Polypharmacology in Clinical Applications—Anticancer Polypharmacology

  • Chapter
  • First Online:
Polypharmacology
  • 840 Accesses

Abstract

Polypharmacology is not only a theoretical discipline but also an experimental and application discipline. The ultimate goal of Polypharmacology is to translate the new concept and fundamental knowledge into drug discovery and therapeutics development for clinical uses. The clinical applications of Polypharmacology have been realized in many disease entities though it is still in its early stage of development. From this chapter to Chap. 11, the status and advancement of clinical applications of Polypharmacology in disease therapy will be discussed. The present chapter focuses on the application of polypharmacology to cancer therapy. In this respect, an introduction to the conventional pharmacology therapy of cancer is given as preknowledge for better understanding of the contents in the subsequent sections. Then, the therapeutic applications of Polypharmacology in the forms of combination drug therapy (CDT), fixed-dose single-pill combination (FDC), and multitarget drug (MTD) will be detailed with their uses in the five major types of cancer, including lung cancer, colorectal cancer, hepatocellular carcinoma, stomach cancer, and female breast cancer. The efficacy and safety issues of Polypharmacological treatment will be described. Balanced discussion on both advantages and limitations of Polypharmacological regimens will be provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.

    Article  PubMed  Google Scholar 

  2. Holmes K, Roberts OL, Thomas AM, et al. Vascular endothelial growth factor receptor-2: structure, function, intracellular signaling and therapeutic inhibition. Cell Signal. 2007;19(10):2003–12.

    Article  CAS  PubMed  Google Scholar 

  3. Shibuya M. Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) signaling in angiogenesis: A crucial target for anti- and pro-angiogenic therapies. Genes Cancer. 2011;2(12):1097–105.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Rapisarda A, Melillo G. Role of the VEGF/VEGFR axis in cancer biology and therapy. Adv Cancer Res. 2012;114:237–67.

    Article  CAS  PubMed  Google Scholar 

  5. Carmeliet P. VEGF as a key mediator of angiogenesis in cancer. Oncology. 2005;69(Suppl 3):4–10.

    Article  CAS  PubMed  Google Scholar 

  6. Becker JC, Muller-Tidow C, Serve H. Role of receptor tyrosine kinases in gastric cancer: new targets for a selective therapy. World J Gastroenterol. 2006;12:3297–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Johnston JB, Navaratnam S, Pitz MW. Targeting the EGFR pathway for cancer therapy. Curr Med Chem. 2006;13:3483–92.

    Article  CAS  PubMed  Google Scholar 

  8. Arteaga CL. Overview of epidermal growth factor receptor biology and its role as a therapeutic target in human neoplasia. Semin Oncol. 2002;29:3–9.

    Article  CAS  PubMed  Google Scholar 

  9. Krozely P. Epidermal growth factor receptor tyrosine kinase inhibitors: evolving role in the treatment of solid tumors. Clin J Oncol Nurs. 2004;8:163–8.

    Article  PubMed  Google Scholar 

  10. Peart O. Breast intervention and breast cancer treatment options. Radiol Technol. 2015;86:535M–58M. quiz 559-62

    PubMed  Google Scholar 

  11. International Agency for Research on Cancer. Data visualization tools for exploring the global cancer burden in 2020. In: International Agency for Research on Cancer. Available from: https://gco.iarc.fr/today/home.

  12. Falzone L, Salomone S, Libra M. Evolution of cancer pharmacological treatments at the turn of the third millennium. Front Pharmacol. 2018;9:1300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shetty N, Gupta S. Eribulin drug review. South Asian J Cancer. 2014;3:57–9.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Cooper, Geoffrey M. The Cell: A Molecular Approach Eighth Edition. Oxford University Press. 2019; p222. ISBN 9781605357072.

    Google Scholar 

  15. Nelson DL. Cox MM. Lehninger Principles of Biochemistry Seventh Edition. W. H. Freeman and Company. 2017; pp963–71. ISBN 9781464126116.

    Google Scholar 

  16. Delgado JL, Hsieh CM, Chan NL, Hiasa H. Topoisomerases as anticancer targets. Biochem J. 2018;475(2):373–98.

    Article  CAS  PubMed  Google Scholar 

  17. Waldmann TA. Immunotherapy: past, present and future. Nat Med. 2003;9(3):269–77.

    Article  CAS  PubMed  Google Scholar 

  18. Sharma P, Allison JP. The future of immune checkpoint therapy. Science. 2015;348(6230):56–61.

    Article  CAS  PubMed  Google Scholar 

  19. What Are the Different Types of Chemotherapy Drugs? American Cancer Society. Archived from the original on 2007-07-17. Retrieved 2007-08-05.

    Google Scholar 

  20. Definition of mitotic inhibitor. National Cancer Institute. Retrieved 2007-08-05.

    Google Scholar 

  21. Treatment Options: Mitotic Inhibitors. Drug Digest. Archived from the original on 2007-02-16. Retrieved 2007-08-05.

    Google Scholar 

  22. Protein Kinase Inhibitors. In: LiverTox: Clinical and Research Information on Drug-Induced Liver Injury [Internet]. Bethesda: National Institute of Diabetes and Digestive and Kidney Diseases; 2012–. 2021 Nov 30.

    Google Scholar 

  23. Roskoski R Jr. Properties of FDA-approved small molecule protein kinase inhibitors: A 2020 update. Pharmacol Res. 2020 Feb;152:104609.

    Article  CAS  PubMed  Google Scholar 

  24. Gross S, Rahal R, Stransky N, et al. Targeting cancer with kinase inhibitors. J Clin Invest. 2015;125(5):1780–9.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Abotaleb M, Kubatka P, Caprnda M, et al. Chemotherapeutic agents for the treatment of metastatic breast cancer: An update. Biomed Pharmacother. 2018;101:458–77.

    Article  CAS  PubMed  Google Scholar 

  26. Harbeck N, Penault-Llorca F, Cortes J, et al. Breast cancer. Nat Rev Dis Primers. 2019;5:66.

    Article  PubMed  Google Scholar 

  27. Esteva FJ, Hubbard-Lucey VM, Tang J, et al. Immunotherapy and targeted therapy combinations in metastatic breast cancer. Lancet Oncol. 2019;20:e175–86.

    Article  CAS  PubMed  Google Scholar 

  28. Guo ZS, Lu B, Guo Z, et al. Vaccinia virus-mediated cancer immunotherapy: cancer vaccines and oncolytics. J Immunother Cancer. 2019;7:6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Greten TF, Lai CW, Li G, et al. Targeted and immune-based therapies for hepatocellular carcinoma. Gastroenterology. 2019;156(2):510–24.

    Article  PubMed  Google Scholar 

  30. Santos R, Ursu O, Gaulton A, et al. A comprehensive map of molecular drug targets. Nat Rev Drug Discov. 2017;16(1):19–34.

    Article  CAS  PubMed  Google Scholar 

  31. Hasan M, Alam S, Poddar SK. Antibody-drug conjugates: A review on the Epitome of Targeted anti- cancer therapy. Curr Clin Pharmacol. 2018;13(4):236–51.

    Article  CAS  PubMed  Google Scholar 

  32. Gasser M, Waaga-Gasser AM. Therapeutic antibodies in cancer therapy. Adv Exp Med Biol. 2016;917:95–120.

    Article  CAS  PubMed  Google Scholar 

  33. Lee YT, Tan YJ, Oon CE. Molecular targeted therapy: Treating cancer with specificity. Eur J Pharmacol. 2018;834:188–96.

    Article  CAS  PubMed  Google Scholar 

  34. Gotwals P, Cameron S, Cipolletta D, et al. Prospects for combining targeted and conventional cancer therapy with immunotherapy. Nat Rev Cancer. 2017;17(5):286–301.

    Article  CAS  PubMed  Google Scholar 

  35. Mayekar MK, Bivona TG. Current landscape of targeted therapy in lung cancer. Clin Pharmacol Ther. 2017;102(5):757–64.

    Article  PubMed  Google Scholar 

  36. Bashraheel SS, Domling A, Goda SK. Update on targeted cancer therapies, single or in combination, and their fine tuning for precision medicine. Biomed Pharmacother. 2020;125:110009.

    Article  CAS  PubMed  Google Scholar 

  37. Parameswaran S, Kundapur D, Vizeacoumar FS, et al. A road map to personalizing targeted cancer therapies using synthetic lethality. Trends Cancer. 2019;5(1):11–29.

    Article  CAS  PubMed  Google Scholar 

  38. Meric-Bernstam F, Johnson AM, Dumbrava EEI, et al. Advances in HER2-targeted therapy: Novel agents and opportunities beyond breast and gastric cancer. Clin Cancer Res. 2019;25(7):2033–41.

    Article  CAS  PubMed  Google Scholar 

  39. Horn T, Ferretti S, Ebel N, et al. High-order drug combinations are required to effectively kill colorectal cancer cells. Cancer Res. 2016;76(23):6950–63.

    Article  CAS  PubMed  Google Scholar 

  40. Wu L, Leng D, Cun D, et al. Advances in combination therapy of lung cancer: Rationales, delivery technologies and dosage regimens. J Control Release. 2017;260:78–91.

    Article  CAS  PubMed  Google Scholar 

  41. Sause WT. Combination chemotherapy and radiation therapy in lung cancer. Semin Oncol. 1994;21(3 Suppl 6):72–8.

    CAS  PubMed  Google Scholar 

  42. Ettinger DS, Akerley W, Borghaei H, et al. Non-small cell lung cancer. J Nat Comp Cancer Netw. 2012;10(10):1236–71.

    Article  CAS  Google Scholar 

  43. Fossella F, Pereira JR, von Pawel J, et al. Randomized, multinational, phase III study of docetaxel plus platinum combinations versus vinorelbine plus cisplatin for advanced non-small-cell lung cancer: the TAX 326 Study Group. J Clin Oncol. 2003;21(16):3016–24.

    Article  CAS  PubMed  Google Scholar 

  44. Scagliotti GV, Parikh P, von Pawel J, et al. Phase III study comparing cisplatin plus gemcitabine with cisplatin plus pemetrexed in chemotherapy-naive patients with advanced-stage non-small-cell lung cancer. J Clin Oncol. 2008;26(21):3543–51.

    Article  CAS  PubMed  Google Scholar 

  45. Korfee S, Gauler T, Hepp R, et al. New targeted treatments in lung cancer—overview of clinical trials. Lung Cancer. 2004;45(Suppl 2):S199–208.

    Article  PubMed  Google Scholar 

  46. Cheong K, Spicer J, Chowdhury S, et al. Combination therapy versus single agent chemotherapy in non-small cell lung cancer. Expert Opin Pharmacother. 2005;6(10):1693–700.

    Article  CAS  PubMed  Google Scholar 

  47. Sekine I, Saijo N. Novel combination chemotherapy in the treatment of non-small cell lung cancer. Expert Opin Pharmacother. 2000;1(6):1131–61.

    Article  CAS  PubMed  Google Scholar 

  48. Belani CP. TAX 326 Study Group. Docetaxel in combination with platinums (cisplatin or carboplatin) in advanced and metastatic non-small cell lung cancer. Semin Oncol. 2002;29(3 Suppl 12):4–9.

    Article  CAS  PubMed  Google Scholar 

  49. Mörth C, Valachis A. Single-agent versus combination chemotherapy as first-line treatment for patients with advanced non-small cell lung cancer and performance status 2: a literature-based meta-analysis of randomized studies. Lung Cancer. 2014;84(3):209–14.

    Article  PubMed  Google Scholar 

  50. Rigas JR. Taxane-platinum combinations in advanced non-small cell lung cancer: a review. Oncologist. 2004;9(Suppl 2):16–23.

    Article  CAS  PubMed  Google Scholar 

  51. Sandler A. Irinotecan plus cisplatin in small-cell lung cancer. Oncology (Williston Park). 2002;16(9 Suppl 9):39–43.

    PubMed  Google Scholar 

  52. Ramalingam S, Belani CP. Carboplatin/gemcitabine combination in advanced NSCLC. Oncology (Williston Park). 2004;18(8 Suppl 5):21–6.

    PubMed  Google Scholar 

  53. Yang S. A pooled study on combination of gemcitabine and nedaplatin for treating patients with non-small cell lung cancer. Asian Pac J Cancer Prev. 2015;16(14):5963–6.

    Article  PubMed  Google Scholar 

  54. Weinmann M, Jeremic B, Bamberg M, et al. Treatment of lung cancer in elderly part II: small cell lung cancer. Lung Cancer. 2003;40(1):1–16.

    Article  PubMed  Google Scholar 

  55. Chihara Y, Yoshimura A, Date K, et al. Phase II study of S-1 and paclitaxel combination therapy in patients with previously treated non-small cell lung cancer. Oncologist. 2019;24(8):1033–e617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Inoue M, Kusumoto H, Shiono H, et al. Feasibility of postoperative adjuvant chemotherapy using carboplatin plus S-1 in completely resected non-small cell lung cancer patients. J Chemother. 2019;31(6):343–8.

    Article  CAS  PubMed  Google Scholar 

  57. Roviello G, Nobili S, Mini E. A potential novel drug combination for adjuvant therapy in lung cancer: reflections on an early phase of clinical development. J Chemother. 2019;31(6):295–6.

    Article  PubMed  Google Scholar 

  58. Greco FA. Paclitaxel-based combination chemotherapy in advanced non-small cell lung cancer. Lung Cancer. 2001;34(Suppl 4):S53–6.

    Article  PubMed  Google Scholar 

  59. Douillard JY, Rosell R, De Lena M, et al. Adjuvant vinorelbine plus cisplatin versus observation in patients with completely resected stage IB-IIIA non-small-cell lung cancer (Adjuvant Navelbine International Trialist Association [ANITA]): a randomized controlled trial. Lancet Oncol. 2006;7:719–27.

    Article  CAS  PubMed  Google Scholar 

  60. von Plessen C, Bergman B, Andresen O, et al. Palliative chemotherapy beyond three courses conveys no survival or consistent quality-of-life benefits in advanced non-small-cell lung cancer. Br J Cancer. 2006;95(8):966–73.

    Article  CAS  Google Scholar 

  61. Joon OP, Kim SW, ** SA, et al. Phase III trial of two versus four additional cycles in patients who are nonprogressive after two cycles of platinum-based chemotherapy in non-small-cell lung cancer. J Clinical Oncol. 2007;25(33):5233–9.

    Article  CAS  Google Scholar 

  62. Gandara DR, Davies AM, Gautschi O, et al. Epidermal growth factor receptor inhibitors plus chemotherapy in non-small-cell lung cancer: biologic rationale for combination strategies. Clin Lung Cancer. 2007;8(Suppl2):S61–7.

    Article  CAS  PubMed  Google Scholar 

  63. Wojciechowska J, Krajewski W, Bolanowski M, et al. Diabetes and cancer: A review of current knowledge. Exp Clin Endocrinol Diabetes. 2016;124(5):263–75.

    Article  CAS  PubMed  Google Scholar 

  64. Shlomai G, Neel B, LeRoith D, et al. Type 2 diabetes mellitus and cancer: The role of pharmacotherapy. J Clin Oncol. 2016;34(35):4261–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Gallagher EJ, LeRoith D. Obesity and diabetes: The increased risk of cancer and cancer-related mortality. Physiol Rev. 2015;95(3):727–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gupta G, de Jesus Andreoli Pinto T, Chellappan DK, et al. A clinical update on metformin and lung cancer in diabetic patients Panminerva Med. 2018; 60(2): 70–75.

    Google Scholar 

  67. Levy A, Doyen J. Metformin for non-small cell lung cancer patients: Opportunities and pitfalls. Crit Rev Oncol Hematol. 2018;125:41–7.

    Article  PubMed  Google Scholar 

  68. Parikh AB, Marrone KA, Becker DJ, et al. A pooled analysis of two phase II trials evaluating metformin plus platinum-based chemotherapy in advanced non-small cell lung cancer. Cancer Treat Res Commun. 2019;20:100150.

    Article  PubMed  Google Scholar 

  69. Zhang HH, Guo XL. Combinational strategies of metformin and chemotherapy in cancers. Cancer Chemother Pharmacol. 2016;78(1):13–26.

    Article  CAS  PubMed  Google Scholar 

  70. Li L, Jiang L, Wang Y, et al. Combination of metformin and gefitinib as first-line therapy for nondiabetic advanced NSCLC patients with EGFR mutations: A randomized, double-blind phase II trial. Clin Cancer Res. 2019;25(23):6967–75.

    Article  PubMed  Google Scholar 

  71. Roy M, Luo YH, Ye M, et al. Nonsmall cell lung cancer therapy: insight into multitargeted small-molecule growth factor receptor inhibitors. Biomed Res Int. 2013;2013:964743.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Schiller JH, Lee J, Hanna N, et al. A randomized discontinuation phase II study of sorafenib versus placebo in patients with non-small cell lung cancer who have failed at least two prior chemotherapy regimens. J Clin Oncol. 2008;26(suppl5):S427.

    Google Scholar 

  73. Scagliotti G, Novello S, von Pawel J, et al. Phase III study of carboplatin and paclitaxel alone or with sorafenib in advanced non-small-cell lung cancer. J Clin Oncol. 2010;28(11):1835–42.

    Article  CAS  PubMed  Google Scholar 

  74. Wang Y, Wang L, Liu Y, et al. Randomize trial of cisplatin plus gemcitabine with either sorafenib or placebo as first-line therapy for non-small cell lung cancer. Chin J Lung Can. 2011;14(3):239–44.

    Google Scholar 

  75. Paz-Ares LG, Biesma B, Heigener D, et al. Phase III, randomized, double-blind, placebo-controlled trial of gemcitabine/cisplatin alone or with sorafenib for the first-line treatment of advanced, nonsquamous non-small-cell lung cancer. J Clin Oncol. 2012;30(25):3084–92.

    Article  CAS  PubMed  Google Scholar 

  76. Lind JSW, Dingemans AMC, Groen HJM, et al. A multicenter phase II study of erlotinib and sorafenib in chemotherapy-naïve patients with advanced non-small cell lung cancer. Clinical Cancer Research. 2010;16(11):3078–87.

    Article  CAS  PubMed  Google Scholar 

  77. Gridelli C, Morgillo F, Favaretto A, et al. Sorafenib in combination with erlotinib or with gemcitabine in elderly patients with advanced non-small-cell lung cancer: a randomized phase II study. Ann Oncol. 2011;22(7):1528–34.

    Article  CAS  PubMed  Google Scholar 

  78. Spigel DR, Burris HA III, Greco FA, et al. Randomized, double-blind, placebo-controlled, phase II trial of sorafenib and erlotinib or erlotinib alone in previously treated advanced non-small-cell lung cancer. J Clin Oncol. 2011;29(18):2582–9.

    Article  CAS  PubMed  Google Scholar 

  79. Adjei A, Blumenschein G Jr, Mandrekar S, et al. Long-term safety and tolerability of sorafenib in patients with advanced non-small-cell lung cancer: a case-based review. Clin Lung Cancer. 2011;12(4):212–7.

    Article  CAS  PubMed  Google Scholar 

  80. Mendel DB, Douglas Laird A, et al. In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: determination of a pharmacokinetic/pharmacodynamic relationship. Clin Can Res. 2003;9(1):327–37.

    CAS  Google Scholar 

  81. Novello S, Scagliotti GV, Rosell R, et al. Phase II study of continuous daily sunitinib dosing in patients with previously treated advanced non-small cell lung cancer. Br J Can. 2009;101(9):1543–8.

    Article  CAS  Google Scholar 

  82. Novello S, Camps C, Grossi F, et al. Phase II study of sunitinib in patients with non-small cell lung cancer and irradiated brain metastases. J Thoracic Oncol. 2011;6(7):1260–6.

    Article  Google Scholar 

  83. Scagliotti GV, Vynnychenko I, Park K, et al. International, randomized, placebo-controlled, double-blind phase III study of motesanib plus carboplatin/paclitaxel in patients with advanced nonsquamous non-small-cell lung cancer: MONET1. J Clin Oncol. 2012;30(23):2829–36.

    Article  CAS  PubMed  Google Scholar 

  84. Socinski MA, Scappaticci FA, Samant M, et al. Safety and efficacy of combining sunitinib with bevacizumab + paclitaxel/carboplatin in non-small cell lung cancer. J Thoracic Oncol. 2010;5(3):354–60.

    Article  Google Scholar 

  85. Blumenschein GR Jr, Ciuleanu T, Robert F, et al. Sunitinib plus erlotinib for the treatment of advanced/metastatic non-small-cell lung cancer: a lead-in study. J Thoracic Oncol. 2012;7(9):1406–16.

    Article  CAS  Google Scholar 

  86. Nikolinakos P, Heymach JV. The tyrosine kinase inhibitor cediranib for non-small cell lung cancer and other thoracic malignancies. J Thoracic Oncol. 2008;3(6):S131–4.

    Article  Google Scholar 

  87. Yamamoto N, Tamura T, Yamamoto N, et al. Phase I, dose escalation and pharmacokinetic study of cediranib (RECENTIN™), a highly potent and selective VEGFR signaling inhibitor, in Japanese patients with advanced solid tumors. Cancer Chemother Pharmacol. 2009;64(6):1165–72.

    Article  CAS  PubMed  Google Scholar 

  88. Goss G, Shepherd FA, Laurie S, et al. A phase I and pharmacokinetic study of daily oral cediranib, an inhibitor of vascular endothelial growth factor tyrosine kinases, in combination with cisplatin and gemcitabine in patients with advanced non-small cell lung cancer: a study of the National Cancer Institute of Canada Clinical Trials Group. Eur J Cancer. 2009;45(5):782–8.

    Article  CAS  PubMed  Google Scholar 

  89. Goss GD, Arnold A, Shepherd FA, et al. Randomized, double-blind trial of carboplatin and paclitaxel with either daily oral cediranib or placebo in advanced non-small-cell lung cancer: NCIC clinical trials group BR24 study. J Clin Oncol. 2010;28(1):49–55.

    Article  CAS  PubMed  Google Scholar 

  90. Dy GK, Mandrekar SJ, Nelson GD, et al. A randomized phase II study of gemcitabine and carboplatin with or without cediranib as first-line therapy in advanced non-small-cell lung cancer: North Central Cancer Treatment Group Study N0528. J Thoracic Oncol. 2013;8(1):79–88.

    Article  CAS  Google Scholar 

  91. Choueiri TK. Axitinib, a novel anti-angiogenic drug with promising activity in various solid tumors. Curr Opin Investig Drugs. 2008;9(6):658–71.

    CAS  PubMed  Google Scholar 

  92. Wang F, Mi YJ, Chen SG, et al. Axitinib targeted cancer stemlike cells to enhance efficacy of chemotherapeutic drugs via inhibiting the drug transport function of ABCG2. Mol Medicine. 2012;18:887–98.

    Article  CAS  Google Scholar 

  93. Kozloff MF, Martin LP, Krzakowski M, et al. Phase I trial of axitinib combined with platinum doublets in patients with advanced non-small cell lung cancer and other solid tumours. Br J Can. 2012;107(8):1277–85.

    Article  CAS  Google Scholar 

  94. Raghav KPS, Blumenschein GR. Motesanib and advanced NSCLC: experiences and expectations. Expert Opinion Investig Drugs. 2011;20(6):859–69.

    Article  CAS  Google Scholar 

  95. Coxon A, Ziegler B, Kaufman S, et al. Antitumor activity of motesanib alone and in combination with cisplatin or docetaxel in multiple human non-small-cell lung cancer xenograft models. Mol Can. 2012;11:70.

    Article  CAS  Google Scholar 

  96. Das M, Wakelee H. Anti-angiogenic agents in Non-Small-Cell Lung Cancer (NSCLC): a perspective on the MONET1 (Motesanib NSCLC Efficacy and Tolerability) study. J Thoracic Dis. 2012;4(6):558–61.

    Google Scholar 

  97. Wedge SR, Ogilvie DJ, Dukes M, et al. ZD6474 inhibits vascular endothelial growth factor signaling, angiogenesis, and tumor growth following oral administration. Cancer Research. 2002;62(16):4645–55.

    CAS  PubMed  Google Scholar 

  98. Zhang L, Li S, Zhang Y, et al. Pharmacokinetics and tolerability of vandetanib in Chinese patients with solid, malignant tumors: an open-label, phase I, rising multiple-dose study. Clin Therapeutics. 2011;33(3):315–27.

    Article  CAS  Google Scholar 

  99. Heymach JV, Paz-Ares L, De Braud F, et al. Randomized phase II study of vandetanib alone or with paclitaxel and carboplatin as first-line treatment for advanced non-small-cell lung cancer. J Clin Oncol. 2008;26(33):5407–15.

    Article  CAS  PubMed  Google Scholar 

  100. De Boer RH, Arrieta Ó, Yang CH, et al. Vandetanib plus pemetrexed for the second-line treatment of advanced non-small-cell lung cancer: a randomized, double-blind phase III trial. J Clin Oncol. 2011;29(8):1067–74.

    Article  PubMed  CAS  Google Scholar 

  101. Herbst RS, Sun Y, Eberhardt WEE, et al. Vandetanib plus docetaxel versus docetaxel as second-line treatment for patients with advanced non-small-cell lung cancer (ZODIAC): a double-blind, randomised, phase 3 trial. Lancet Oncol. 2010;11(7):619–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Lee JS, Hirsh V, Park K, et al. Vandetanib Versus placebo in patients with advanced non-small-cell lung cancer after prior therapy with an epidermal growth factor receptor tyrosine kinase inhibitor: a randomized, double-blind phase III trial (ZEPHYR). J Clin Oncol. 2012;30(10):1114–21.

    Article  CAS  PubMed  Google Scholar 

  103. Marathe PH, Kamath AV, Zhang Y, et al. Preclinical pharmacokinetics and in vitro metabolism of brivanib (BMS-540215), a potent VEGFR2 inhibitor and its alanine ester prodrug brivanib alaninate. Can Chemother Pharmacol. 2009;65(1):55–66.

    Article  CAS  Google Scholar 

  104. Bhide RS, Cai ZW, Zhang YZ, et al. Discovery and preclinical studies of (R)-1-(4-(4-fluoro-2-methyl-1H-indol-5-yloxy)-5-methylpyrrolo[2,1-f][1,2,4]triazin-6-yloxy)propan-2-ol (BMS-540215), an in vivo active potent VEGFR-2 inhibitor. J Medicinal Chem. 2006;49(7):2143–6.

    Article  CAS  Google Scholar 

  105. Bhide RS, Lombardo LJ, Hunt JT, et al. The antiangiogenic activity in xenograft models of brivanib, a dual inhibitor of vascular endothelial growth factor receptor-2 and fibroblast growth factor receptor-1 kinases. Mol Can Therapeutics. 2010;9(2):369–78.

    Article  CAS  Google Scholar 

  106. Mekhail T, Masson E, Fischer BS, et al. Metabolism, excretion, and pharmacokinetics of oral brivanib in patients with advanced or metastatic solid tumors. Drug Metab Disposition. 2010;38(11):1962–6.

    Article  CAS  Google Scholar 

  107. Jonker DJ, Rosen LS, Sawyer MB, et al. A phase I study to determine the safety, pharmacokinetics and pharmacodynamics of a dual VEGFR and FGFR inhibitor, brivanib, in patients with advanced or metastatic solid tumors. Ann Oncol. 2011;22(6):1413–9.

    Article  CAS  PubMed  Google Scholar 

  108. Lee F, Jure-Kunkel MN, Salvati ME. Synergistic activity of ixabepilone plus other anticancer agents: preclinical and clinical evidence. Therapeutic Adv Med Oncol. 2011;3(1):11–25.

    Article  CAS  Google Scholar 

  109. Hilberg F, Roth GJ, Krssak M, et al. BIBF 1120: triple angiokinase inhibitor with sustained receptor blockade and good antitumor efficacy. Can Res. 2008;68(12):4774–82.

    Article  CAS  Google Scholar 

  110. Reck M, Kaiser R, Eschbach C, et al. A phase II double-blind study to investigate efficacy and safety of two doses of the triple angiokinase inhibitor BIBF 1120 in patients with relapsed advanced non-small-cell lung cancer. Ann Oncol. 2011;22(6):1374–81.

    Article  CAS  PubMed  Google Scholar 

  111. Ellis PM, Kaiser R, Zhao Y, et al. Phase I open-label study of continuous treatment with BIBF 1120, a triple angiokinase inhibitor, and pemetrexed in pretreated non-small cell lung cancer patients. Clin CanRes. 2010;16(10):2881–9.

    CAS  Google Scholar 

  112. Doebele RC, Conkling P, Traynor AM, et al. A phase I, open-label dose-escalation study of continuous treatment with BIBF, 1120 in combination with paclitaxel and carboplatin as first-line treatment in patients with advanced non-small-cell lung cancer. Ann Oncol. 2012;23(8):2094–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Kumar R, Knick VB, Rudolph SK, et al. Pharmacokinetic-pharmacodynamic correlation from mouse to human with pazopanib, a multikinase angiogenesis inhibitor with potent antitumor and antiangiogenic activity. Mol Can Therapeutics. 2007;6(7):2012–21.

    Article  CAS  Google Scholar 

  114. Altorki N, Lane ME, Bauer T, et al. Phase II proof-of-concept study of pazopanib monotherapy in treatment-naive patients with stage I/II resectable non-small-cell lung cancer. J Clin Oncol. 2010;28(19):3131–7.

    Article  CAS  PubMed  Google Scholar 

  115. Plummer R, Madi A, Jeffels M, et al. A Phase I study of pazopanib in combination with gemcitabine in patients with advanced solid tumors. Can Chemother Pharmacol. 2013;71(1):93–101.

    Article  CAS  Google Scholar 

  116. Ciombor KK, Bekaii-Saab T. A comprehensive review of sequencing and combination strategies of targeted agents in metastatic colorectal cancer. Oncologist. 2018;23(1):25–34.

    Article  PubMed  Google Scholar 

  117. American Cancer Society. Cancer Facts & Figures. 2021. Accessed June 28, 2021. https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2021.html

  118. Modest DP, Pant S, Sartore-Bianchi A. Treatment sequencing in metastatic colorectal cancer. Eur J Cancer. 2019;109:70–83.

    Article  CAS  PubMed  Google Scholar 

  119. Hurwitz H, Fehrenbacher L, Novotny W, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med. 2004;350:2335–42.

    Article  CAS  PubMed  Google Scholar 

  120. Saltz LB, Clarke S, Diaz-Rubio E, et al. Bevacizumab in combination with oxaliplatin-based chemotherapy as first-line therapy in metastatic colorectal cancer: a randomized phase III study. J Clin Oncol. 2008;26:2013–9.

    Article  CAS  PubMed  Google Scholar 

  121. National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines). Colon Cancer. Version 2.2021. Accessed June 28, 2021. https://www.nccn.org/guidelines/guidelines-detail?category=1&id=1428

  122. Van Cutsem E, Cervantes A, Nordlinger B, et al. ESMO Guidelines Working Group. Metastatic colorectal cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2014;25(suppl 3):iii1–9.

    PubMed  Google Scholar 

  123. Tournigand C, Andre T, Achille E, et al. FOLFIRI followed by FOLFOX6 or the reverse sequence in advanced colorectal cancer: A randomized GERCOR study. J Clin Oncol. 2004;22:229–37.

    Article  CAS  PubMed  Google Scholar 

  124. Mody K, Baldeo C, Bekaii-Saab T. Antiangiogenic therapy in colorectal cancer. Cancer J. 2018;24(4):165–70.

    Article  PubMed  Google Scholar 

  125. Lee JJ, Chu E. Sequencing of antiangiogenic agents in the treatment of metastatic colorectal cancer. Clin Colorectal Cancer. 2014;13(3):135–44.

    Article  PubMed  Google Scholar 

  126. AVASTIN. (bevacizumab) solution for intravenous infusion. South San Francisco: Genentech, Inc; 2015.

    Google Scholar 

  127. ERBITUX. (cetuximab) injection, for intravenous infusion. Branchburg: ImClone LLC; 2016.

    Google Scholar 

  128. VECTIBIX. (panitumumab) injection for intravenous infusion. Thousand Oaks: Amgen, Inc.; 2015.

    Google Scholar 

  129. ZALTRAP. (ziv-aflibercept) injection for intravenous infusion. Bridgewater: Sanofi-Aventis U.S. LLC; 2016.

    Google Scholar 

  130. Wilhelm SM, Dumas J, Adnane L, et al. Regorafenib (BAY 73-4506): A new oral multikinase inhibitor of angiogenic, stromal and oncogenic receptor tyrosine kinases with potent preclinical antitumor activity. Int J Cancer. 2011;129:245–55.

    Article  CAS  PubMed  Google Scholar 

  131. CYRAMZA (ramucirumab) injection, for intravenous use [package insert]. Indianapolis: Eli Lilly and Company; 2015.

    Google Scholar 

  132. Jenab-Wolcott J, Giantonio BJ. Antiangiogenic therapy in colorectal cancer: where are we 5 years later? Clin Colorectal Cancer. 2010;9(Suppl 1):S7–15.

    Article  CAS  PubMed  Google Scholar 

  133. Van Cutsem E, Kohne CH, Hitre E, et al. Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N Engl J Med. 2009;360:1408–17.

    Article  PubMed  Google Scholar 

  134. Van Cutsem E, Kohne CH, Lang I, et al. Cetuximab plus irinotecan, fluorouracil, and leucovorin as first-line treatment for metastatic colorectal cancer: Updated analysis of overall survival according to tumor KRAS and BRAF mutation status. J Clin Oncol. 2011;29:2011–9.

    Article  PubMed  CAS  Google Scholar 

  135. Douillard JY, Siena S, Cassidy J, et al. Randomized, phase III trial of panitumumab with infusional fluorouracil, leucovorin, and oxaliplatin (FOLFOX4) versus FOLFOX4 alone as first-line treatment in patients with previously untreated metastatic colorectal cancer: The PRIME study. J Clin Oncol. 2010;28:4697–705.

    Article  CAS  PubMed  Google Scholar 

  136. Venook AP, Niedzwiecki D, Lenz HJ, et al. CALGB/SWOG 80405: Phase III trial of irinotecan/5-FU/leucovorin (FOLFIRI) or oxaliplatin/5-FU/leucovorin (mFOLFOX6) with bevacizumab (BV) or cetuximab (CET) for patients (pts) with KRAS wild-type (wt) untreated metastatic adenocarcinoma of the colon or rectum (MCRC). J Clin Oncol. 2014;32(suppl:5s): LBA3a.

    Google Scholar 

  137. Heinemann V, von Weikersthal LF, Decker T, et al. FOLFIRI plus cetuximab versus FOLFIRI plus bevacizumab as first-line treatment for patients with metastatic colorectal cancer (FIRE-3): A randomised, open-label, phase 3 trial. Lancet Oncol. 2014;15:1065–75.

    Article  CAS  PubMed  Google Scholar 

  138. Douillard JY, Siena S, Cassidy J, et al. Final results from PRIME: Randomized phase III study of panitumumab with FOLFOX4 for first-line treatment of metastatic colorectal cancer. Ann Oncol. 2014;25:1346–55.

    Article  CAS  PubMed  Google Scholar 

  139. Peeters M, Price TJ, Cervantes A, et al. Randomized phase III study of panitumumab with fluorouracil, leucovorin, and irinotecan (FOLFIRI) compared with FOLFIRI alone as second-line treatment in patients with metastatic colorectal cancer. J Clin Oncol. 2010;28:4706–13.

    Article  CAS  PubMed  Google Scholar 

  140. Van Cutsem E, Tabernero J, Lakomy R, et al. Addition of aflibercept to fluorouracil, leucovorin, and irinotecan improves survival in a phase III randomized trial in patients with metastatic colorectal cancer previously treated with an oxaliplatin-based regimen. J Clin Oncol. 2012;30:3499–506.

    Article  PubMed  CAS  Google Scholar 

  141. Tabernero J, Yoshino T, Cohn AL, et al. Ramucirumab versus placebo in combination with second-line FOLFIRI in patients with metastatic colorectal carcinoma that progressed during or after first-line therapy with bevacizumab, oxaliplatin, and a fluoropyrimidine (RAISE): A randomised, double-blind, multicentre, phase 3 study. Lancet Oncol. 2015;16:499–508.

    Article  CAS  PubMed  Google Scholar 

  142. Cunningham D, Humblet Y, Siena S, et al. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med. 2004;351:337–45.

    Article  CAS  PubMed  Google Scholar 

  143. Colucci G, Gebbia V, Paoletti G, et al. Phase III randomized trial of FOLFIRI versus FOLFOX4 in the treatment of advanced colorectal cancer: a multicenter study of the Gruppo Oncologico Dell'Italia Meridionale. J Clin Oncol. 2005;23:4866–75.

    Article  CAS  PubMed  Google Scholar 

  144. Goldberg RM, Sargent DJ, Morton RF, et al. A randomized controlled trial of fluorouracil plus leucovorin, irinotecan, and oxaliplatin combinations in patients with previously untreated metastatic colorectal cancer. J Clin Oncol. 2004;22:23–30.

    Article  CAS  PubMed  Google Scholar 

  145. Saltz LB, Cox JV, Blanke C, et al. Irinotecan plus fluorouracil and leucovorin for metastatic colorectal cancer. Irinotecan Study Group. N Engl J Med. 2000;343:905–14.

    Article  CAS  PubMed  Google Scholar 

  146. Douillard JY, Cunningham D, Roth AD, et al. Irinotecan combined with fluorouracil compared with fluorouracil alone as first-line treatment for metastatic colorectal cancer: a multicenter randomized trial. Lancet. 2000;355:1041–7.

    Article  CAS  PubMed  Google Scholar 

  147. Foubert F, Matysiak-Budnik T, Touchefeu Y. Options for metastatic colorectal cancer beyond the second line of treatment. Dig Liver Dis. 2014;46:105–12.

    Article  PubMed  Google Scholar 

  148. El-Serag HB, Rudolph KL. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology. 2007;132(7):2557–76.

    Article  CAS  PubMed  Google Scholar 

  149. Zhou M, Wang H, Zhu J, et al. Cause-specific mortality for 240 causes in China during 1990-2013: a systematic subnational analysis for the Global Burden of Disease Study 2013. Lancet. 2016;387:251–72.

    Article  PubMed  Google Scholar 

  150. Allemann P, Demartines N, Bouzourene H, et al. Long-term outcome after liver resection for hepatocellular carcinoma larger than 10 cm. World J Surg. 2013;7:452–8.

    Article  Google Scholar 

  151. Park JW, Chen M, Colombo M, et al. Global patterns of hepatocellular carcinoma management from diagnosis to death: the BRIDGE Study. Liver Int. 2015;35:2155–66.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Forner A, Reig M, Bruix J. Hepatocellular carcinoma. Lancet. 2018;391:1301–14.

    Article  PubMed  Google Scholar 

  153. Li D, Sedano S, Allen R, et al. Current Treatment Landscape for Advanced Hepatocellular Carcinoma: Patient Outcomes and the Impact on Quality of Life. Cancers (Basel). 2019;11(6):841.

    Article  CAS  Google Scholar 

  154. Bruix J, Raoul JL, Sherman M, et al. Efficacy and safety of sorafenib in patients with advanced hepatocellular carcinoma: subanalyses of a phase III trial. J Hepatol. 2012;57:821–9.

    Article  CAS  PubMed  Google Scholar 

  155. Bruix J, da Fonseca LG, Reig M. Insights into the success and failure of systemic therapy for hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. 2019;16:617–30.

    Article  CAS  PubMed  Google Scholar 

  156. Kudo M, Finn RS, Qin S, et al. Lenvatinib vs sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial. Lancet. 2018;391:1163–73.

    Article  CAS  PubMed  Google Scholar 

  157. Finn RS, Qin S, Ikeda M, et al. IMbrave150 Investigators. Atezolizumab plus Bevacizumab in Unresectable Hepatocellular Carcinoma. N Engl J Med. 2020;382:1894–905.

    Article  CAS  PubMed  Google Scholar 

  158. Upadhaya S, Neftelino ST, Hodge JP, et al. Combinations take centre stage in PD1/PDL1 inhibitor clinical trials. Nat Rev Drug Discov. 2020;11:020–00204.

    Google Scholar 

  159. National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines). Hepatobiliary Cancers. Version 3.2021. Accessed June 30, 2021. https://www.nccn.org/guidelines/guidelines-detail?category=1&id=1438

  160. Heimbach JK. Overview of the Updated AASLD Guidelines for the Management of HCC. Gastroenterol Hepatol (N Y). 2017;13:751–3.

    Google Scholar 

  161. Vogel A, Cervantes A, Chau I, et al. ESMO Guidelines Committee. Hepatocellular carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2018;29:iv238–55.

    Article  Google Scholar 

  162. Kudo M. Systemic therapy for hepatocellular carcinoma: Latest advances. Cancers (Basel). 2018;10

    Google Scholar 

  163. Pinter M, Peck-Radosavljevic M. Review article: systemic treatment of hepatocellular carcinoma. Aliment Pharmacol Ther. 2018;48(6):598–609.

    Article  PubMed  PubMed Central  Google Scholar 

  164. Sonbol MB, Riaz IB, Naqvi SAA, et al. Systemic therapy and sequencing options in advanced hepatocellular carcinoma: A systematic review and network meta-analysis. JAMA Oncol. 2020;6(12):e204930.

    Article  PubMed  PubMed Central  Google Scholar 

  165. Han Y, Zhi WH, Xu F, et al. Selection of first-line systemic therapies for advanced hepatocellular carcinoma: A network meta-analysis of randomized controlled trials. World J Gastroenterol. 2021;27(19):2415–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Lee MS, Ryoo BY, Hsu CH, et al. GO30140 investigators. Atezolizumab with or without bevacizumab in unresectable hepatocellular carcinoma (GO30140): an open-label, multicentre, phase 1b study. Lancet Oncol. 2020;21:808–20.

    Article  CAS  PubMed  Google Scholar 

  167. Park R, Lopes da Silva L, Nissaisorakarn V, et al. Comparison of efficacy of systemic therapies in advanced hepatocellular carcinoma: updated systematic review and frequentist network meta-analysis of randomized controlled trials. J Hepatocell Carcinoma. 2021;8:145–54.

    Article  PubMed  PubMed Central  Google Scholar 

  168. Agarwal N, Loriot Y, McGregor BA, et al. Cabozantinib in combination with atezolizumab in patients with metastatic castration-resistant prostate cancer: results of cohort 6 of the COSMIC-021 study. J Clin Oncol. 2020;38:5564.

    Article  Google Scholar 

  169. Choueiri TK, Albiges L, Powles T, et al. A phase III study (COSMIC-313) of cabozantinib (C) in combination with nivolumab (N) and ipilimumab (I) in patients (pts) with previously untreated advanced renal cell carcinoma (aRCC) of intermediate or poor risk. J Clin Oncol. 2020;38:TPS767–TPS767.

    Google Scholar 

  170. Neal JW, Lim FL, Felip E, et al. Cabozantinib in combination with atezolizumab in non-small cell lung cancer (NSCLC) patients previously treated with an immune checkpoint inhibitor: results from cohort 7 of the COSMIC-021 study. J Clin Oncol. 2020;38:9610.

    Article  Google Scholar 

  171. Pal SK, Agarwal N, Loriot Y, et al. Cabozantinib in combination with atezolizumab in urothelial carcinoma previously treated with platinum-containing chemotherapy: results from cohort 2 of the COSMIC-021 study. J Clin Oncol. 2020;38:5013.

    Article  Google Scholar 

  172. Saeed A, Phadnis M, Park R, et al. Cabozantinib (cabo) combined with durvalumab (durva) in gastroesophageal (GE) cancer and other gastrointestinal (GI) malignancies: preliminary phase Ib CAMILLA study results. J Clin Oncol. 2020;38:4563.

    Article  Google Scholar 

  173. El-Khoueiry AB, Melero I, Yau TC, et al. Impact of antitumor activity on survival outcomes, and nonconventional benefit, with nivolumab (NIVO) in patients with advanced hepatocellular carcinoma (aHCC): subanalyses of CheckMate-040. J Clin Oncol. 2018;36:475.

    Article  Google Scholar 

  174. Yau T, Kang YK, Kim TY, et al. Efficacy and safety of nivolumab plus ipilimumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib: the check mate 040 randomized clinical trial. JAMA Oncol. 2020;6(11):e204564.

    Article  PubMed  PubMed Central  Google Scholar 

  175. Kelley RK, Sangro B, Harris WP, et al. Efficacy, tolerability, and biologic activity of a novel regimen of tremelimumab (T) in combination with durvalumab (D) for patients (pts) with advanced hepatocellular carcinoma (aHCC). J Clin Oncol. 2020;38:4508.

    Article  Google Scholar 

  176. Yau T, Park JW, Finn RS, et al. CheckMate 459: a randomized, multi-center phase III study of nivolumab (NIVO) vs sorafenib (SOR) as first-line (1L) treatment in patients (pts) with advanced hepatocellular carcinoma (aHCC). Ann Oncol. 2019;30:v874–5.

    Article  Google Scholar 

  177. Smyth EC, Nilsson M, Grabsch HI, et al. Gastric Cancer. Lancet. 2020;396(10251):635–48.

    Article  CAS  PubMed  Google Scholar 

  178. Forman D, Burley V. Gastric cancer: Global pattern of the disease and an overview of environmental risk factors. Best Pract Res Clin Gastroenterol. 2006;20:633–49.

    Article  CAS  PubMed  Google Scholar 

  179. Correa P. Human gastric carcinogenesis: A multistep and multifactorial process—First American Cancer Society Award Lecture on Cancer Epidemiology and Prevention. Cancer Res. 1992;52:6735–40.

    CAS  PubMed  Google Scholar 

  180. Reddavid R, Sofia S, Chiaro P, et al. Neoadjuvant chemotherapy for gastric cancer. Is it a must or a fake? World J Gastroenterol. 2018;24(2):274–89.

    Article  PubMed  PubMed Central  Google Scholar 

  181. Song Z, Wu Y, Yang J, et al. Progress in the treatment of advanced gastric cancer. Tumour Biol. 2017;39(7):10.

    Article  Google Scholar 

  182. Wu H, Wang W, Tong S. Nucleostemin regulates proliferation and migration of gastric cancer and correlates with its malignancy. Int J Clin Exp Med. 2015;8:17634–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Wilke H, Preusser P, Fink U. Preoperative chemotherapy in locally advanced and nonresectable gastric cancer: a phase II study with etoposide, doxorubicin, and cisplatin. J Clin Oncol. 1989;7:1318–26.

    Article  CAS  PubMed  Google Scholar 

  184. Mai M, Takahashi Y, Fujimoto T. Neoadjuvant chemotherapy for far-advanced gastric carcinoma. Gan To Kagaku Ryoho. 1994;21:431–9.

    CAS  PubMed  Google Scholar 

  185. Crookes P, Leichman CG, Leichman L. Systemic chemotherapy for gastric carcinoma followed by postoperative intraperitoneal therapy: a final report. Cancer. 1997;79:1767–75.

    Article  CAS  PubMed  Google Scholar 

  186. Schuhmacher CP, Fink U, Becker K. Neoadjuvant therapy for patients with locally advanced gastric carcinoma with etoposide, doxorubicin, and cisplatinum. Closing results after 5 years of follow-up. Cancer. 2001;91:918–27.

    Article  CAS  PubMed  Google Scholar 

  187. Gianni L, Panzini I, Tassinari D. Meta-analyses of randomized trials of adjuvant chemotherapy in gastric cancer. Ann Oncol. 2001;12:1178–80.

    Article  CAS  PubMed  Google Scholar 

  188. Mirza A, Pritchard S, Welch I. The postoperative component of MAGIC chemotherapy is associated with improved prognosis following surgical resection in gastric and gastrooesophageal junction adenocarcinomas. Int J Surg Oncol. 2013;2013:781742.

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Lordick F, Luber B, Lorenzen S. Cetuximab plus oxaliplatin/leucovorin/5-fluorouracil in first-line metastatic gastric cancer: a phase II study of the Arbeitsgemeinschaft Internistische Onkologie (AIO). Br J Cancer. 2010;102:500–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Wagner AD, Syn NL, Moehler M, et al. Chemotherapy for advanced gastric cancer. Cochrane Database Syst Rev. 2017;8(8):CD004064.

    PubMed  Google Scholar 

  191. Ajani JA, Rodriguez W, Bodoky G, et al. Multicenter phase III comparison of cisplatin/S-1 with cisplatin/infusional fluorouracil in advanced gastric or gastroesophageal adenocarcinoma study: the FLAGS trial. J Clin Oncol. 2010;28:1547–53.

    Article  CAS  PubMed  Google Scholar 

  192. Digklia A, Wagner AD. Advanced gastric cancer: Current treatment landscape and future perspectives. World J Gastroenterol. 2016;22(8):2403–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Lorenzen S, Stahl M, Hofheinz RD, et al. Influence of taxanes on treatment sequence in gastric cancer. Oncol Res Treat. 2020;43(1-2):42–7.

    Article  CAS  PubMed  Google Scholar 

  194. Fisusi FA, Akala EO. Drug combinations in breast cancer therapy. Pharm Nanotechnol. 2019;7(1):3–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Chew HK. Adjuvant therapy for breast cancer: who should get what? West J Med. 2001;174(4):284–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. de Matteis A, Nuzzo F, D'Aiuto G, et al. Docetaxel plus epidoxorubicin as neoadjuvant treatment in patients with large operable or locally advanced carcinoma of the breast: a single-center, phase II study. Cancer. 2002;94(4):895–901.

    Article  PubMed  CAS  Google Scholar 

  197. Drăgănescu M, Carmocan C. Hormone therapy in breast cancer. Chirurgia (Bucur). 2017;112(4):413–7.

    Article  PubMed  Google Scholar 

  198. Diaby V, Tawk R, Sanogo V, et al. A review of systematic reviews of the cost-effectiveness of hormone therapy, chemotherapy, and targeted therapy for breast cancer. Breast Cancer Res Treat. 2015;151(1):27–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Williams AD, Payne KK, Posey AD Jr, et al. Immunotherapy for breast cancer: Current and future strategies. Curr Surg Rep. 2017;5:31.

    Article  PubMed  PubMed Central  Google Scholar 

  200. Lenaz L. Mitomycin C in advanced breast cancer. Cancer Treat Rev. 1985;12(4):235–49.

    Article  CAS  PubMed  Google Scholar 

  201. Tanaka S, Iwamoto M, Kimura K, et al. Phase ii study of neoadjuvant anthracycline-based regimens combined with nanoparticle albumin-bound paclitaxel and trastuzumab for human epidermal growth factor receptor 2-positive operable breast cancer. Clin. Breast Cancer. 2015;15(3):191–6.

    Article  CAS  PubMed  Google Scholar 

  202. Kummel S, Holtschmidt J, Loibl S. Surgical treatment of primary breast cancer in the neoadjuvant setting. Br J Surg. 2014;101(8):912–24.

    Article  CAS  PubMed  Google Scholar 

  203. Neuman HB, Morrogh M, Gonen M, et al. Stage IV breast cancer in the era of targeted therapy: does surgery of the primary tumor matter? Cancer. 2010;116(5):1226–33.

    Article  PubMed  Google Scholar 

  204. Hennigs A, Riedel F, Marmé F, et al. Changes in chemotherapy usage and outcome of early breast cancer patients in the last decade. Breast Cancer Res. Treat. 2016;160(3):491–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Harbeck N, Gnant M. Breast cancer. Lancet. 2017;389(10074):1134–50.

    Article  PubMed  Google Scholar 

  206. Rashid OM, Takabe K. Does removal of the primary tumor in metastatic breast cancer improve survival? J Womens Health Wellness. 2014;23(2):184–8.

    Article  Google Scholar 

  207. Hortobagyi GN. Treatment of breast cancer. N. Engl. J. Med. 1998;339(14):974–84.

    Article  CAS  PubMed  Google Scholar 

  208. Sachdev JC, Jahanzeb M. Use of cytotoxic chemotherapy in metastatic breast cancer: putting taxanes in perspective. Clin Breast Cancer. 2016;16(2):73–81.

    Article  CAS  PubMed  Google Scholar 

  209. Vrdoljak E, Boban M, Omrcen T, et al. Combination of capecitabine and mitomycin C as first-line treatment in patients with metastatic breast cancer. Neoplasma. 2011;58(2):172–8.

    Article  CAS  PubMed  Google Scholar 

  210. Gonzalez-Angulo AM, Morales-Vasquez F, Hortobagyi GN. Overview of resistance to systemic therapy in patients with breast cancer. Adv Exp Med Biol. 2007;608:1–22.

    Article  CAS  PubMed  Google Scholar 

  211. Azim HA Jr, de Azambuja E, Colozza M, et al. Long-term toxic effects of adjuvant chemotherapy in breast cancer. Ann Oncol. 2011;22(9):1939–47.

    Article  PubMed  Google Scholar 

  212. Heys SD, Hutcheon AW, Sarkar TK, et al. Neoadjuvant docetaxel in breast cancer: 3-Year Survival Results from the Aberdeen trial. Clin Breast Cancer. 2002;3:S69–74.

    Article  PubMed  Google Scholar 

  213. Malhotra V, Dorr VJ, Lyss AP, et al. Neoadjuvant and adjuvant chemotherapy with doxorubicin and docetaxel in locally advanced breast cancer. Clin Breast Cancer. 2004;5(5):377–84.

    Article  CAS  PubMed  Google Scholar 

  214. Colleoni M, Goldhirsch A. Neoadjuvant chemotherapy for breast cancer: any progress? Lancet Oncol. 2014;15(2):131–2.

    Article  PubMed  Google Scholar 

  215. Kaufmann M, von Minckwitz G, Mamounas EP, et al. Recommendations from an international consensus conference on the current status and future of neoadjuvant systemic therapy in primary breast cancer. Ann Surg Oncol. 2012;19(5):1508–16.

    Article  PubMed  Google Scholar 

  216. De Matteis A, Nuzzo F, D’Aiuto G, et al. Docetaxel plus epidoxorubicin as neoadjuvant treatment in patients with large operable or locally advanced carcinoma of the breast. Cancer. 2002;94(4):895–901.

    Article  PubMed  CAS  Google Scholar 

  217. Bear HD, Anderson S, Brown A, et al. The effect on tumor response of adding sequential preoperative docetaxel to preoperative doxorubicin and cyclophosphamide: preliminary results from national surgical adjuvant breast and bowel project protocol B-27. J Clin Oncol. 2003;21(22):4165–74.

    Article  CAS  PubMed  Google Scholar 

  218. Earl HM, Vallier AL, Hiller L, et al. Effects of the addition of gemcitabine, and paclitaxel-first sequencing, in neoadjuvant sequential epirubicin, cyclophosphamide, and paclitaxel for women with high-risk early breast cancer (neo-tango): an open-label, 2x2 factorial randomised phase 3 trial. Lancet Oncol. 2014;15(2):201–12.

    Article  CAS  PubMed  Google Scholar 

  219. Roy V, Pockaj BA, Allred JB, et al. A Phase II trial of docetaxel and carboplatin administered every 2 weeks as preoperative therapy for stage II or III breast cancer: NCCTG study N0338. J Clin Oncol. 2013;36(6):540–4.

    CAS  Google Scholar 

  220. Bonadonna G, Brusamolino E, Valagussa P, et al. Combination chemotherapy as an adjuvant treatment in operable breast cancer. N Engl J Med. 1976;294(8):405–10.

    Article  CAS  PubMed  Google Scholar 

  221. Abrams JS. Adjuvant therapy for breast cancer--results from the USA consensus conference. Breast Cancer. 2001; 8(4): 298–304.

    Google Scholar 

  222. Fisher B, Dignam J, Wolmark N, et al. Tamoxifen and chemotherapy for lymph node-negative, estrogen receptor-positive breast cancer. J Natl Cancer Inst. 1997;89(22):1673–82.

    Article  CAS  PubMed  Google Scholar 

  223. Fisher B, Redmond C, Wickerham DL, et al. Doxorubicin-containing regimens for the treatment of stage ii breast cancer: the national surgical adjuvant breast and bowel project experience. J Clin Oncol. 1989;7(5):572–82.

    Article  CAS  PubMed  Google Scholar 

  224. Hortobagyi GN, Blumenschein GR, Spanos W, et al. Multimodal treatment of locoregionally advanced breast cancer. Cancer. 1983;51(5):763–8.

    Article  CAS  PubMed  Google Scholar 

  225. French Epirubicin Study Group A prospective randomized phase Iii trial comparing combination chemotherapy with cyclophosphamide, fluorouracil, and either doxorubicin or epirubicin. French epirubicin study group. J Clin Oncol. 1988;6(4):679–88.

    Google Scholar 

  226. French Adjuvant Study Group. Benefit of a high-dose epirubicin regimen in adjuvant chemotherapy for node-positive breast cancer patients with poor prognostic factors: 5-year follow-up results of French adjuvant study group 05 randomized trial. J Clin Oncol. 2001;19(3):602–11.

    Article  Google Scholar 

  227. Creagan ET, Green SJ, Ahmann DL, et al. A phase III clinical trial comparing the combination cyclophosphamide, adriamycin, cisplatin with cyclophosphamide, 5-fluorouracil, prednisone in patients with advanced breast cancer. J Clin Oncol. 1984;2(11):1260–5.

    Article  CAS  PubMed  Google Scholar 

  228. Saphner T, Tormey DC, Albertini M. Continuous infusion 5-fluorouracil with escalating doses of intermittent cisplatin and etoposide. A phase I study. Cancer. 1991;68(11):2359–62.

    CAS  PubMed  Google Scholar 

  229. Trump DL, Ettinger DS, Abeloff MD. Doxorubicin, vincristine, and cis-diamminedichloroplatinum (II) therapy in patients with advanced breast cancer. Med Pediatr Oncol. 1981;9:1–3.

    Article  CAS  PubMed  Google Scholar 

  230. Bonneterre J, Dieras V, Tubiana-Hulin M, et al. Phase II multicentre randomised study of docetaxel plus epirubicin vs. 5-fluorouracil plus epirubicin and cyclophosphamide in metastatic breast cancer. Br J Cancer. 2004;91(8):1466–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Wasserheit C, Frazein A, Oratz R, et al. Phase II trial of paclitaxel and cisplatin in women with advanced breast cancer: an active regimen with limiting neurotoxicity. J Clin Oncol. 1996;14(7):1993–9.

    Article  CAS  PubMed  Google Scholar 

  232. Gelmon KA, O’Reilly SE, Tolcher AW, et al. Phase I/II trial of biweekly paclitaxel and cisplatin in the treatment of metastatic breast cancer. J Clin Oncol. 1996;14(4):1185–91.

    Article  CAS  PubMed  Google Scholar 

  233. Hortobagyi GN. Paclitaxel-based combination chemotherapy for breast cancer. Oncology. 1997;11:29–37.

    CAS  PubMed  Google Scholar 

  234. Esteva FJ, Valero V, Pusztai L, et al. Chemotherapy of metastatic breast cancer: what to expect in 2001 and beyond. Oncologist. 2001;6(2):133–46.

    Article  CAS  PubMed  Google Scholar 

  235. Nabholtz J-M, Falkson C, Campos D, et al. Docetaxel and doxorubicin compared with doxorubicin and cyclophosphamide as first-line chemotherapy for metastatic breast cancer: results of a randomized, multicenter, phase III Trial. J Clin Oncol. 2003;21(6):968–75.

    Article  CAS  PubMed  Google Scholar 

  236. Smith RE, Anderson SJ, Lembersky BC, et al. Phase ii trial of a doxorubicin/docetaxel doublet for locally advanced and metastatic breast cancer: results from national surgical adjuvant breast and bowel project trial Bp-57. Clin Breast Cancer. 2004;5(3):208–15.

    Article  CAS  PubMed  Google Scholar 

  237. Andrez J-C. Mitomycins syntheses: a recent update. Beilstein J Org Chem. 2009;5:33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  238. Colozza M, Tonato M, Grignani F, et al. Low-dose mitomycin and weekly low-dose doxorubicin combination chemotherapy for patients with metastatic breast carcinoma previously treated with cyclophosphamide, methotrexate, and 5-fluorouracil. Cancer. 1988;62(2):262–5.

    Article  CAS  PubMed  Google Scholar 

  239. Ospovat I, Siegelmann-Danieli N, et al. Mitomycin C and vinblastine: an active regimen in previously treated breast cancer patients. Tumori. 2009;95(6):683–6.

    Article  CAS  PubMed  Google Scholar 

  240. Panasci L, Shenouda G, Begin L, et al. Mitomycin C and mitoxantrone chemotherapy for advanced breast cancer: efficacy with minimal gastrointestinal toxicity and alopecia. Cancer Chemother. Pharmacol. 1990;26(6):457–60.

    Article  CAS  PubMed  Google Scholar 

  241. Tanabe M, Ito Y, Tokudome N, et al. Possible use of combination chemotherapy with mitomycin C and methotrexate for metastatic breast cancer pretreated with anthracycline and taxanes. Breast Cancer. 2009;16(4):301.

    Article  PubMed  Google Scholar 

  242. Fukuda T, Tanabe M, Kobayashi K, et al. Combination chemotherapy with mitomycin C and methotrexate is active against metastatic HER2-negative breast cancer even after treatment with anthracycline, taxane, capecitabine, and vinorelbine. Springerplus. 2015;4(1):376.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  243. Lu X, **ao L, Wang L, Ruden DM. Hsp90 inhibitors and drug resistance in cancer: the potential benefits of combination therapies of Hsp90 inhibitors and other anti-cancer drugs. Biochem. Pharmacol. 2012;83(8):995–1004.

    Article  CAS  PubMed  Google Scholar 

  244. Modi S, Stopeck AT, Gordon MS, et al. Combination of trastuzumab and tanespimycin (17-aag, kos-953) is safe and active in trastuzumab-refractory her-2-overexpressing breast cancer: a phase I dose-escalation study. J Clin Oncol. 2007;25(34):5410–7.

    Article  CAS  PubMed  Google Scholar 

  245. Modi S, Stopeck A, Linden H, et al. Hsp90 inhibition is effective in breast cancer: a phase ii trial of tanespimycin (17-aag) plus trastuzumab in patients with HER2-positive metastatic breast cancer progressing on trastuzumab. Clin Cancer Res. 2011;17(15):5132–9.

    Article  CAS  PubMed  Google Scholar 

  246. Goel S, Sharma R, Hamilton A, et al. LHRH agonists for adjuvant therapy of early breast cancer in premenopausal women. Cochrane Database Syst Rev. 2009;2009(4):CD004562.

    PubMed Central  Google Scholar 

  247. Tancredi R, Furlanetto J, Loibl S. Endocrine therapy in premenopausal hormone receptor positive/human epidermal growth receptor 2 negative metastatic breast cancer: between guidelines and literature. Oncologist. 2018;23(8):974–81.

    Article  PubMed  PubMed Central  Google Scholar 

  248. Pritchard KI, Chia SK, Simmons C, et al. Enhancing endocrine therapy combination strategies for the treatment of postmenopausal HR+/HER2- advanced breast cancer. Oncologist. 2017;22(1):12–24.

    Article  CAS  PubMed  Google Scholar 

  249. Freedman RA, Tolaney SM. Efficacy and safety in older patient subsets in studies of endocrine monotherapy versus combination therapy in patients with HR+/HER2- advanced breast cancer: a review. Breast Cancer Res Treat. 2018;167(3):607–14.

    Article  CAS  PubMed  Google Scholar 

  250. Giuliano M, Schettini F, Rognoni C, et al. Endocrine treatment versus chemotherapy in postmenopausal women with hormone receptor-positive, HER2-negative, metastatic breast cancer: a systematic review and network meta-analysis. Lancet Oncol. 2019;20(10):1360–9.

    Article  CAS  PubMed  Google Scholar 

  251. Chirila C, Mitra D, Colosia A, et al. Comparison of palbociclib in combination with letrozole or fulvestrant with endocrine therapies for advanced/metastatic breast cancer: network meta-analysis. Curr Med Res Opin. 2017;33(8):1457–66.

    Article  CAS  PubMed  Google Scholar 

  252. Emens LA. Breast cancer immunotherapy: Facts and hopes. Clin Cancer Res. 2018;24(3):511–20.

    Article  CAS  PubMed  Google Scholar 

  253. Marra A, Viale G, Curigliano G. Recent advances in triple negative breast cancer: the immunotherapy era. BMC Med. 2019;17(1):90.

    Article  PubMed  PubMed Central  Google Scholar 

  254. Adams S, Gatti-Mays ME, Kalinsky K, et al. Current landscape of immunotherapy in breast cancer: A review. JAMA Oncol. 2019;5(8):1205–14.

    Article  PubMed  PubMed Central  Google Scholar 

  255. Baselga J, Cortés J, Kim S-B, et al. Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer. N Engl J Med. 2012;366(2):109–19.

    Article  CAS  PubMed  Google Scholar 

  256. Swain SM, Kim S-B, Cortés J, et al. Pertuzumab, trastuzumab, and docetaxel for HER2-positive metastatic breast cancer (Cleopatra study): overall survival results from a randomised, double-blind, placebo-controlled, phase 3 study. Lancet Oncol. 2013;14(6):461–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Swain SM, Ewer MS, Cortés J, et al. Cardiac tolerability of pertuzumab plus trastuzumab plus docetaxel in patients with HER2-positive metastatic breast cancer in Cleopatra: a randomized, double-blind, placebo-controlled phase III Study. Oncologist. 2013;18(3):257–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Swain SM, Baselga J, Kim SB. Pertuzumab, trastuzumab, and docetaxel in HER2-positive metastatic breast cancer. N Engl J Med. 2015;372(8):724–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Baselga J, Swain SM. CLEOPATRA: a phase III evaluation of pertuzumab and trastuzumab for HER2-positive metastatic breast cancer. Clin Breast Cancer. 2010;10(6):489–91.

    Article  PubMed  Google Scholar 

  260. Español A, Salem A, Sanchez Y, et al. Breast cancer: Muscarinic receptors as new targets for tumor therapy. World J Clin Oncol. 2021;12(6):404–28.

    Article  PubMed  PubMed Central  Google Scholar 

  261. Zhang N, Sun P, Xu Y, et al. The GPER1/SPOP axis mediates ubiquitination-dependent degradation of ERα to inhibit the growth of breast cancer induced by oestrogen. Cancer Lett. 2021;498:54–69.

    Article  CAS  PubMed  Google Scholar 

  262. Hsu LH, Chu NM, Lin YF, et al. G-Protein Coupled Estrogen Receptor in Breast Cancer. Int J Mol Sci. 2019;20

    Google Scholar 

  263. Español A, Eiján AM, Mazzoni E, et al. Nitric oxide synthase, arginase and cyclooxygenase are involved in muscarinic receptor activation in different murine mammary adenocarcinoma cell lines. Int J Mol Med. 2002;9:651–7.

    PubMed  Google Scholar 

  264. Rimmaudo LE, de la Torre E, Sacerdote de Lustig E, et al. Muscarinic receptors are involved in LMM3 tumor cells proliferation and angiogenesis. Biochem Biophys Res Commun. 2005;334:1359–64.

    Article  CAS  PubMed  Google Scholar 

  265. Cheng K, Shang AC, Drachenberg CB, et al. Differential expression of M3 muscarinic receptors in progressive colon neoplasia and metastasis. Oncotarget. 2017;8:21106–14.

    Article  PubMed  PubMed Central  Google Scholar 

  266. Lin G, Sun L, Wang R, et al. Overexpression of muscarinic receptor 3 promotes metastasis and predicts poor prognosis in non-small-cell lung cancer. J Thorac Oncol. 2014;9:170–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Pacini L, De Falco E, Di Bari M, et al. M2muscarinic receptors inhibit cell proliferation and migration in urothelial bladder cancer cells. Cancer Biol Ther. 2014;15:1489–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Español AJ, Jacob G, Dmytrenko G, et al. Muscarinic activation enhances the anti-proliferative effect of paclitaxel in murine breast tumor cells. Anticancer Agents Med Chem. 2013;13:1273–9.

    Article  PubMed  CAS  Google Scholar 

  269. Español AJ, Salem A, Rojo D, et al. Participation of non-neuronal muscarinic receptors in the effect of carbachol with paclitaxel on human breast adenocarcinoma cells. Roles of nitric oxide synthase and arginase. Int Immunopharmacol. 2015;29:87–92.

    Article  PubMed  CAS  Google Scholar 

  270. Español AJ, Salem A, Di Bari M, et al. The metronomic combination of paclitaxel with cholinergic agonists inhibits triple negative breast tumor progression. Participation of M2 receptor subtype. PLoS One. 2020;15:e0226450.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  271. Salem AR, Martínez Pulido P, Sanchez F, et al. Effect of low dose metronomic therapy on MCF-7 tumor cells growth and angiogenesis. Role of muscarinic acetylcholine receptors. Int Immunopharmacol. 2020;84:106514.

    Article  CAS  PubMed  Google Scholar 

  272. Kohn EC, Alessandro R, Probst J, et al. Identification and molecular characterization of a m5 muscarinic receptor in A2058 human melanoma cells. Coupling to inhibition of adenylyl cyclase and stimulation of phospholipase A2. J Biol Chem. 1996;271:17476–84.

    Article  CAS  PubMed  Google Scholar 

  273. Liu H, **a J, Wang T, et al. Differentiation of human glioblastoma U87 cells into cholinergic neuron. Neurosci Lett. 2019;704:1–7.

    Article  CAS  PubMed  Google Scholar 

  274. Yu H, **a H, Tang Q, et al. Acetylcholine acts through M3 muscarinic receptor to activate the EGFR signaling and promotes gastric cancer cell proliferation. Sci Rep. 2017;7:40802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Tolaymat M, Larabee SM, Hu S, et al. The role of M3 muscarinic receptor ligand-induced kinase signaling in colon cancer progression. Cancers (Basel). 2019;11(3):308.

    Article  CAS  Google Scholar 

  276. Zhao Q, Yue J, Zhang C, et al. Inactivation of M2 AChR/NF-κB signaling axis reverses epithelial-mesenchymal transition (EMT) and suppresses migration and invasion in non-small cell lung cancer (NSCLC). Oncotarget. 2015;6:29335–46.

    Article  PubMed  PubMed Central  Google Scholar 

  277. Wang J, Krysiak PS, Laurier LG, et al. Human esophageal smooth muscle cells express muscarinic receptor subtypes M1 through M5. Am J Physiol Gastrointest Liver Physiol. 2000;279:G1059–69.

    Article  CAS  PubMed  Google Scholar 

  278. Zhang L, Wu LL, Huan HB, et al. Sympathetic and parasympathetic innervation in hepatocellular carcinoma. Neoplasma. 2017;64:840–6.

    Article  CAS  PubMed  Google Scholar 

  279. Fiszman GL, Middonno MC, de la Torre E, et al. Activation of muscarinic cholinergic receptors induces MCF-7 cells proliferation and angiogenesis by stimulating nitric oxide synthase activity. Cancer Biol Ther. 2007;6:1106–13.

    Article  CAS  PubMed  Google Scholar 

  280. Russell SJ, Peng K-W, Bell JC. Oncolytic virotherapy. Nat Biotechnol. 2012;30:658–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Martin NT, Bell JC. Oncolytic virus combination therapy: Killing one bird with two stones. Mol Ther. 2018;26(6):1414–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Bommareddy PK, Shettigar M, Kaufman HL. Integrating oncolytic viruses in combination cancer immunotherapy. Nat Rev Immunol. 2018;18(8):498–513.

    Article  CAS  PubMed  Google Scholar 

  283. Bommareddy PK, Patel A, Hossain S, et al. Talimogene laherparepvec (T-VEC) and other oncolytic viruses for the treatment of melanoma. Am J Clin Dermatol. 2017;18(1):1–15.

    Article  PubMed  PubMed Central  Google Scholar 

  284. Simpson GR, Relph K, Harrington K, et al. Cancer immunotherapy via combining oncolytic virotherapy with chemotherapy: recent advances. Oncolytic Virother. 2016;5:1–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  285. Binz E, Berchtold S, Beil J, et al. Chemovirotherapy of pancreatic adenocarcinoma by combining oncolytic vaccinia virus GLV-1h68 with nab-paclitaxel plus gemcitabine. Mol Ther Oncolytics. 2017;6:10–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Tanaka R, Goshima F, Esaki S, et al. The efficacy of combination therapy with oncolytic herpes simplex virus HF10 and dacarbazine in a mouse melanoma model. Am. J. Cancer Res. 2017;7:1693–703.

    CAS  PubMed  PubMed Central  Google Scholar 

  287. Bourgeois-Daigneault M-C, St-Germain LE, Roy DG, et al. Combination of Paclitaxel and MG1 oncolytic virus as a successful strategy for breast cancer treatment. Breast Cancer Res. 2016;18:83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  288. Bourgeois-Daigneault MC, St-Germain LE, et al. Combination of Paclitaxel and MG1 oncolytic virus as a successful strategy for breast cancer treatment. Breast Cancer Res. 2016;18(1):83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  289. Dornan MH, Krishnan R, Macklin AM, et al. First-in-class small molecule potentiators of cancer virotherapy. Sci. Rep. 2016;6:26786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Selman M, Rousso C, Bergeron A, et al. Multi-modal potentiation of oncolytic virotherapy by vanadium compounds. Mol Ther. 2018;26:56–69.

    Article  CAS  PubMed  Google Scholar 

  291. Diallo JS, Le Boeuf F, Lai F, et al. A high-throughput pharmacoviral approach identifies novel oncolytic virus sensitizers. Mol Ther. 2010;18:1123–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Selman M, Ou P, Rousso C, et al. Dimethyl fumarate potentiates oncolytic virotherapy through NF-κB inhibition. Sci Transl Med. 2018;10 eaao1613

    Google Scholar 

  293. Arulanandam R, Batenchuk C, Varette O, et al. Microtubule disruption synergizes with oncolytic virotherapy by inhibiting interferon translation and potentiating bystander killing. Nat Commun. 2015;6:6410.

    Article  CAS  PubMed  Google Scholar 

  294. MacTavish H, Diallo J-S, Huang B, et al. Enhancement of vaccinia virus based oncolysis with histone deacetylase inhibitors. PLoS ONE. 2010;5:e14462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  295. Nguyên TL-A, Abdelbary H, Arguello M, et al. Chemical targeting of the innate antiviral response by histone deacetylase inhibitors renders refractory cancers sensitive to viral oncolysis. Proc Natl Acad Sci USA. 2008;105:14981–6.

    Article  PubMed  PubMed Central  Google Scholar 

  296. Kim DS, Dastidar H, Zhang C, et al. Smac mimetics and oncolytic viruses synergize in driving anticancer T-cell responses through complementary mechanisms. Nat Commun. 2017;8:344.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  297. Fulci G, Breymann L, Gianni D, et al. Cyclophosphamide enhances glioma virotherapy by inhibiting innate immune responses. Proc Natl Acad Sci USA. 2006;103:12873–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  298. Currier MA, Gillespie RA, Sawtell NM, et al. Efficacy and safety of the oncolytic herpes simplex virus rRp450 alone and combined with cyclophosphamide. Mol Ther. 2008;16:879–85.

    Article  CAS  PubMed  Google Scholar 

  299. Liao Y, Wang H-X, Mao X, et al. RIP1 is a central signaling protein in regulation of TNF-α/TRAIL mediated apoptosis and necroptosis during Newcastle disease virus infection. Oncotarget. 2017;8:43201–17.

    Article  PubMed  PubMed Central  Google Scholar 

  300. Han ZQ, Assenberg M, Liu BL, et al. Development of a second-generation oncolytic Herpes simplex virus expressing TNFalpha for cancer therapy. J Gene Med. 2007;9:99–106.

    Article  CAS  PubMed  Google Scholar 

  301. Meisen WH, Wohleb ES, Jaime-Ramirez AC, et al. The impact of macrophage- and microglia-secreted TNFα on oncolytic HSV-1 therapy in the glioblastoma tumor microenvironment. Clin Cancer Res. 2015;21:3274–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Vähä-Koskela M, Hinkkanen A. Tumor restrictions to oncolytic virus. Biomedicines. 2014;2:163–94.

    PubMed  Google Scholar 

  303. Simpson GR, Han Z, Liu B, et al. Combination of a fusogenic glycoprotein, prodrug activation, and oncolytic herpes simplex virus for enhanced local tumor control. Cancer Res. 2006;66:4835–42.

    Article  CAS  PubMed  Google Scholar 

  304. Fu X, Tao L, ** A, et al. Expression of a fusogenic membrane glycoprotein by an oncolytic herpes simplex virus potentiates the viral antitumor effect. Mol Ther. 2003;7:748–54.

    Article  CAS  PubMed  Google Scholar 

  305. Ayala-Breton C, Russell LOJ, Russell SJ, et al. Faster replication and higher expression levels of viral glycoproteins give the vesicular stomatitis virus/measles virus hybrid VSV-FH a growth advantage over measles virus. J Virol. 2014;88:8332–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  306. Kim JH, Lee YS, Kim H, et al. Relaxin expression from tumor-targeting adenoviruses and its intratumoral spread, apoptosis induction, and efficacy. J Natl Cancer Inst. 2006;98:1482–93.

    Article  CAS  PubMed  Google Scholar 

  307. Rodríguez-García A, Giménez-Alejandre M, Rojas JJ, et al. Safety and efficacy of VCN-01, an oncolytic adenovirus combining fiber HSG-binding domain replacement with RGD and hyaluronidase expression. Clin Cancer Res. 2015;21:1406–18.

    Article  PubMed  CAS  Google Scholar 

  308. Martínez-Vélez N, **pell E, Vera B, et al. The oncolytic adenovirus VCN-01 as therapeutic approach against pediatric osteosarcoma. Clin Cancer Res. 2016;22:2217–25.

    Article  PubMed  CAS  Google Scholar 

  309. Vera B, Martínez-Vélez N, **pell E, et al. Characterization of the antiglioma effect of the oncolytic adenovirus VCN-01. PLoS ONE. 2016;11:e0147211.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  310. Tan G, Kasuya H, Sahin TT, et al. Combination therapy of oncolytic herpes simplex virus HF10 and bevacizumab against experimental model of human breast carcinoma xenograft. Int J Cancer. 2015;136:1718–30.

    Article  CAS  PubMed  Google Scholar 

  311. Buckel L, Advani SJ, Frentzen A, et al. Combination of fractionated irradiation with anti-VEGF expressing vaccinia virus therapy enhances tumor control by simultaneous radiosensitization of tumor associated endothelium. Int J Cancer. 2013;133:2989–99.

    CAS  PubMed  Google Scholar 

  312. Zhang W, Fulci G, Buhrman JS, et al. Bevacizumab with angiostatin-armed oHSV increases antiangiogenesis and decreases bevacizumab-induced invasion in U87 glioma. Mol Ther. 2012;20:37–45.

    Article  PubMed  CAS  Google Scholar 

  313. Currier MA, Eshun FK, Sholl A, et al. VEGF blockade enables oncolytic cancer virotherapy in part by modulating intratumoral myeloid cells. Mol Ther. 2013;21:1014–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  314. Bolyard C, Yoo JY, Wang P-Y, et al. Doxorubicin synergizes with 34.5ENVE to enhance antitumor efficacy against metastatic ovarian cancer. Clin Cancer Res. 2014;20:6479–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  315. Seabloom DE, Galbraith AR, Haynes AM, et al. Fixed-dose combinations of pioglitazone and metformin for lung cancer prevention. Cancer Prev Res (Phila). 2017;10(2):116–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  316. Memmott RM, Mercado JR, Maier CR, et al. Metformin prevents tobacco carcinogen--induced lung tumorigenesis. Cancer Prev Res (Phila) 2010; 3(9): 1066–1076.

    Google Scholar 

  317. Fu H, Zhang J, Pan J, et al. Chemoprevention of lung carcinogenesis by the combination of aerosolized budesonide and oral pioglitazone in A/J mice. Mol Carcinog. 2011;50(12):913–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  318. Ihle NT, Lemos R, Schwartz D, et al. Peroxisome proliferator-activated receptor gamma agonist pioglitazone prevents the hyperglycemia caused by phosphatidylinositol 3-kinase pathway inhibition by PX-866 without affecting antitumor activity. Mol Cancer Ther. 2009;8(1):94–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  319. Nemenoff RA, Weiser-Evans M, Winn RA. Activation and Molecular Targets of Peroxisome Proliferator-Activated Receptor-gamma Ligands in Lung Cancer. PPAR Res. 2008;2008:156875.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  320. Wang Y, James M, Wen W, et al. Chemopreventive effects of pioglitazone on chemically induced lung carcinogenesis in mice. Mol Cancer Ther. 2010;9(11):3074–82.

    Article  CAS  PubMed  Google Scholar 

  321. Ondrey F. Peroxisome proliferator-activated receptor gamma pathway targeting in carcinogenesis: implications for chemoprevention. Clin Cancer Res. 2009;15(1):2–8.

    Article  CAS  PubMed  Google Scholar 

  322. Harris G, Ghazallah RA, Nascene D, et al. PPAR activation and decreased proliferation in oral carcinoma cells with 4-HPR. Otolaryngol Head Neck Surg. 2005;133(5):695–701.

    Article  PubMed  Google Scholar 

  323. Chang TH, Szabo E. Induction of differentiation and apoptosis by ligands of peroxisome proliferator-activated receptor gamma in non-small cell lung cancer. Cancer Res. 2000;60(4):1129–38.

    CAS  PubMed  Google Scholar 

  324. Chang TH, Szabo E. Enhanced growth inhibition by combination differentiation therapy with ligands of peroxisome proliferator-activated receptor-gamma and inhibitors of histone deacetylase in adenocarcinoma of the lung. Clin Cancer Res. 2002;8(4):1206–12.

    CAS  PubMed  Google Scholar 

  325. Avis I, Martínez A, Tauler J, et al. Inhibitors of the arachidonic acid pathway and peroxisome proliferator-activated receptor ligands have superadditive effects on lung cancer growth inhibition. Cancer Res. 2005;65(10):4181–90.

    Article  CAS  PubMed  Google Scholar 

  326. Wright SK, Wuertz BR, Harris G, et al. Functional activation of PPARγ in human upper aerodigestive cancer cell lines. Mol Carcinog. 2017;56(1):149–62.

    Article  CAS  PubMed  Google Scholar 

  327. Han EJ, Im CN, Park SH, et al. Combined treatment with peroxisome proliferator-activated receptor (PPAR) gamma ligands and gamma radiation induces apoptosis by PPARγ-independent up-regulation of reactive oxygen species-induced deoxyribonucleic acid damage signals in non-small cell lung cancer cells. Int J Radiat Oncol Biol Phys. 2013;85(5):e239–48.

    Article  CAS  PubMed  Google Scholar 

  328. Bren-Mattison Y, Meyer AM, Van Putten V, et al. Antitumorigenic effects of peroxisome proliferator-activated receptor-gamma in non-small-cell lung cancer cells are mediated by suppression of cyclooxygenase-2 via inhibition of nuclear factor-kappaB. Mol Pharmacol. 2008;73(3):709–17.

    Article  CAS  PubMed  Google Scholar 

  329. Hazra S, Batra RK, Tai HH, et al. Pioglitazone and rosiglitazone decrease prostaglandin E2 in non-small-cell lung cancer cells by up-regulating 15-hydroxyprostaglandin dehydrogenase. Mol Pharmacol. 2007;71(6):1715–20.

    Article  CAS  PubMed  Google Scholar 

  330. Han S, Sidell N, Fisher PB, et al. Up-regulation of p21 gene expression by peroxisome proliferator-activated receptor gamma in human lung carcinoma cells. Clin Cancer Res. 2004;10(6):1911–9.

    Article  CAS  PubMed  Google Scholar 

  331. Govindarajan R, Ratnasinghe L, Simmons DL, et al. Thiazolidinediones and the risk of lung, prostate, and colon cancer in patients with diabetes. J Clin Oncol. 2007;25(12):1476–81.

    Article  CAS  PubMed  Google Scholar 

  332. Govindarajan R, Siegel ER, Simmons DL, et al. Thiazolidinedione (TZD) exposure and risk of squamous cell carcinoma of head and neck (SCCHN). J Clin Oncol 2007 ASCO Ann Meet eedings Part I. 2007; 25(Suppl18): 1511–2007.

    Google Scholar 

  333. Decensi A, Puntoni M, Goodwin P, et al. Metformin and cancer risk in diabetic patients: a systematic review and meta-analysis. Cancer Prev Res. 2010;3(11):1451–61.

    Article  CAS  Google Scholar 

  334. Franciosi M, Lucisano G, Lapice E, et al. Metformin therapy and risk of cancer in patients with type 2 diabetes: systematic review. PLoS One. 2013;8(8):e71583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  335. Goodwin PJ, Stambolic V. Obesity and insulin resistance in breast cancer--chemoprevention strategies with a focus on metformin. Breast. 2011; 20(Suppl 3): S31–S35.

    Google Scholar 

  336. He X, Esteva FJ, Ensor J, et al. Metformin and thiazolidinediones are associated with improved breast cancer-specific survival of diabetic women with HER2+ breast cancer. Ann Oncol. 2012;23(7):1771–80.

    Article  CAS  PubMed  Google Scholar 

  337. Lai SW, Liao KF, Chen PC, et al. Antidiabetes drugs correlate with decreased risk of lung cancer: a population-based observation in Taiwan. Clin Lung Cancer. 2012;13(2):143–8.

    Article  CAS  PubMed  Google Scholar 

  338. Rozengurt E, Sinnett-Smith J, Kisfalvi K. Crosstalk between insulin/insulin-like growth factor-1 receptors and G protein-coupled receptor signaling systems: a novel target for the antidiabetic drug metformin in pancreatic cancer. Clin Cancer Res. 2010;16(9):2505–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  339. Tan BK, Adya R, Chen J, et al. Metformin treatment exerts antiinvasive and antimetastatic effects in human endometrial carcinoma cells. J Clin Endocrinol Metab. 2011;96(3):808–16.

    Article  CAS  PubMed  Google Scholar 

  340. Vaccaro O, Masulli M, Bonora E, et al. Addition of either pioglitazone or a sulfonylurea in type 2 diabetic patients inadequately controlled with metformin alone: impact on cardiovascular events. A randomized controlled trial. Nutr Metab Cardiovasc Dis. 2012;22(11):997–1006.

    Article  CAS  PubMed  Google Scholar 

  341. **e Y, Wang YL, Yu L, et al. Metformin promotes progesterone receptor expression via inhibition of mammalian target of rapamycin (mTOR) in endometrial cancer cells. J Steroid Biochem Mol Biol. 2011;126(3–5):113–20.

    Article  CAS  PubMed  Google Scholar 

  342. Zhang ZJ, Bi Y, Li S, et al. Reduced risk of lung cancer with metformin therapy in diabetic patients: a systematic review and meta-analysis. Am J Epidemiol. 2014;180(1):11–4.

    Article  PubMed  Google Scholar 

  343. Cacicedo JM, Yagihashi N, Keaney JF Jr, et al. AMPK inhibits fatty acid-induced increases in NF-kappaB transactivation in cultured human umbilical vein endothelial cells. Biochem Biophys Res Commun. 2004;324(4):1204–9.

    Article  CAS  PubMed  Google Scholar 

  344. Hattori Y, Suzuki K, Hattori S, et al. Metformin inhibits cytokine-induced nuclear factor kappaB activation via AMP-activated protein kinase activation in vascular endothelial cells. Hypertension. 2006;47(6):1183–8.

    Article  CAS  PubMed  Google Scholar 

  345. Huang NL, Chiang SH, Hsueh CH, et al. Metformin inhibits TNF-alpha-induced IkappaB kinase phosphorylation, IkappaB-alpha degradation and IL-6 production in endothelial cells through PI3K-dependent AMPK phosphorylation. Int J Cardiol. 2009;134(2):169–75.

    Article  PubMed  Google Scholar 

  346. Isoda K, Young JL, Zirlik A, et al. Metformin inhibits proinflammatory responses and nuclear factor-kappaB in human vascular wall cells. Arterioscler Thromb Vasc Biol. 2006;26(3):611–7.

    Article  CAS  PubMed  Google Scholar 

  347. Li SN, Wang X, Zeng QT, et al. Metformin inhibits nuclear factor kappaB activation and decreases serum high-sensitivity C-reactive protein level in experimental atherogenesis of rabbits. Heart Vessels. 2009;24(6):446–53.

    Article  PubMed  Google Scholar 

  348. Tan BK, Adya R, Chen J, et al. Metformin decreases angiogenesis via NF-kappaB and Erk1/2/Erk5 pathways by increasing the antiangiogenic thrombospondin-1. Cardiovasc Res. 2009;83(3):566–74.

    Article  CAS  PubMed  Google Scholar 

  349. Felip E, Ranson M, Cedrés S, et al. A phase Ib, dose-finding study of erlotinib in combination with a fixed dose of pertuzumab in patients with advanced non-small-cell lung cancer. Clin Lung Cancer. 2012;13(6):432–41.

    Article  CAS  PubMed  Google Scholar 

  350. Rino Y, Takanashi Y, Yukawa N, et al. A phase I study of bi-weekly combination therapy with S-1 and docetaxel for advanced or recurrent gastric cancer. Anticancer Res. 2006;26(2B):1455–62.

    CAS  PubMed  Google Scholar 

  351. Nakayama N, Koizumi W, Sasaki T, et al. A multicenter, phase I dose-escalating study of docetaxel, cisplatin and S-1 for advanced gastric cancer (KDOG0601). Oncology. 2008;75(1-2):1–7.

    Article  CAS  PubMed  Google Scholar 

  352. Carrick S, Parker S, Wilcken N, et al. Single agent versus combination chemotherapy for metastatic breast cancer. Cochrane Database Syst Rev. 2005;(2):CD003372.

    Google Scholar 

  353. Tan AR, Im SA, Mattar A, et al. FeDeriCa study group. Fixed-dose combination of pertuzumab and trastuzumab for subcutaneous injection plus chemotherapy in HER2-positive early breast cancer (FeDeriCa): a randomised, open-label, multicentre, non-inferiority, phase 3 study. Lancet Oncol. 2021;22(1):85–97.

    Article  CAS  PubMed  Google Scholar 

  354. DuMond B, Patel V, Gross A, et al. Fixed-dose combination of pertuzumab and trastuzumab for subcutaneous injection in patients with HER2-positive breast cancer: A multidisciplinary approach. J Oncol Pharm Pract. 2021;27(5):1214–21.

    Article  CAS  PubMed  Google Scholar 

  355. Petrelli A, Giordano S. From single- to multi-target drugs in cancer therapy: when aspecificity becomes an advantage. Curr Med Chem. 2008;15(5):422–32.

    Article  CAS  PubMed  Google Scholar 

  356. Thomson RJ, Moshirfar M, Ronquillo Y. Tyrosine Kinase Inhibitors. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021.

    Google Scholar 

  357. Jiao Q, Bi L, Ren Y, et al. Advances in studies of tyrosine kinase inhibitors and their acquired resistance. Mol Cancer. 2018;17(1):36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  358. Patterson KI, Brummer T, O'Brien PM, et al. Dual-specificity phosphatases: critical regulators with diverse cellular targets. Biochem J. 2009;418(3):475–89.

    Article  CAS  PubMed  Google Scholar 

  359. Kolibaba KS, Druker BJ. Protein tyrosine kinases and cancer. Biochim Biophys Acta. 1997;1333(3):F217–48.

    CAS  PubMed  Google Scholar 

  360. Tong M, Seeliger MA. Targeting conformational plasticity of protein kinases. ACS Chem Biol. 2015;10(1):190–200.

    Article  CAS  PubMed  Google Scholar 

  361. Norman RA, Toader D, Ferguson AD. Structural approaches to obtain kinase selectivity. Trends Pharmacol Sci. 2012;33(5):273–8.

    Article  CAS  PubMed  Google Scholar 

  362. Wu P, Nielsen TE, Clausen MH. FDA-approved small-molecule kinase inhibitors. Trends Pharmacol Sci. 2015;36(7):422–39.

    Article  CAS  PubMed  Google Scholar 

  363. Gentile C, Martorana A, Lauria A, et al. Kinase inhibitors in multitargeted cancer therapy. Curr Med Chem. 2017;24(16):1671–86.

    Article  CAS  PubMed  Google Scholar 

  364. Scagliotti G, Govindan R. Targeting angiogenesis with multitargeted tyrosine kinase inhibitors in the treatment of non-small cell lung cancer. Oncologist. 2010;15(5):436–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  365. Wedge SR, Ogilvie DJ, Dukes M, et al. ZD6474 inhibits vascular endothelial growth factor signaling, angiogenesis, and tumor growth following oral administration. Cancer Res. 2002;62(16):4645–55.

    CAS  PubMed  Google Scholar 

  366. Mendel DB, Douglas Laird A, **n X, et al. In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: determination of a pharmacokinetic/pharmacodynamic relationship. Clin Cancer Res. 2003;9(1):327–37.

    CAS  PubMed  Google Scholar 

  367. Novello S, Scagliotti GV, Rosell R, et al. Phase II study of continuous daily sunitinib dosing in patients with previously treated advanced non-small cell lung cancer. Br J Cancer. 2009;101(9):1543–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  368. Hu-Lowe DD, Zou HY, Grazzini ML, et al. Nonclinical antiangiogenesis and antitumor activities of axitinib (AG-013736), an oral, potent, and selective inhibitor of vascular endothelial growth factor receptor tyrosine kinases 1, 2, 3. Clin Cancer Res. 2008;14:7272–83.

    Article  CAS  PubMed  Google Scholar 

  369. Schiller JH, Larson T, Ou SH, et al. Efficacy and safety of axitinib in patients with advanced non-small-cell lung cancer: Results from a phase II study. J Clin Oncol. 2009;27:3836–41.

    Article  PubMed  CAS  Google Scholar 

  370. Escudier B, Eisen T, Stadler WM, et al. Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med. 2007;356:125–34.

    Article  CAS  PubMed  Google Scholar 

  371. Gauler TC, Besse B, Gounant V, et al. Phase II open-label study to investigate efficacy and safety of PTK787/ZK 222584 (PTK/ZK) orally administered once daily or twice daily at 1,250 mg as second-line monotherapy in patients (pts) with stage IIIB/IV non-small cell lung cancer (NSCLC). J Clin Oncol. 2007; 25(18 suppl): Abstract 7541

    Google Scholar 

  372. Wedge SR, Kendrew J, Hennequin LF, et al. AZD2171: A highly potent, orally bioavailable, vascular endothelial growth factor receptor-2 tyrosine kinase inhibitor for the treatment of cancer. Cancer Res. 2005;65:4389–400.

    Article  CAS  PubMed  Google Scholar 

  373. Raghav KPS, Blumenschein GR. Motesanib and advanced NSCLC: experiences and expectations. Expert Opin Investig Drugs. 2011;20(6):859–69.

    Article  CAS  PubMed  Google Scholar 

  374. Coxon A, Ziegler B, Kaufman S, et al. Antitumor activity of motesanib alone and in combination with cisplatin or docetaxel in multiple human non-small-cell lung cancer xenograft models. Mol Cancer. 2012;11:p70.

    Article  CAS  Google Scholar 

  375. Kumar R, Knick VB, Rudolph SK, et al. Pharmacokinetic-pharmacodynamic correlation from mouse to human with pazopanib, a multikinase angiogenesis inhibitor with potent antitumor and antiangiogenic activity. Mol Cancer Therapeut. 2007;6(7):2012–21.

    Article  CAS  Google Scholar 

  376. Altorki N, Guarino M, Lee P, et al. Preoperative treatment with pazopanib (GW786034), a multikinase angiogenesis inhibitor in early-stage non-small cell lung cancer (NSCLC): A proof-of-concept phase II study. J Clin Oncol. 2008;26(15 suppl) Abstract 7557

    Google Scholar 

  377. Plummer R, Madi A, Jeffels M, et al. A Phase I study of pazopanib in combination with gemcitabine in patients with advanced solid tumors. Cancer Chemother Pharmacol. 2013;71(1):93–101.

    Article  CAS  PubMed  Google Scholar 

  378. Albert DH, Tapang P, Magoc TJ, et al. Preclinical activity of ABT-869, a multitargeted receptor tyrosine kinase inhibitor. Mol Cancer Therapeutics. 2006;5(4):995–1006.

    Article  CAS  Google Scholar 

  379. Asahina H, Tamura Y, Nokihara H, et al. An open-label, phase 1 study evaluating safety, tolerability, and pharmacokinetics of linifanib (ABT-869) in Japanese patients with solid tumors. Cancer Chemother Pharmacol. 2012;69(6):1477–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  380. Yu HA, Riely GJ. Second-generation epidermal growth factor receptor tyrosine kinase inhibitors in lung cancers. J Nat Compreh Cancer Network. 2013;11(2):161–9.

    Article  CAS  Google Scholar 

  381. Pietanza MC, Gadgeel SM, Dowlati A, et al. Phase II study of the multitargeted tyrosine kinase inhibitor XL647 in patients with non-small-cell lung cancer. J Thoracic Oncol. 2012;7(5):856–65.

    Article  CAS  Google Scholar 

  382. Gendreau SB, Ventura R, Keast P, et al. Inhibition of the T790M gatekeeper mutant of the epidermal growth factor receptor by EXEL-7647. Clin Cancer Res. 2007;13(12):3713–23.

    Article  CAS  PubMed  Google Scholar 

  383. Zhao Y, Zhang YN, Wang KT, et al. Lenvatinib for hepatocellular carcinoma: From preclinical mechanisms to anti-cancer therapy. Biochim Biophys Acta Rev Cancer. 2020;1874(1):188391.

    Article  CAS  PubMed  Google Scholar 

  384. Matsui J, Funahashi Y, Uenaka T, et al. Multi-kinase inhibitor E7080 suppresses lymph node and lung metastases of human mammary breast tumor MDA-MB-231 via inhibition of vascular endothelial growth factor-receptor (VEGF-R) 2 and VEGF-R3 kinase. Clin Cancer Res. 2008;14(17):5459–65.

    Article  CAS  PubMed  Google Scholar 

  385. Tohyama O, Matsui J, Kodama K, et al. Antitumor activity of lenvatinib (e7080): an angiogenesis inhibitor that targets multiple receptor tyrosine kinases in preclinical human thyroid cancer models. J Thyroid Res. 2014;2014:638747.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  386. Ichikawa K, Miyano SW, Adachi Y, et al. Abstract 1374: Lenvatinib, tri-specific targeted therapy to VEGFR/FGFR/RET, suppresses angiogenesis through the inhibition of both VEGFR and FGFR signaling pathways. Cancer Res. 2015;75:1374.

    Article  Google Scholar 

  387. Matsuki M, Hoshi T, Yamamoto Y, et al. Lenvatinib inhibits angiogenesis and tumor fibroblast growth factor signaling pathways in human hepatocellular carcinoma models. Cancer Med. 2018;7:2641–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  388. Kudo M, Finn RS, Qin S, et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial. Lancet. 2018;391:1163–73.

    Article  CAS  PubMed  Google Scholar 

  389. Ikeda K, Kudo K, Kawazoe S, et al. Phase 2 study of lenvatinib in patients with advanced hepatocellular carcinoma. J Gastroenterol. 2017;52:512–9.

    Article  CAS  PubMed  Google Scholar 

  390. Bass AKA, El-Zoghbi MS, Nageeb EM, et al. Comprehensive review for anticancer hybridized multitargeting HDAC inhibitors. Eur J Med Chem. 2021;209:112904.

    Article  CAS  PubMed  Google Scholar 

  391. Martínez R, Geronimo BD, Pastor M, et al. Multitarget anticancer agents based on histone deacetylase and protein kinase CK2 inhibitors. Molecules. 2020;25(7):1497.

    Article  PubMed Central  CAS  Google Scholar 

  392. Witt O, Deubzer HE, Milde T, et al. HDAC family: What are the cancer relevant targets? Cancer Lett. 2009;277:8–21.

    Article  CAS  PubMed  Google Scholar 

  393. Marks PA, Rifkind RA, Richon VM, et al. Histone deacetylases and cancer: Causes and therapies. Nat Rev Cancer. 2001;1:194–202.

    Article  CAS  PubMed  Google Scholar 

  394. Gräff J, Tsai L-H. The potential of HDAC inhibitors as cognitive enhancers. Annu Rev Pharmacol. 2013;53:311–30.

    Article  CAS  Google Scholar 

  395. Andrews KT, Haque A, Jones MK. HDAC inhibitors in parasitic diseases. Immunol Cell Biol. 2012;90:66–77.

    Article  CAS  PubMed  Google Scholar 

  396. Rotili D, Simonetti G, Savarino A, et al. Non-Cancer Uses of Histone Deacetylase Inhibitors: Effects on Infectious Diseases and β-Hemoglobinopathies+. Curr Top Med Chem. 2009;9:272–91.

    Article  CAS  PubMed  Google Scholar 

  397. Gluckman PD, Hanson MA, Buklijas T, et al. Epigenetic mechanisms that underpin metabolic and cardiovascular diseases. Nat Rev Endocrinol. 2009;5:401–8.

    Article  CAS  PubMed  Google Scholar 

  398. Gregoretti I, Lee Y-M, Goodson HV. Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J Mol Biol. 2004;338:17–31.

    Article  CAS  PubMed  Google Scholar 

  399. Haberland M, Montgomery RL, Olson EN. The many roles of histone deacetylases in development and physiology: Implications for disease and therapy. Nat Rev Genet. 2009;10:32–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  400. Lehrmann H, Pritchard LL, Harel-Bellan A. Histone acetyltransferases and deacetylases in the control of cell proliferation and differentiation. Adv Cancer Res. 2002;86:41–65.

    Article  CAS  PubMed  Google Scholar 

  401. Lane AA, Chabner BA. Histone Deacetylase Inhibitors in Cancer Therapy. J Clin Oncol. 2009;27:5459–68.

    Article  CAS  PubMed  Google Scholar 

  402. Minucci S, Pelicci PG. Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat. Rev. Cancer. 2006;6:38–51.

    Article  CAS  PubMed  Google Scholar 

  403. Pontiki E, Hadjipavlou-Litina D. Histone deacetylase inhibitors (HDACIs). Structure—Activity relationships: History and new QSAR perspectives. Med Res Rev. 2012;32:1–165.

    Article  CAS  PubMed  Google Scholar 

  404. Paris M, Porcelloni M, Binaschi M, et al. Histone deacetylase inhibitors: From bench to clinic. J. Med. Chem. 2008;51:1505–29.

    Article  CAS  PubMed  Google Scholar 

  405. Schobert R, Biersack B. Multimodal HDAC inhibitors with improved anticancer activity. Curr Cancer Drug Targets. 2018;18:39–56.

    Article  CAS  PubMed  Google Scholar 

  406. Seo SY. Multi-targeted hybrids based on HDAC inhibitors for anti-cancer drug discovery. Arch Pharm Res. 2012;35(2):197–200.

    Article  CAS  PubMed  Google Scholar 

  407. Ling Y, Liu J, Qian J, et al. Recent advances in multi-target drugs targeting protein kinases and histone deacetylases in cancer therapy. Curr Med Chem. 2020;27:1–24.

    Article  Google Scholar 

  408. Chu-Farseeva YY, Mustafa N, Poulsen A, et al. Design and synthesis of potent dual inhibitors of JAK2 and HDAC based on fusing the pharmacophores of XL019 and vorinostat. Eur J Med Chem. 2018;158:593–619.

    Article  CAS  PubMed  Google Scholar 

  409. Luan Y, Li J, Bernatchez JA, et al. Kinase and histone deacetylase hybrid inhibitors for cancer therapy. J Med Chem. 2018;62:3171–83.

    Article  PubMed  CAS  Google Scholar 

  410. Cai X, Zhai H-X, Wang J, et al. Discovery of 7-(4-(3-Ethynylphenylamino)-7-methoxyquinazolin-6-yloxy)-N-hydroxyheptanamide (CUDC-101) as a potent multi-acting HDAC, EGFR, and HER2 inhibitor for the treatment of cancer. J Med Chem. 2010;53:2000–9.

    Article  CAS  PubMed  Google Scholar 

  411. Mahboobi S, Dove S, Sellmer A, et al. Design of chimeric histone deacetylase- and tyrosine kinase-inhibitors: A series of imatinib hybrides as potent inhibitors of wild-type and mutant BCR-ABL, PDGF-Rβ, and histone deacetylases. J Med Chem. 2009;52:2265–79.

    Article  CAS  PubMed  Google Scholar 

  412. Khan DH, He S, Yu J, et al. Protein kinase CK2 regulates the dimerization of histone deacetylase 1 (HDAC1) and HDAC2 during mitosis. J Biol Chem. 2013;288:16518–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  413. Pluemsampant S, Safronova OS, Nakahama K-I, et al. Protein kinase CK2 is a key activator of histone deacetylase in hypoxia-associated tumors. Int J Cancer. 2008;122:333–41.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, Z., Yang, B. (2022). Polypharmacology in Clinical Applications—Anticancer Polypharmacology. In: Polypharmacology. Springer, Cham. https://doi.org/10.1007/978-3-031-04998-9_3

Download citation

Publish with us

Policies and ethics

Navigation