inflammasomes and metabolic disease. Annu Rev Physiol. 2014;76:57–78.

    Article  CAS  PubMed  Google Scholar 

  2. Keller AS, Keller Iv TCS, et al. Replacement therapies in metabolic disease. Curr Pharm Biotechnol. 2018;19(5):382–99.

    Article  CAS  PubMed  Google Scholar 

  3. Dohrmann CE. Target discovery in metabolic disease. Drug Discov Today. 2004;9(18):785–94.

    Article  CAS  PubMed  Google Scholar 

  4. National Institute for Health and Care Excellence. Type 1 diabetes in adults: diagnosis and management. www.nice.org.uk. 26 August 2015. Retrieved 07 July 2021.

  5. WHO. Diabetes. 13 April 2021. Archived from the original on 14 July 2021. https://www.who.int/news-room/fact-sheets/detail/diabetes

  6. Melmer A, Laimer M. Treatment goals in diabetes. Endocr Dev. 2016;31:1–27.

    Article  CAS  PubMed  Google Scholar 

  7. DeFronzo RA. Pharmacologic therapy for type 2 diabetes mellitus. Ann Intern Med. 1999;131:281–303.

    Article  CAS  PubMed  Google Scholar 

  8. Feinglos MN, Bethel MA. Treatment of type 2 diabetes mellitus. Med Clin North Am. 1998;82:757–90.

    Article  CAS  PubMed  Google Scholar 

  9. Luna B, Feinglos MN. Oral agents in the management of type 2 diabetes mellitus. Am Fam Physician. 2001;63(9):1747–56.

    CAS  PubMed  Google Scholar 

  10. Ripsin CM, Kang H, Urban RJ. Management of blood glucose in type 2 diabetes mellitus. Am Family Physician. 2009;79(1):29–36.

    Google Scholar 

  11. Inzucchi SE, Bergenstal RM, Buse JB, et al. Management of hyperglycemia in type 2 diabetes: a patient-centered approach: position statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. 2012;35(6):1334–79.

    Article  CAS  Google Scholar 

  12. Garber AJ, Abrahamson MJ, Barzilay JI, et al. AACE comprehensive diabetes management algorithm 2013 consensus statement. Endocr Pract. 2013;19(Suppl 2):1–48.

    Article  Google Scholar 

  13. Qaseem A, Humphrey L, Sweet D, et al. Oral pharmacologic treatment of type 2 diabetes mellitus: a clinical practice guideline from the American College of Physicians. Ann Intern Med. 2012;156:218–31.

    Article  PubMed  Google Scholar 

  14. Actos. Deerfield: Takeda Pharmaceutical; 2013.

    Google Scholar 

  15. Byetta. San Diego: Amylin Pharmaceutical; 2011.

    Google Scholar 

  16. Januvia. Whitehouse Station: Merck & Co; 2014.

    Google Scholar 

  17. Farxiga. Princeton: Bristol-Myers Squibb; 2014.

    Google Scholar 

  18. Mitchell S, Malanda B, Damasceno A, et al. A roadmap on the prevention of cardiovascular disease among people living with diabetes. Global Heart. 2019;14(3):215–40.

    Article  PubMed  Google Scholar 

  19. Fox CS, Golden SH, Anderson C, et al. American Heart Association Diabetes Committee of the Council on Lifestyle and Cardiometabolic Health; Council on Clinical Cardiology, Council on Cardiovascular and Stroke Nursing, Council on Cardiovascular Surgery and Anesthesia, Council on Quality of Care and Outcomes Research; American Diabetes Association. Update on Prevention of cardiovascular disease in adults with type 2 diabetes mellitus in light of recent evidence: A scientific statement from the American Heart Association and the American Diabetes Association. Diabetes Care. 2015;38(9):1777–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fouqueray P, Leverve X, Fontaine E, et al. Imeglimin—a new oral anti-diabetic that targets the three key defects of type 2 diabetes. J Diabetes Metab. 2011;2:126.

    Article  Google Scholar 

  21. Vial G, Chauvin M-A, Bendridi N, et al. Imeglimin normalizes glucose tolerance and insulin sensitivity and improves mitochondrial function in liver of a high-fat, high-sucrose diet mice model. Diabetes. 2015;64(6):2254–64.

    Article  CAS  PubMed  Google Scholar 

  22. Vuylsteke V, Chastain LM, Maggu GA, et al. Imeglimin: a potential new multi-target drug for type 2 diabetes. Drugs R&D. 2015;15(3):227–32.

    Article  CAS  Google Scholar 

  23. Perry RJ, Cardone RL, Petersen MC, et al. Imeglimin lowers glucose primarily by amplifying glucose-stimulated insulin secretion in high-fat-fed rodents. Am J Physiol-Endocrinol Metab. 2016;311(2):E461–70.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Pacini G, Mari A, Fouqueray P, et al. Imeglimin increases glucose-dependent insulin secretion and improves β-cell function in patients with type 2 diabetes. Diabetes Obes Metab. 2015;17(6):541–5.

    Article  CAS  PubMed  Google Scholar 

  25. Lablanche S, Tubbs E, Cottet-Rousselle C, et al. Imeglimin protects INS-1 cells and human islets against high glucose–and high fructose–induced cell death by inhibiting the mitochondrial PTP opening. Diabetes. 2018;67(Suppl1):81.

    Article  Google Scholar 

  26. Hallakou-Bozec S, Vial G, Kergoat M, et al. Mechanism of action of Imeglimin: A novel therapeutic agent for type 2 diabetes. Diabetes Obes Metab. 2021;23(3):664-73

    Google Scholar 

  27. Pirags V, Lebovitz H, Fouqueray P. Imeglimin, a novel oral antidiabetic, exhibits a good efficacy and safety profile in type 2 diabetic patients. Diabetes Obes Metab. 2012;14:852–8.

    Article  CAS  PubMed  Google Scholar 

  28. Pacini G, Mari A, Fouqueray P, et al. Imeglimin increases glucose-dependent insulin secretion and improves beta-cell function in patients with type 2 diabetes. Diabetes Obes Metab. 2015;17:541–5.

    Article  CAS  PubMed  Google Scholar 

  29. Fouqueray P, Pirags V, Inzucchi SE, et al. The efficacy and safety of imeglimin as add-on therapy in patients with type 2 diabetes inadequately controlled with metformin monotherapy. Diabetes Care. 2013;36(3):565–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Riddle M. Combining sulfonylureas and other oral agents. Am J Med. 2000;108(suppl 6a):15S–22S.

    Article  CAS  PubMed  Google Scholar 

  31. Ovalle F, Bell DSH. Triple oral antidiabetic therapy in type 2 diabetes mellitus. Endocr Pract. 1998;4:146–7.

    Article  CAS  PubMed  Google Scholar 

  32. Riddle MC, Schneider J. Beginning insulin treatment of obese patients with evening 70/30 insulin plus glimepiride versus insulin alone. Glimepiride Combination Group. Diabetes Care. 1998;21:1052–7.

    Article  CAS  PubMed  Google Scholar 

  33. Johnson JL, Wolf SL, Kabadi UM. Efficacy of insulin and sulfonylurea combination therapy in type II diabetes. A meta-analysis of the randomized placebo-controlled trials. Arch Intern Med. 1996;156:259–64.

    Article  CAS  PubMed  Google Scholar 

  34. Buse J. Combining insulin and oral agents. Am J Med. 2000;108(suppl 6a):23S–32S.

    Article  CAS  PubMed  Google Scholar 

  35. Cersosimo E, Johnson EL, Chovanes C, et al. Initiating therapy in patients newly diagnosed with type 2 diabetes: combination therapy vs a stepwise approach. Diabetes Obes Metab. 2018;20(3):497–507.

    Article  PubMed  Google Scholar 

  36. Phung OJ, Sobieraj DM, Engel SS, et al. Early combination therapy for the treatment of type 2 diabetes mellitus: systematic review and meta-analysis. Diabetes Obes Metab. 2014;16(5):410–7.

    Article  CAS  PubMed  Google Scholar 

  37. Beale S, Bagust A, Shearer AT, et al. Cost-effectiveness of rosiglitazone combination therapy for the treatment of type 2 diabetes mellitus in the UK. Pharmacoeconomics. 2006;24(Suppl 1):21–34.

    Article  CAS  PubMed  Google Scholar 

  38. Rosenstock J, Chuck L, González-Ortiz M, et al. Initial combination therapy with canagliflozin plus metformin versus each component as monotherapy for drug-naive type 2 diabetes. Diabetes Care. 2016;39(3):353–62.

    Article  PubMed  Google Scholar 

  39. Haak T, Meinicke T, Jones R, et al. Initial combination of linagliptin and metformin improves glycaemic control in type 2 diabetes: a randomized, double-blind, placebo-controlled study. Diabetes Obes Metab. 2012;14(6):565–74.

    Article  CAS  PubMed  Google Scholar 

  40. Haak T, Meinicke T, Jones R, et al. Initial combination of linagliptin and metformin in patients with type 2 diabetes: efficacy and safety in a randomized, double-blind 1-year extension study. Intern J Clin Practice. 2013;67(12):1283–93.

    Article  CAS  Google Scholar 

  41. Ross SA, Caballero AE, Del Prato S, et al. Initial combination of linagliptin and metformin compared with linagliptin monotherapy in patients with newly diagnosed type 2 diabetes and marked hyperglycemia: a randomized, double-blind, active-controlled, parallel group, multinational clinical trial. Diabetes Obes Metab. 2015;17(2):136–44.

    Article  CAS  PubMed  Google Scholar 

  42. Pratley RE, Fleck P, Wilson C. Efficacy and safety of initial combination therapy with alogliptin plus metformin versus either as monotherapy in drug-naive patients with type 2 diabetes: a randomized, double-blind, 6-month study. Diabetes Obes Metab. 2014;16(7):613–21.

    Article  CAS  PubMed  Google Scholar 

  43. Van Raalte DH, van Genugten RE, Eliasson B, et al. The effect of alogliptin and pioglitazone combination therapy on various aspects of beta-cell function in patients with recent-onset type 2 diabetes. Eur J Endocrinol. 2014;170(4):565–74.

    Article  PubMed  CAS  Google Scholar 

  44. Lewin A, DeFronzo RA, Patel S, et al. Initial combination of empagliflozin and linagliptin in subjects with type 2 diabetes. Diabetes Care. 2015;38(3):394–402.

    Article  CAS  PubMed  Google Scholar 

  45. Gaede P, Lund-Andersen H, Parving HH, et al. Effect of a multifactorial intervention on mortality in type 2 diabetes. N Engl J Med. 2008;358(6):580–91.

    Article  CAS  PubMed  Google Scholar 

  46. Gaede P, Vedel P, Parving HH, et al. Intensified multifactorial intervention in patients with type 2 diabetes mellitus and microalbuminuria: the Steno type 2 randomized study. Lancet. 1999;353(9153):617–22.

    Article  CAS  PubMed  Google Scholar 

  47. Gaede P, Vedel P, Larsen N, et al. Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes. N Engl J Med. 2003;348(5):383–93.

    Article  PubMed  Google Scholar 

  48. Charles M, Ejskjaer N, Witte DR, et al. Prevalence of neuropathy and peripheral arterial disease and the impact of treatment in people with screen-detected type 2 diabetes: the ADDITION-Denmark study. Diabetes Care. 2011;34(10):2244–9.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Griffin SJ, Borch-Johnsen K, Davies MJ, et al. Effect of early intensive multifactorial therapy on 5-year cardiovascular outcomes in individuals with type 2 diabetes detected by screening (ADDITION-Europe): a cluster-randomized trial. Lancet. 2011;378(9786):156–67.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Milligan S. Combination therapy for the improvement of long-term macrovascular and microvascular outcomes in type 2 diabetes: rationale and evidence for early initiation. J Diabetes Complicat. 2016;30(6):1177–85.

    Article  Google Scholar 

  51. ADVANCE Collaborative Group, Patel A, MacMahon S, Chalmers J, et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med. 2008;358(24):2560–72.

    Article  Google Scholar 

  52. Zoungas S, Chalmers J, Neal B, et al. ADVANCE-ON Collaborative Group. Follow-up of blood-pressure lowering and glucose control in type 2 diabetes. N Engl J Med. 2014;371(15):1392–406.

    Article  PubMed  CAS  Google Scholar 

  53. Action to Control Cardiovascular Risk in Diabetes Study Group, Gerstein HC, Miller ME, Byington RP, et al. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med. 2008;358(24):2545–59.

    Article  Google Scholar 

  54. Duckworth W, Abraira C, Moritz T, et al. VADT Investigators. Glucose control and vascular complications in veterans with type 2 diabetes. N Engl J Med. 2009;360(2):129–39.

    Article  CAS  PubMed  Google Scholar 

  55. Hayward RA, Reaven PD, Wiitala WL, et al. VADT Investigators. Follow-up of glycemic control and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2015;372(23):2197–206.

    Article  CAS  PubMed  Google Scholar 

  56. Holman RR, Paul SK, Bethel MA, et al. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med. 2008;359(15):1577–89.

    Article  CAS  PubMed  Google Scholar 

  57. Moreno M. Definition and classification of obesity. Rev Méd Clín Condes. 2012;23:124–8.

    Google Scholar 

  58. Conway B, Rene A. Obesity as a disease: no lightweight matter. Obes Rev. 2004;5(3):145–51.

    Article  CAS  PubMed  Google Scholar 

  59. Fitzgerald FT. The problem of obesity. Annu Rev Med. 1981;32:221–31.

    Article  CAS  PubMed  Google Scholar 

  60. Piché ME, Tchernof A, Després JP. Obesity phenotypes, diabetes, and cardiovascular diseases. Circ Res. 2020;126(11):1477–500.

    Article  PubMed  CAS  Google Scholar 

  61. Neeland IJ, Poirier P, Després JP. Cardiovascular and metabolic heterogeneity of obesity: clinical challenges and implications for management. Circulation. 2018;137(13):1391–406.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Ortega MA, Fraile-Martínez O, Naya I, et al. Type 2 diabetes mellitus associated with obesity (diabesity). The central role of gut microbiota and its translational applications. Nutrients. 2020;12(9):2749.

    Article  PubMed Central  Google Scholar 

  63. Bosello O, Donataccio MP, Cuzzolaro M. Obesity or obesities? Controversies on the association between body mass index and premature mortality. Eat Weight Disord Stud Anorex Bulim Obes. 2016;21:165–74.

    Article  Google Scholar 

  64. De Lorenzo A, Soldati L, Sarlo F, et al. New obesity classification criteria as a tool for bariatric surgery indication. World J Gastroenterol. 2016;22:681–703.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Yamada Y, Kato T, Ogino H, et al. Cetilistat (ATL-962), a novel pancreatic lipase inhibitor, ameliorates body weight gain and improves lipid profiles in rats. Hormone Metab Res. 2008;40(8):539–43.

    Article  CAS  Google Scholar 

  66. Aronne LJ, Powell AG, Apovian CM. Emerging pharmacotherapy for obesity. Expert Opin Emerg Drugs. 2011;16(3):587–96.

    Article  PubMed  Google Scholar 

  67. Khera R, Murad MH, Chandar AK, et al. Association of pharmacological treatments for obesity with weight loss and adverse events: a systematic review and meta-analysis. JAMA. 2016;315(22):2424–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Camilleri M, Acosta A. Combination therapies for obesity. Metab Syndr Relat Disord. 2018;16(8):390–4.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Aronne LJ, Halseth AE, Burns CM, et al. Enhanced weight loss following coadministration of pramlintide with sibutramine or phentermine in a multicenter trial. Obesity (Silver Spring). 2010;18(9):1739–46.

    Article  CAS  Google Scholar 

  70. Frías JP, Guja C, Hardy E, et al. Exenatide once weekly plus dapagliflozin once daily versus exenatide or dapagliflozin alone in patients with type 2 diabetes inadequately controlled with metformin monotherapy (DURATION-8): a 28 week, multicentre, double-blind, phase 3, randomised controlled trial. Lancet Diabetes Endocrinol. 2016;4:1004–16.

    Article  PubMed  Google Scholar 

  71. Jabbour SA, Frías JP, Guja C, et al. Effects of exenatide once weekly plus dapagliflozin, exenatide once weekly, or dapagliflozin, added to metformin monotherapy, on body weight, systolic blood pressure, and triglycerides in patients with type 2 diabetes in the DURATION-8 study. Diabetes Obes Metab. 2018;20:1515–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lundkvist P, Sjöström CD, Amini S, et al. Dapagliflozin once-daily and exenatide once-weekly dual therapy: a 24-week randomized, placebo-controlled, phase II study examining effects on body weight and prediabetes in obese adults without diabetes. Diab Obes Metab. 2017;19:49–60.

    Article  CAS  Google Scholar 

  73. Lundkvist P, Pereira MJ, Katsogiannos P, et al. Dapagliflozin once daily plus exenatide once weekly in obese adults without diabetes: sustained reductions in body weight, glycaemia and blood pressure over 1 year. Diabetes Obes Metab. 2017;19:1276–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. de Luis DA, Gonzalez Sagrado M, Conde R, et al. Decreased basal levels of glucagon-like peptide-1 after weight loss in obese subjects. Ann Nutr Metab. 2007;51(2):134–8.

    Article  PubMed  CAS  Google Scholar 

  75. Tan TM, Field BC, McCullough KA, et al. Coadministration of glucagon-like peptide-1 during glucagon infusion in humans results in increased energy expenditure and amelioration of hyperglycemia. Diabetes. 2013;62:1131–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Cegla J, Troke RC, Jones B, et al. Coinfusion of low-dose GLP-1 and glucagon in man results in a reduction in food intake. Diabetes. 2014;63:3711–20.

    Article  CAS  PubMed  Google Scholar 

  77. Schmidt JB, Gregersen NT, Pedersen SD, et al. Effects of PYY3-36 and GLP-1 on energy intake, energy expenditure, and appetite in overweight men. Am J Physiol Endocrinol Metab. 2014;306:E1248–56.

    Article  CAS  PubMed  Google Scholar 

  78. Lillich FF, Imig JD, Proschak E. Multi-target approaches in metabolic syndrome. Front Pharmacol. 2021;11:554961.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Grundy SM. Drug therapy of the metabolic syndrome: minimizing the emerging crisis in polypharmacy. Nat Rev Drug Discov. 2006;5:295–309.

    Article  CAS  PubMed  Google Scholar 

  80. Bianchi C, Penno G, Romero F, et al. Treating the metabolic syndrome. Expet Rev Cardiovasc Ther. 2007;5:491–506.

    Article  Google Scholar 

  81. Grundy SM, Cleeman JI, Daniels SR, et al. Diagnosis and management of the metabolic syndrome: an American heart association/national heart, lung, and blood Institute scientific statement. Circulation. 2005;112:2735–52.

    Article  PubMed  Google Scholar 

  82. Dandona P, Aljada A, Chaudhuri A, et al. Metabolic syndrome: a comprehensive perspective based on interactions between obesity, diabetes, and inflammation. Circulation. 2005;111:1448–54.

    Article  PubMed  Google Scholar 

  83. Grant RW, Devita NG, Singer DE, et al. Polypharmacy and medication adherence in patients with type 2 diabetes. Diabetes Care. 2003;26:1408–12.

    Article  PubMed  Google Scholar 

  84. Noale M, Veronese N, Perin PC, et al. Reply to letter to the editor Polypharmacy in elderly people with diabetes admitted to hospital. Acta Diabetol. 2016;53:859–60.

    Article  PubMed  Google Scholar 

  85. Alwhaibi M, Balkhi B, Alhawassi TM, et al. Polypharmacy among patients with diabetes: a cross-sectional retrospective study in a tertiary hospital in Saudi Arabia. BMJ Open. 2018;8:e020852.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Rollason V, Vogt N. Reduction of polypharmacy in the elderly: a systematic review of the role of the pharmacist. Drugs Aging. 2003;20:817–32.

    Article  PubMed  Google Scholar 

  87. Morphy R, Rankovic Z. Designed multiple ligands. An emerging drug discovery paradigm. J Med Chem. 2005;48:6523–43.

    Article  CAS  PubMed  Google Scholar 

  88. Handelsman Y, Jellinger PS. Overcoming obstacles in risk factor management in type 2 diabetes mellitus. J Clin Hypertens. 2011;13:613–20.

    Article  CAS  Google Scholar 

  89. Hayes J, Anderson R, Stephens JW. Sitagliptin/metformin fixed-dose combination in type 2 diabetes mellitus: an evidence-based review of its place in therapy. Drug Des Devel Ther. 2016;10:2263–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. National Institute for Health and Care Excellence. Type 2 Diabetes in Adults: Management. NICE guideline (NG28); 2015. [Accessed July 1, 2016]. Available from: http://www.nice.org.uk/guidance/ng28?unlid=9428993482016126103832

  91. American Diabetes Association Standards of medical care in diabetes – 2016. Diabetes Care. 2016; 39(Suppl 1): S1–106.

    Google Scholar 

  92. Herman GA, Stevens C, Van Dyck K, et al. Pharmacokinetics and pharmacodynamics of sitagliptin, an inhibitor of dipeptidyl peptidase IV, in healthy subjects: results from two randomized, double-blind, placebo-controlled studies with single oral doses. Clin Pharmacol Ther. 2005;78(6):675–88.

    Article  CAS  PubMed  Google Scholar 

  93. National Center for Biotechnology Information PubChem Compound Database; CID=4091. [Accessed January 2016]. Available from: http://pubchem.ncbi.nlm.nih.gov/compound/4091.

  94. Papanas N, Maltezis E. Metformin: a review of its use in the treatment of type 2 diabetes. Clin Med Ther. 2009;1:1367–81.

    CAS  Google Scholar 

  95. Perfetti R, Hui H. The role of GLP-1 in the life and death of pancreatic beta cells. Horm Metab Res. 2004;36(11–12):804–10.

    Article  CAS  PubMed  Google Scholar 

  96. National Center for Biotechnology Information PubChem Compound Database; CID=4369359. [Accessed January 2016]. Available from: http://pubchem.ncbi.nlm.nih.gov/compound/4369359

  97. Chwieduk CM. Sitagliptin/metformin fixed-dose combination: in patients with type 2 diabetes mellitus. Drugs. 2011;71(3):349–61.

    Article  CAS  PubMed  Google Scholar 

  98. Raz I, Chen Y, Wu M, et al. Efficacy and safety of sitagliptin added to ongoing metformin in therapy in patients with type 2 diabetes. Curr Med Res Opin. 2008;24(2):537–50.

    Article  CAS  PubMed  Google Scholar 

  99. Brazg R, Xu L, Dalla MC, et al. Effect of adding sitagliptin, a dipeptidyl peptidase-4 inhibitor, to metformin on 24-hour glycemic control and B-cell function in patients with type 2 diabetes. Diabetes Obes Metab. 2007;9(2):186–93.

    Article  CAS  PubMed  Google Scholar 

  100. Aschner P, Chan J, Owens D, et al. EASIE investigators Insulin glargine versus sitagliptin in insulin-naive patients with type 2 diabetes mellitus uncontrolled on metformin (EASIE): a multicentre, randomised open-label trial. Lancet. 2012;379(9833):2262–9.

    Article  CAS  PubMed  Google Scholar 

  101. Campbell RK. Clarifying the role of incretin-based therapies in the treatment of type 2 diabetes mellitus. Clin Ther. 2011;33(5):511–27.

    Article  CAS  PubMed  Google Scholar 

  102. Williams-Herman D, Xu L, Teng R, et al. Effect of initial combination therapy with sitagliptin and metformin on B-cell function in patients with type 2 diabetes. Diabetes Obes Metab. 2012;14(1):67–76.

    Article  CAS  PubMed  Google Scholar 

  103. Reasner C, Olansky L, Seck T, et al. The effect of initial therapy with the fixed–dose combination of sitagliptin and metformin compared with metformin monotherapy in patients with type 2 diabetes mellitus. Diabetes Obes Metab. 2011;13(7):644–52.

    Article  CAS  PubMed  Google Scholar 

  104. Hu J, Zou P, Zhang S, et al. Empagliflozin/metformin fixed-dose combination: a review in patients with type 2 diabetes. Expert Opin Pharmacother. 2016;17(18):2471–7.

    Article  CAS  PubMed  Google Scholar 

  105. Empagliflozin/metformin (Synjardy) for type 2 diabetes. Med Lett Drugs Ther. 2015;57(1484):172–4.

    Google Scholar 

  106. Kedia R, Kulkarni S, Ross M, et al. Spotlight on empagliflozin/metformin fixed-dose combination for the treatment of type 2 diabetes: a systematic review. Patient Prefer Adher. 2016;10:1999–2006.

    Article  Google Scholar 

  107. Woo V. Empagliflozin/linagliptin single-tablet combination: first-in-class treatment option. Int J Clin Pract. 2015;69(12):1427–37.

    Article  CAS  PubMed  Google Scholar 

  108. Jain RK. Empagliflozin/linagliptin single-pill combination therapy for patients with type 2 diabetes mellitus. Expert Opin Pharmacother. 2017;18(6):545–9.

    Article  CAS  PubMed  Google Scholar 

  109. Katsiki N, Ofori-Asenso R, Ferrannini E, et al. Fixed-dose combination of empagliflozin and linagliptin for the treatment of patients with type 2 diabetes mellitus: a systematic review and meta-analysis. Diabetes Obes Metab. 2020;22(6):1001–5.

    Article  CAS  PubMed  Google Scholar 

  110. Davidson JA, Sloan L. Fixed-dose combination of canagliflozin and metformin for the treatment of type 2 diabetes: an Overview. Adv Ther. 2017;34(1):41–59.

    Article  CAS  PubMed  Google Scholar 

  111. INVOKAMET® (canagliflozin and metformin hydrochloride) tablets for oral use. Titusville: Janssen Pharmaceuticals, Inc; 2016.

    Google Scholar 

  112. Rosenstock J, Chuck L, González-Ortiz M, et al. Initial combination therapy with canagliflozin plus metformin versus each component as monotherapy in drug-naïve type 2 diabetes. Diabetes Care. 2016;39:353–62.

    Article  PubMed  Google Scholar 

  113. Koliaki C, Doupis J. Linagliptin/Metformin fixed-dose combination treatment: a dual attack to type 2 diabetes pathophysiology. Adv Ther. 2012;29(12):993–1004.

    Article  CAS  PubMed  Google Scholar 

  114. Derosa G, Salvadeo SA. Pioglitazone and metformin fixed-dose combination in type 2 diabetes mellitus: an evidence-based review of its place in therapy. Core Evid. 2008;2(3):189–98.

    PubMed  PubMed Central  Google Scholar 

  115. Karim A, Slater M, Bradford D, et al. Oral antidiabetic drugs: effect of food on absorption of pioglitazone and metformin from a fixed-dose combination tablet. J Clin Pharmacol. 2007;47:48–55.

    Article  CAS  PubMed  Google Scholar 

  116. Einhorn D, Rendell M, Rosenzweig J, et al. Pioglitazone hydrochloride in combination with metformin in the treatment of type 2 diabetes mellitus: a randomized, placebo-controlled study. The Pioglitazone 027 Study Group. Clin Ther. 2000;22:1395–409.

    Article  CAS  PubMed  Google Scholar 

  117. Coppenrath VA, Hydery T. Dapagliflozin/Saxagliptin fixed-dose tablets: a new sodium-glucose cotransporter 2 and dipeptidyl peptidase 4 combination for the treatment of type 2 diabetes. Ann Pharmacother. 2018;52(1):78–85.

    Article  CAS  PubMed  Google Scholar 

  118. Forst T, Pfützner A. Fixed-dose combination of pioglitazone and glimepiride in the treatment of Type 2 diabetes mellitus. Expert Rev Endocrinol Metab. 2007;2(3):303–12.

    Article  CAS  PubMed  Google Scholar 

  119. Frias JP. Fixed-dose combination of ertugliflozin and metformin hydrochloride for the treatment of type 2 diabetes. Expert Rev Endocrinol Metab. 2019;14(2):75–83.

    Article  CAS  PubMed  Google Scholar 

  120. Wang JS, Huang CN, Hung YJ, et al. Acarbose/metformin fixed-dose combination study investigators. Acarbose plus metformin fixed-dose combination outperforms acarbose monotherapy for type 2 diabetes. Diabetes Res Clin Pract. 2013;102(1):16–24.

    Article  CAS  PubMed  Google Scholar 

  121. Joshi SR, Ramachandran A, Chadha M, et al. Acarbose plus metformin fixed-dose combination in the management of type 2 diabetes. Expert Opin Pharmacother. 2014;15(11):1611–20.

    Article  CAS  PubMed  Google Scholar 

  122. Harris K, Nealy KL. The clinical use of a fixed-dose combination of insulin degludec and liraglutide (Xultophy 100/3.6) for the treatment of type 2 diabetes. Ann Pharmacother. 2018;52(1):69–77.

    Article  CAS  PubMed  Google Scholar 

  123. Rendell M. First fixed-ratio combination of insulin degludec and liraglutide for the treatment of type 2 diabetes. Drugs Today (Barc). 2015;51(3):185–96.

    Article  CAS  Google Scholar 

  124. Panagoulias GS, Doupis J. Clinical utility in the treatment of type 2 diabetes with the saxagliptin/metformin fixed combination. Patient Prefer Adherence. 2014;8:227–36.

    PubMed  PubMed Central  Google Scholar 

  125. Kuecker CM, Vivian EM. Patient considerations in type 2 diabetes – role of combination dapagliflozin-metformin XR. Diabetes Metab Syndr Obes. 2016;9:25–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Tan X, Hu J. Combination therapy for type 2 diabetes: dapagliflozin plus metformin. Expert Opin Pharmacother. 2016;17(1):117–26.

    Article  CAS  PubMed  Google Scholar 

  127. Vijayakumar TM, Jayram J, Meghana Cheekireddy V, et al. Safety, efficacy, and bioavailability of fixed-dose combinations in type 2 diabetes mellitus: a systematic updated review. Curr Ther Res Clin Exp. 2017;84:4–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Naltrexone/bupropion for obesity. Drug Ther Bull. 2017;55(11):126–129.

    Google Scholar 

  129. Ali KF, Shukla AP, Aronne LJ. Bupropion-SR plus naltrexone-SR for the treatment of mild-to-moderate obesity. Expert Rev Clin Pharmacol. 2016;9(1):27–34.

    Article  CAS  PubMed  Google Scholar 

  130. Halpern B, Mancini MC. Safety assessment of combination therapies in the treatment of obesity: focus on naltrexone/bupropion extended release and phentermine-topiramate extended release. Expert Opin Drug Saf. 2017;16(1):27–39.

    Article  CAS  PubMed  Google Scholar 

  131. Verpeut JL, Bello NT. Drug safety evaluation of naltrexone/bupropion for the treatment of obesity. Expert Opin Drug Saf. 2014;13(6):831–41.

    CAS  PubMed  Google Scholar 

  132. Greenway FL, Fujioka K, Plodkowski RA, et al. COR-I Study Group. Effect of naltrexone plus bupropion on weight loss in overweight and obese adults (COR-I): a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2010;376(9741):595–605.

    Article  CAS  PubMed  Google Scholar 

  133. Grilo CM, Lydecker JA, Morgan PT, et al. Naltrexone + bupropion combination for the treatment of binge-eating disorder with obesity: a randomized, controlled pilot study. Clin Ther. 2021;43(1):112–22.e1

    Article  CAS  PubMed  Google Scholar 

  134. Halpern B, Faria AM, Halpern A. Bupropion/naltrexone fixed-dose combination for the treatment of obesity. Drugs Today (Barc). 2011;47(8):575–81.

    CAS  Google Scholar 

  135. Singh J, Kumar R. Phentermine-topiramate: first combination drug for obesity. Int J Appl Basic Med Res. 2015;5(2):157–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Halpern B, Faria AM, Halpern A. Fixed-dose combination of phentermine-topiramate for the treatment of obesity. Expert Rev Clin Pharmacol. 2013;6(3):235–41.

    Article  CAS  PubMed  Google Scholar 

  137. Hsia DS, Gosselin NH, Williams J, et al. A randomized, double-blind, placebo-controlled, pharmacokinetic and pharmacodynamic study of a fixed-dose combination of phentermine/topiramate in adolescents with obesity. Diabetes Obes Metab. 2020;22(4):480–91.

    Article  CAS  PubMed  Google Scholar 

  138. Garvey WT, Ryan DH, Look M, et al. Two-year sustained weight loss and metabolic benefits with controlled-release phentermine/topiramate in obese and overweight adults (SEQUEL): a randomized, placebo-controlled, phase 3 extension study. Am J Clin Nutr. 2012;95(2):297–308.

    Article  CAS  PubMed  Google Scholar 

  139. Bays H. Phentermine, topiramate and their combination for the treatment of adiposopathy (‘sick fat’) and metabolic disease. Expert Rev Cardiovasc Ther. 2010;8(12):1777–801.

    Article  CAS  PubMed  Google Scholar 

  140. Holmbäck U, Forslund A, Grudén S, et al. Effects of a novel combination of orlistat and acarbose on tolerability, appetite, and glucose metabolism in persons with obesity. Obes Sci Pract. 2020;6(3):313–23.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Del Valle-Laisequilla CF, Trejo-Jasso C, Huerta-Cruz JC, et al. Efficacy and safety of a fixed-dose combination of D-norpseudoephedrine, triiodothyronine, atropine, aloin, and diazepam in obese patients. Int J Clin Pharmacol Ther. 2018;56(11):531–8.

    Article  PubMed  Google Scholar 

  142. Jain MR, Giri SR, Bhoi B, et al. Dual PPARα/γ agonist saroglitazar improves liver histopathology and biochemistry in experimental NASH models. Liver Int. 2018;38:1084–94.

    Article  CAS  PubMed  Google Scholar 

  143. Ammazzalorso A, Maccallini C, Amoia P, et al. Multitarget PPARγ agonists as innovative modulators of the metabolic syndrome. Eur J Med Chem. 2019;173:261–73.

    Article  CAS  PubMed  Google Scholar 

  144. Ali AH, Carey EJ, Lindor KD. Recent advances in the development of farnesoid X receptor agonists. Ann Transl Med. 2015;3:5.

    PubMed  PubMed Central  Google Scholar 

  145. Oseini AM, Sanyal AJ. Therapies in non-alcoholic steatohepatitis (NASH). Liver Int. 2017;37:97–103.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Sumida Y, Yoneda M. Current and future pharmacological therapies for NAFLD/NASH. J Gastroenterol. 2018;53:362–76.

    Article  CAS  PubMed  Google Scholar 

  147. Mudaliar S, Henry RR, Sanyal AJ, et al. Efficacy and safety of the farnesoid X receptor agonist obeticholic acid in patients with type 2 diabetes and nonalcoholic fatty liver disease. Gastroenterology. 2013;145:574–82.

    Article  CAS  PubMed  Google Scholar 

  148. Han CY. Update on FXR biology: promising therapeutic target? Int J Mol Sci. 2018;19:2069.

    Article  PubMed Central  CAS  Google Scholar 

  149. Artasensi A, Pedretti A, Vistoli G, et al. Type 2 diabetes mellitus: a review of multi-target drugs. Molecules. 2020;25(8):1987.

    Article  CAS  PubMed Central  Google Scholar 

  150. Balakumar P, Rose M, Ganti SS, et al. PPAR dual agonists: are they opening Pandora’s Box? Pharmacol Res. 2007;56:91–8.

    Article  CAS  PubMed  Google Scholar 

  151. Mamnoor PK, Hegde P, Datla SR, et al. Antihypertensive effect of ragaglitazar: a novel PPARα and γ dual activator. Pharmacol Res. 2006;54:129–35.

    Article  CAS  PubMed  Google Scholar 

  152. Pourcet B, Fruchart JC, Staels B, et al. Selective PPAR modulators, dual and pan PPAR agonists: multimodal drugs for the treatment of Type 2 diabetes and atherosclerosis. Expert Opin Emerg Drugs. 2006;11:379–401.

    Article  CAS  PubMed  Google Scholar 

  153. Gonzalez IC, Lamar J, Iradier F, et al. Design and synthesis of a novel class of dual PPARγ/δ agonists. Bioorganic Med Chem Lett. 2007;17:1052–5.

    Article  CAS  Google Scholar 

  154. Tenenbaum A, Motro M, Fisman EZ. Dual and pan-peroxisome proliferator-activated receptors (PPAR) co-agonism: the bezafibrate lessons. Cardiovasc Diabetol. 2005;4:14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Stefanski A, Majkowska L. Existing and potential therapeutic approaches targeting peroxisome proliferator-activated receptors in the management of Type 2 diabetes. Expert Opin Ther Pat. 2006;16:1713–33.

    Article  CAS  Google Scholar 

  156. Lund A, Bagger JI, Christensen M, et al. Glucagon and type 2 diabetes: the return of the alpha cell. Curr Diabetes Rep. 2014;14:1–7.

    Article  CAS  Google Scholar 

  157. Parker JA, McCullough KA, Field BCT, et al. Glucagon and GLP-1 inhibit food intake and increase c-fos expression in similar appetite regulating centres in the brainstem and amygdala. Int J Obes. 2013;37:1391–8.

    Article  CAS  Google Scholar 

  158. Sadry SA, Drucker DJ. Emerging combinatorial hormone therapies for the treatment of obesity and T2DM. Nat Rev Endocrinol. 2013;9:425–33.

    Article  CAS  PubMed  Google Scholar 

  159. Day JW, Ottaway N, Patterson J, et al. A new glucagon and GLP-1 co-agonist eliminates obesity in rodents. Nat Chem Biol. 2009;5:749–57.

    Article  CAS  PubMed  Google Scholar 

  160. Pocai A, Carrington PE, Adams JR, et al. Glucagon-like peptide 1/glucagon receptor dual agonism reverses obesity in mice. Diabetes. 2009;58:2258–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Lynch AM, Pathak N, Flatt YE, et al. Comparison of stability, cellular, glucose-lowering and appetite suppressing effects of oxyntomodulin analogues modified at the N-terminus. Eur J Pharmacol. 2014;743:69–78.

    Article  CAS  PubMed  Google Scholar 

  162. Irwin N. New perspectives on exploitation of incretin peptides for the treatment of diabetes and related disorders. World J Diabetes. 2015;6:1285–95.

    Article  PubMed  PubMed Central  Google Scholar 

  163. Drucker DJ. The biology of incretin hormones. Cell Metab. 2006;3:153–65.

    Article  CAS  PubMed  Google Scholar 

  164. Drucker DJ. Deciphering metabolic messages from the gut drives therapeutic innovation: the 2014 banting lecture. Diabetes. 2015;64:317–26.

    Article  CAS  PubMed  Google Scholar 

  165. Toft-Nielsen MB, Damholt MB, Madsbad S, et al. Determinants of the impaired secretion of glucagon-like peptide-1 in type 2 diabetic patients. J Clin Endocrinol Metab. 2001;86:3717–23.

    Article  CAS  PubMed  Google Scholar 

  166. Xu G, Kaneto H, Laybutt DR, et al. Downregulation of GLP-1 and GIP receptor expression by hyperglycemia: possible contribution to impaired incretin effects in diabetes. Diabetes. 2007;56:1551–8.

    Article  CAS  PubMed  Google Scholar 

  167. Pathak V, Vasu S, Flatt PR, et al. Effects of chronic exposure of clonal β-cells to elevated glucose and free fatty acids on incretin receptor gene expression and secretory responses to GIP and GLP-1. Diabetes Obes Metab. 2014;16:357–65.

    Article  CAS  PubMed  Google Scholar 

  168. Højberg PV, Vilsbøll T, Rabøl R, et al. Four weeks of near-normalisation of blood glucose improves the insulin response to glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide in patients with type 2 diabetes. Diabetologia. 2009;52:199–207.

    Article  PubMed  CAS  Google Scholar 

  169. Piteau S, Olver A, Kim SJ, et al. Reversal of islet GIP receptor down-regulation and resistance to GIP by reducing hyperglycemia in the Zucker rat. Biochem Biophys Res Commun. 2007;362:1007–12.

    Article  CAS  PubMed  Google Scholar 

  170. Asmar M, Tangaa W, Madsbad S, et al. On the role of glucose-dependent insulintropic polypeptide in postprandial metabolism in humans. Am J Physiol Endocrinol Metab. 2010;298:614–21.

    Article  CAS  Google Scholar 

  171. Esposito K, Mosca C, Brancario C, Chiodini P, Ceriello A, Giugliano D. GLP-1 receptor agonists and HBA1c target of of >7% in type 2 diabetes: meta-analysis of randomized controlled trials. Curr Med Res Opin. 2011;27:1519–28.

    Article  CAS  PubMed  Google Scholar 

  172. Pocai A. Unraveling oxyntomodulin, GLP1’s enigmatic brother. J Endocrinol. 2012;215:335–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Amori RE, Lau J, Pittas AG. Efficacy and safety of incretin therapy in type 2 diabetes: systematic review and meta-analysis. J Am Med Assoc. 2007;298:194–206.

    Article  CAS  Google Scholar 

  174. Finan B, Tao M, Ottaway N, et al. Unimolecular dual incretins maximize metabolic benefits in rodents, monkeys, and humans. Sci Transl Med. 2013;5(209):209ra151.

    Article  PubMed  CAS  Google Scholar 

  175. Coskun T, Sloop KW, Loghin C, et al. LY3298176, a novel dual GIP and GLP-1 receptor agonist for the treatment of type 2 diabetes mellitus: from discovery to clinical proof of concept. Mol Metab. 2018;18:3–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, Z., Yang, B. (2022). Polypharmacology in Clinical Applications: Metabolic Disease Polypharmacology. In: Polypharmacology. Springer, Cham. https://doi.org/10.1007/978-3-031-04998-9_5

Download citation

Publish with us

Policies and ethics

Navigation