Databases for Rational Design and Discovery of Multitarget Drugs

  • Chapter
  • First Online:
Polypharmacology
  • 862 Accesses

Abstract

Rational drug design and discovery, particularly rational multitarget drug (MTD) design and discovery, heavily relies on computational approaches exploring the Internet data resources. Internet resources can be classified into two classes (Potemkin V, Potemkin A, Grishina M, Curr Top Med Chem 18:1955–1975, 2018). The first class of resources accumulates information about drugs, drug candidates, compounds, and bioassays, which is a starting point in drug discovery and design. The second class of Internet resources includes web portals performing online computations for drug discovery and design. Here in this chapter, we intend to classify drug discovery Internet resources into three categories: (a) spaces that contain theoretically infinite number of data or information in particular fields; (b) databases that collect curated sets of disease-, target-, or drug-related data and information and mostly have the power to predict drug candidates or druggability; and (c) online algorithms/web servers or programs/software that can be used for target and/or drug candidate predictions. This chapter will give brief introductions to these Internet resources in terms of their applicability to and strengths/weaknesses in drug discovery. It should be noted that many excellent databases that could be useful to polypharmacology-based drug design and discovery are unfortunately not included in this chapter due to the limited page space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Potemkin V, Potemkin A, Grishina M. Internet resources for drug discovery and design. Curr Top Med Chem. 2018;18(22):1955–75.

    Article  CAS  PubMed  Google Scholar 

  2. Reymond J-L, Awale M. Exploring chemical space for drug discovery using the chemical universe database. ACS Chem Neurosci. 2012;3(9):649–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kirkpatrick P, Ellis C. Chemical space. Nature. 2004;432(7019):823–65.

    Article  CAS  Google Scholar 

  4. Mirza A, Desai R, Reynisson J. Known drug space as a metric in exploring the boundaries of drug-like chemical space. Eur J Med Chem. 2009;44(12):5006–11.

    Article  CAS  PubMed  Google Scholar 

  5. Bade R, Chan HF, Reynisson J. Characteristics of known drug space. Natural products, their derivatives and synthetic drugs. Eur J Med Chem. 2010;45(12):5646–52.

    Article  CAS  PubMed  Google Scholar 

  6. Matuszek AM, Reynisson J. Defining known drug space using DFT. Mol Inform. 2016;35(2):46–53.

    Article  CAS  PubMed  Google Scholar 

  7. Ruddigkeit L, van Deursen R, Blum LC, et al. Enumeration of 166 billion organic small molecules in the chemical universe database GDB-17. J Chem Inf Model. 2012;52(11):2864–75.

    Article  CAS  PubMed  Google Scholar 

  8. Éliás O, Kovács Z, Wágner G, et al. Charting the chemical space around the (iso)indoline scaffold, a comprehensive approach towards multitarget directed ligands. Bioorg Med Chem Lett. 2016;26(17):4211–115.

    Article  PubMed  CAS  Google Scholar 

  9. Sidorov P, Gaspar H, Marcou G, et al. Mappability of drug-like space: towards a polypharmacologically competent map of drug-relevant compounds. J Comput Aided Mol Des. 2015;29(12):1087–108.

    Article  CAS  PubMed  Google Scholar 

  10. Hopkins AL. Pharmacological space. In: Wermuth C, Aldous D, Raboisson P, Rognan D, editors. The practice of medicinal chemistry. Academic Press; 2015. p. 395–408.

    Google Scholar 

  11. Peter KP. Exploring pharmacological space. Nat Rev Drug Discov. 2006;5:719.

    Article  CAS  Google Scholar 

  12. Paolini GV, Shapland RH, van Hoorn WP, et al. Global map** of pharmacological space. Nat Biotechnol. 2006;24(7):805–15.

    Article  CAS  PubMed  Google Scholar 

  13. Nisius B, Bajorath J. Map** of pharmacological space. Expert Opin Drug Discovery. 2011;6(1):1–7.

    Article  CAS  Google Scholar 

  14. Petit-Zeman S. Biological Space—a starting point in in-silico drug design and in experimentally exploring biological systems. Oxford Protein Informatics Group. https://www.blopig.com/blog/2017/07/biological-space-a-starting-point-in-silico-drug-design-and-in-experimentally-exploring-biological-systems/

  15. Koch MA, Schuffenhauer A, Scheck M, et al. Charting biologically relevant chemical space: a structural classification of natural products (SCONP). Proc Natl Acad Sci U S A. 2005;102:17272–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Siragusa L, Cross S, Baroni M, et al. BioGPS: navigating biological space to predict polypharmacology, off-targeting, and selectivity. Proteins. 2015;83(3):517–32.

    Article  CAS  PubMed  Google Scholar 

  17. Vukmirovic OG, Tilghman SM. Exploring genome space. Nature. 2000;405:820–2.

    Article  CAS  PubMed  Google Scholar 

  18. Adanve B. A brief overview of the genomic space. https://blog.geneticintelligence.com/overview-of-the-genomic-space/#:~:text=The%20genomic%20space%20comprises%20four,to%20build%20products%20and%20services

  19. Bredel M, Jacoby E. Chemogenomics: an emerging strategy for rapid target and drug discovery. Nat Rev Genet. 2004;5(4):262–75.

    Article  CAS  PubMed  Google Scholar 

  20. Namchuk M. Finding the molecules to fuel chemogenomics. Targets. 2002;1(4):125–9.

    Article  CAS  Google Scholar 

  21. Caron PR, Mullican MD, Mashal RD, et al. Chemogenomic approaches to drug discovery. Curr Opin Chem Biol. 2001;5(4):464–70.

    Article  CAS  PubMed  Google Scholar 

  22. Ambroise Y. Chemogenomic techniques. Archive.Today. Archived from the original on 23 August 2013. Retrieved 28 Nov 2021.

    Google Scholar 

  23. Wuster A, Madan BM. Chemogenomics and biotechnology. Trends Biotechnol. 2008;26(5):252–8.

    Article  CAS  PubMed  Google Scholar 

  24. Jones LH. Expanding chemogenomic space using chemoproteomics. Bioorg Med Chem. 2019;27(15):3451–3.

    Article  CAS  PubMed  Google Scholar 

  25. Mohd Fauzi F, Koutsoukas A, Lowe R, et al. Chemogenomics approaches to rationalizing the mode-of-action of traditional Chinese and Ayurvedic medicines. J Chem Inf Model. 2013;53(3):661–73.

    Article  CAS  PubMed  Google Scholar 

  26. Engelberg A. Iconix Pharmaceuticals, Inc.—removing barriers to efficient drug discovery through chemogenomics. Pharmacogenomics. 2004;5(6):741–4.

    Article  PubMed  Google Scholar 

  27. Bhattacharjee B, Simon RM, Gangadharaiah C, et al. Chemogenomics profiling of drug targets of peptidoglycan biosynthesis pathway in Leptospira interrogans by virtual screening approaches. J Microbiol Biotechnol. 2013;23(6):779–84.

    Article  CAS  PubMed  Google Scholar 

  28. Cheung-Ong K, Song KT, Ma Z, et al. Comparative chemogenomics to examine the mechanism of action of DNA-targeted platinum-acridine anticancer agents. ACS Chem Biol. 2012;7(11):1892–901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fechner N, Papadatos G, Evans D, et al. ChEMBLSpace—a graphical explorer of the chemogenomic space covered by the ChEMBL database. Bioinformatics. 2013;29(4):523–4.

    Article  CAS  PubMed  Google Scholar 

  30. Bender A, Young DW, Jenkins JL, et al. Chemogenomic data analysis: prediction of small-molecule targets and the advent of biological fingerprint. Comb Chem High Throughput Screen. 2007;10(8):719–31.

    Article  CAS  PubMed  Google Scholar 

  31. Sun J, Jeliazkova N, Chupakin V, et al. ExCAPE-DB: an integrated large scale dataset facilitating Big Data analysis in chemogenomics. J Cheminform. 2017;9:17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Awale M, Reymond JL. The polypharmacology browser: a web-based multi-fingerprint target prediction tool using ChEMBL bioactivity data. J Cheminform. 2017;9:11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Awale M, Reymond JL. Polypharmacology Browser PPB2: target prediction combining nearest neighbors with machine learning. J Chem Inf Model. 2019;59(1):10–7.

    Article  CAS  PubMed  Google Scholar 

  34. Awale M, Reymond JL. Web-based tools for polypharmacology prediction. Methods Mol Biol. 2019;1888:255–72.

    Article  CAS  PubMed  Google Scholar 

  35. Poirier M, Awale M, Roelli MA, et al. Identifying lysophosphatidic acid acyltransferase beta (LPAAT-beta) as the target of a nanomolar angiogenesis inhibitor from a phenotypic screen using the polypharmacology browser PPB2. ChemMedChem. 2019;14(2):224–36.

    Article  CAS  PubMed  Google Scholar 

  36. Reddy AS, Tan Z, Zhang S. Curation and analysis of multitargeting agents for polypharmacological modeling. J Chem Inf Model. 2014;54(9):2536–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Minie M, Chopra G, Sethi G, et al. CANDO and the infinite drug discovery frontier. Drug Discov Today. 2014;19:1353–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chopra G, Samudrala R. Exploring polypharmacology in drug discovery and repurposing using the CANDO platform. Curr Pharm Des. 2016;22(21):3109–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mangione W, Falls Z, Chopra G, et al. cando.py: open source software for predictive bioanalytics of large scale drug-protein-disease data. J Chem Inf Model. 2020;60:4131–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Falls Z, Mangione W, Schuler J, et al. Exploration of interaction scoring criteria in the CANDO platform. BMC Res Notes. 2019;12:318.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Mangione W, Samudrala R. Identifying protein features responsible for improved drug repurposing accuracies using the CANDO platform: implications for drug design. Molecules. 2019;24:167.

    Article  PubMed Central  CAS  Google Scholar 

  42. Li H, Pei F, Taylor DL, et al. QuartataWeb: integrated chemical-protein-pathway map** for polypharmacology and chemogenomics. Bioinformatics. 2020;36(12):3935–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sara JC, Gosline S, Spencer J, et al. SAMNet: a network-based approach to integrate multi-dimensional high throughput datasets. Integr Biol. 2012;11:1415–27.

    Google Scholar 

  44. Ursu O, Gosline SJC, Beeharry N, et al. Network modeling of kinase inhibitor polypharmacology reveals pathways targeted in chemical screens. PLoS One. 2017;12(10):e0185650.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Chen C, He Y, Wu J, Zhou J. Creation of a free, internet-accessible database: the multiple target ligand database. J Cheminform. 2015;7:14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Chen C, Wu M, Cen S, et al. MTLD, a database of multiple target ligands, the updated version. Molecules. 2017;22(9):1375.

    Article  PubMed Central  CAS  Google Scholar 

  47. Du Y, Shi T. Ligand cluster-based protein network and ePlatton, a multi-target ligand finder. J Cheminform. 2016;8:23.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Gallo K, Goede A, Eckert A, et al. PROMISCUOUS 2.0: a resource for drug-repositioning. Nucleic Acids Res. 2021;49(D1):D1373–80.

    Article  CAS  PubMed  Google Scholar 

  49. Jaundoo R, Craddock TJA. DRUGPATH: the drug gene pathway meta-database. Int J Mol Sci. 2020;21(9):3171.

    Article  CAS  PubMed Central  Google Scholar 

  50. Wishart DS, Knox C, Guo AC, et al. DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res. 2006;34:D668–72.

    Article  CAS  PubMed  Google Scholar 

  51. Wishart DS, Feunang YD, Guo AC, et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 2018;46:D1074–82.

    Article  CAS  PubMed  Google Scholar 

  52. Law V, Knox C, Djoumbou Y, et al. DrugBank 5.0: shedding new light on drug metabolism. Nucleic Acids Res. 2014;42:D1091–7.

    Article  CAS  PubMed  Google Scholar 

  53. Wishart DS, Guo AC, Eisner R, et al. HMDB: a knowledgebase for the human metabolome. Nucleic Acids Res. 2009;37:D603–10.

    Article  CAS  PubMed  Google Scholar 

  54. Lim E, Pon A, Djoumbou Y, et al. T3DB: a comprehensively annotated database of common toxins and their targets. Nucleic Acids Res. 2010;38:D781–6.

    Article  CAS  PubMed  Google Scholar 

  55. Jewison T, Su Y, Disfany FM, et al. Small molecule pathway database. Nucleic Acids Res. 2014;42:D478–84.

    Article  CAS  PubMed  Google Scholar 

  56. Barneh F, Jafari M, Mirzaie M. Updates on drug-target network; facilitating polypharmacology and data integration by growth of DrugBank database. Brief Bioinform. 2016;17(6):1070–80.

    CAS  PubMed  Google Scholar 

  57. Takigawa I, Tsuda K, Mamitsuka H. An in-silico model for interpreting polypharmacology in drug-target networks. Methods Mol Biol. 2013;993:67–80.

    Article  CAS  PubMed  Google Scholar 

  58. Cotto KC, Wagner AH, Feng Y-Y, et al. DGIdb 3.0: a redesign and expansion of the drug–gene interaction database. Nucleic Acids Res. 2018;46:D1068–73.

    Article  CAS  PubMed  Google Scholar 

  59. Griffith M, Spies NC, Krysiak K. CIViC is a community knowledgebase for expert crowdsourcing the clinical interpretation of variants in cancer. Nat Genet. 2017;49(2):170–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chakravarty D, Gao J, Phillips SM, et al. OncoKB: a precision oncology knowledge base. JCO Precis Oncol. 2017;2017:PO.17.00011.

    Google Scholar 

  61. Patterson SE, Liu R, Statz CM. The clinical trial landscape in oncology and connectivity of somatic mutational profiles to targeted therapies. Hum Genomics. 2016;10:4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Finan C, Gaulton A, Kruger FA. The druggable genome and support for target identification and validation in drug development. Sci Transl Med. 2017;9(383):eaag1166.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Armstrong JF, Faccenda E, Harding SD, et al. The IUPHAR/BPS Guide to PHARMACOLOGY in 2020: extending immunopharmacology content and introducing the IUPHAR/MMV Guide to MALARIA PHARMACOLOGY. Nucleic Acids Res. 2020;48(D1):D1006–21.

    CAS  PubMed  Google Scholar 

  64. Alexander SP, Benson HE, Davenport A, et al. GuideToPharmacology.org—an update. Brit J Pharmacol. 2012;167(4):697–8.

    Article  CAS  Google Scholar 

  65. Chen X, Ji ZL, Chen YZ. TTD: therapeutic target database. Nucleic Acids Res. 2002;30:412–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zhou Y, Zhang YT, Lian XC, et al. Therapeutic target database update 2022: facilitating drug discovery with enriched comparative data of targeted agents. Nucleic Acids Res. 2022;50(D1):1398–407.

    Article  CAS  Google Scholar 

  67. Li YH, Yu CY, Li XX, et al. Therapeutic target database update 2018: enriched resource for facilitating bench-to-clinic research of targeted therapeutics. Nucleic Acids Res. 2018;46(D1):D1121–7.

    Article  CAS  PubMed  Google Scholar 

  68. Wang Y, Zhang S, Li F, et al. Therapeutic target database 2020: enriched resource for facilitating research and early development of targeted therapeutics. Nucleic Acids Res. 2019;48(D1):D1031–41.

    PubMed Central  Google Scholar 

  69. Zhu F, Shi Z, Qin C, et al. Therapeutic target database update 2012: a resource for facilitating target-oriented drug discovery. Nucleic Acids Res. 2012;40:D1128–36.

    Article  CAS  PubMed  Google Scholar 

  70. Tanoli Z, Alam Z, Vähä-Koskela M, et al. Drug Target Commons 2.0: a community platform for systematic analysis of drug-target interaction profiles. Database (Oxford). 2018;2018:1–13.

    Article  CAS  Google Scholar 

  71. Ravikumar B, Aittokallio T. Improving the efficacy-safety balance of polypharmacology in multi-target drug discovery. Expert Opin Drug Discovery. 2018;13:179–92.

    Article  CAS  Google Scholar 

  72. Huang L-H, He Q-S, Liu K, et al. ADReCS-Target: target profiles for aiding drug safety research and application. Nucleic Acids Res. 2018;46:D911–7.

    Article  CAS  PubMed  Google Scholar 

  73. Liu T, Lin Y, Wen X, et al. BindingDB: a web-accessible database of experimentally determined protein-ligand binding affinities. Nucleic Acids Res. 2007;35:D198–201.

    Article  CAS  PubMed  Google Scholar 

  74. Günther S, Kuhn M, Dunkel M, et al. SuperTarget and Matador: resources for exploring drug-target relationships. Nucleic Acids Res. 2008;36:D919–22.

    Article  PubMed  CAS  Google Scholar 

  75. Piñero J, Bravo À, Queralt-Rosinach N, et al. DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res. 2017;45(D1):D833–9.

    Article  PubMed  CAS  Google Scholar 

  76. Koscielny G, An P, Carvalho-Silva D, et al. Open targets: a platform for therapeutic target identification and validation. Nucleic Acids Res. 2017;45:D985–94.

    Article  CAS  PubMed  Google Scholar 

  77. Bauer U, Breeze AL. “Ligandability” of drug targets: assessment of chemical tractability via experimental and in silico approaches. Lead Generation. 2016;2016:35–62.

    Article  Google Scholar 

  78. Nguyen D-T, Mathias S, Bologa C, et al. Pharos: collating protein information to shed light on the druggable genome. Nucleic Acids Res. 2017;45:D995–1002.

    Article  CAS  PubMed  Google Scholar 

  79. Davis AP, Grondin CJ, Johnson RJ, et al. The Comparative Toxicogenomics Database: update 2019. Nucleic Acids Res. 2019;47:D948–54.

    Article  CAS  PubMed  Google Scholar 

  80. wwPDB, Consortium. Protein Data Bank: the single global archive for 3D macromolecular structure data. Nucleic Acids Res. 2019;47(D1):520–8.

    Article  CAS  Google Scholar 

  81. Pinzi L, Rastelli G. Identification of target associations for polypharmacology from analysis of crystallographic ligands of the protein data bank. J Chem Inf Model. 2020;60(1):372–90.

    Article  CAS  PubMed  Google Scholar 

  82. Herce HD, Deng W, Helma J, et al. Visualization and targeted disruption of protein interactions in living cells. Nat Commun. 2013;4:2660.

    Article  PubMed  CAS  Google Scholar 

  83. Lehne B, Schlitt T. Protein-protein interaction databases: kee** up with growing interactomes. Hum Genomics. 2009;3(3):291–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Xenarios I, Rice DW, Salwinski L, et al. DIP: the database of interacting proteins. Nucleic Acids Res. 2000;28(1):289–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. McDowall MD, Scott MS, Barton GJ. PIPs: human protein-protein interaction prediction database. Nucleic Acids Res. 2009;37:D651–6.

    Article  CAS  PubMed  Google Scholar 

  86. Smith RD, Clark JJ, Ahmed A, et al. Updates to binding MOAD (mother of all databases): polypharmacology tools and their utility in drug repurposing. J Mol Biol. 2019;431(13):2423–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wang C, Hu G, Wang K, et al. PDID: database of molecular-level putative protein-drug interactions in the structural human proteome. Bioinformatics. 2016;32(4):579–86.

    Article  CAS  PubMed  Google Scholar 

  88. Wang Z, Li J, Dang R, et al. PhIN: a protein pharmacology interaction network database. CPT Pharmacometrics Syst Pharmacol. 2015;4(3):e00025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Brylinski M. eMatchSite: sequence order-independent structure alignments of ligand binding pockets in protein models. PLoS Comput Biol. 2014;10(9):e1003829.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Yang JH, Shao P, Zhou H, et al. deepBase: a database for deeply annotating and mining deep sequencing data. Nucleic Acids Res. 2010;38:D123–30.

    Article  CAS  PubMed  Google Scholar 

  91. Griffiths-Jones S, Saini HK, van Dongen S, et al. miRBase: tools for microRNA genomics. Nucleic Acids Res. 2008;36:D154–8.

    Article  CAS  PubMed  Google Scholar 

  92. Betel D, Wilson M, Gabow A, et al. The microRNA.org resource: targets and expression. Nucleic Acids Res. 2007;36:D149–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Perdikopanis N, Georgakilas GK, Grigoriadis D, et al. DIANA-miRGen v4: indexing promoters and regulators for more than 1500 microRNAs. Nucleic Acids Res. 2021;49:D151–9.

    Article  CAS  PubMed  Google Scholar 

  94. Hsu PW, Huang HD, Hsu SD, et al. miRNAMap: genomic maps of microRNA genes and their target genes in mammalian genomes. Nucleic Acids Res. 2006;34:D135–9.

    Article  CAS  PubMed  Google Scholar 

  95. Agarwal V, Bell GW, Nam JW, et al. Predicting effective microRNA target sites in mammalian mRNAs. elife. 2015;4:e05005.

    Article  PubMed Central  Google Scholar 

  96. Abid Q, Nishant T, Isha M, et al. VIRmiRNA: a comprehensive resource for experimentally validated viral miRNAs and their targets. Database: J Biol Database Curation. 2014;2014:bau103.

    Google Scholar 

  97. Yang J-H, Li J-H, Shao P, et al. StarBase: a database for exploring microRNA-mRNA interaction maps from Argonaute CLIP-Seq and Degradome-Seq data. Nucleic Acids Res. 2010;39:D202–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Li JH, Liu S, Zhou H, et al. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 2014;42(1):D92–7.

    Article  CAS  PubMed  Google Scholar 

  99. Liu S, Li JH, Wu J, et al. StarScan: a web server for scanning small RNA targets from degradome sequencing data. Nucleic Acids Res. 2015;43(W1):W480–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Chiu HS, Llobet-Navas D, Yang X, et al. Cupid: simultaneous reconstruction of microRNA-target and ceRNA networks. Genome Res. 2015;25(2):257–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Sethupathy P, Corda B, Hatzigeorgiou AG. TarBase: a comprehensive database of experimentally supported animal microRNA targets. RNA. 2006;12(2):192–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Maragkakis M, Alexiou P, Papadopoulos GL, et al. Accurate microRNA target prediction correlates with protein repression levels. BMC Bioinform. 2009;10:295.

    Article  CAS  Google Scholar 

  103. **ao F, Zuo Z, Cai G, et al. miRecords: an integrated resource for microRNA-target interactions. Nucleic Acids Res. 2009;37:D105–10.

    Article  CAS  PubMed  Google Scholar 

  104. Krek A, Grün D, Poy MN, et al. Combinatorial microRNA target predictions. Nat Genet. 2005;37(5):495–500.

    Article  CAS  PubMed  Google Scholar 

  105. Kertesz M, Iovino N, Unnerstall U, et al. The role of site accessibility in microRNA target recognition. Nat Genet. 2007;39(10):1278–84.

    Article  CAS  PubMed  Google Scholar 

  106. Elefant N, Berger A, Shein H, et al. RepTar: a database of predicted cellular targets of host and viral miRNAs. Nucleic Acids Res. 2011;39:D188–94.

    Article  CAS  PubMed  Google Scholar 

  107. Miranda KC, Huynh T, Tay Y, et al. A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell. 2006;126(6):1203–17.

    Article  CAS  PubMed  Google Scholar 

  108. Hsu SD, Lin FM, Wu WY, et al. miRTarBase: a database curates experimentally validated microRNA-target interactions. Nucleic Acids Res. 2011;39:D163–9.

    Article  CAS  PubMed  Google Scholar 

  109. Dweep H, Sticht C, Pandey P, et al. miRWalk-database: prediction of possible miRNA binding sites by “walking” the genes of three genomes. JBI. 2011;44(5):839–47.

    CAS  Google Scholar 

  110. Bandyopadhyay S, Ghosh D, Mitra R, et al. MBSTAR: multiple instance learning for predicting specific functional binding sites in microRNA targets. Sci Rep. 2015;5:8004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Zheng LL, Li JH, Wu J, et al. deepBase v2.0: identification, expression, evolution and function of small RNAs, LncRNAs and circular RNAs from deep-sequencing data. Nucleic Acids Res. 2016;44:D196–202.

    Article  CAS  PubMed  Google Scholar 

  112. Volders PJ, Helsens K, Wang X, et al. LNCipedia: a database for annotated human lncRNA transcript sequences and structures. Nucleic Acids Res. 2012;41:D246–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Volders PJ, Verheggen K, Menschaert G, et al. An update on LNCipedia: a database for annotated human lncRNA sequences. Nucleic Acids Res. 2015;43:D174–80.

    Article  CAS  PubMed  Google Scholar 

  114. Amaral PP, Clark MB, Gascoigne DK, et al. LncRNAdb: a reference database for long noncoding RNAs. Nucleic Acids Res. 2010;39:D146–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Ma L, Li A, Zou D, et al. LncRNAWiki: harnessing community knowledge in collaborative curation of human long non-coding RNAs. Nucleic Acids Res. 2015;43:D187–92.

    Article  CAS  PubMed  Google Scholar 

  116. Ma L, Cao J, Liu L, et al. LncBook: a curated knowledgebase of human long non-coding RNAs. Nucleic Acids Res. 2019;47:D128–34.

    Article  CAS  PubMed  Google Scholar 

  117. Josset L, Tchitchek N, Gralinski LE, et al. Annotation of long non-coding RNAs expressed in collaborative cross founder mice in response to respiratory virus infection reveals a new class of interferon-stimulated transcripts. RNA Biol. 2014;11(7):875–90.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Bu D, Yu K, Sun S, et al. NONCODE v3.0: integrative annotation of long noncoding RNAs. Nucleic Acids Res. 2011;40:D210–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Dinger ME, Pang KC, Mercer TR, et al. NRED: a database of long noncoding RNA expression. Nucleic Acids Res. 2009;37:D122–6.

    Article  CAS  PubMed  Google Scholar 

  120. Weirick T, David J, Stefanie D, et al. C-It-Loci: a knowledge database for tissue-enriched loci. Bioinformatics. 2015;31(21):3537–43.

    Article  CAS  PubMed  Google Scholar 

  121. Iyer MK, Niknafs YS, Malik R, et al. The landscape of long noncoding RNAs in the human transcriptome. Nat Genet. 2015;47(3):199–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Chen J, Shishkin AA, Zhu X, et al. Evolutionary analysis across mammals reveals distinct classes of long non-coding RNAs. Genome Biol. 2016;17:19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Carlevaro-Fita J, Lanzós A, Feuerbach L, et al. Cancer LncRNA census reveals evidence for deep functional conservation of long noncoding RNAs in tumorigenesis. Commun Biol. 2020;3:56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. You B-H, Yoon S-H, Nam JW. High-confidence coding and noncoding transcriptome maps. Genome Res. 2017;27(6):1050–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Memczak S, Jens M, Elefsinioti A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 2013;495(7441):333–8.

    Article  CAS  PubMed  Google Scholar 

  126. Liu Y-C, Li J-R, Sun C-H, et al. CircNet: a database of circular RNAs derived from transcriptome sequencing data. Nucleic Acids Res. 2016;44(D1):D209–15.

    Article  CAS  PubMed  Google Scholar 

  127. Ghosal S, Das S, Sen R, et al. Circ2Traits: a comprehensive database for circular RNA potentially associated with disease and traits. Front Genet. 2013;4:283.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Chen X, Han P, Zhou T, et al. circRNADb: a comprehensive database for human circular RNAs with protein-coding annotations. Sci Rep. 2016;6:34985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Dong R, Ma X-K, Li G-W, et al. CIRCpedia v2: an updated database for comprehensive circular RNA annotation and expression comparison. Genomics Proteomics Bioinformatics. 2018;16(4):226–33.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Espe S. Malacards: the human disease database. J Med Libr Assoc. 2018;106(1):140–1.

    Article  PubMed Central  Google Scholar 

  131. Rappaport N, Twik M, Plaschkes I, et al. MalaCards: an amalgamated human disease compendium with diverse clinical and genetic annotation and structured search. Nucleic Acids Res. 2017;45(D1):D877–87.

    Article  CAS  PubMed  Google Scholar 

  132. Piñero J, Queralt-Rosinach N, Bravo À, et al. DisGeNET: a discovery platform for the dynamical exploration of human diseases and their genes. Database (Oxford). 2015;2015:bav028.

    Article  CAS  Google Scholar 

  133. Piñero J, Ramírez-Anguita JM, Saüch-Pitarch J. The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Res. 2020;48(D1):D845–55.

    PubMed  Google Scholar 

  134. Yang J, Wu S-J, Yang S-Y. DNetDB: the human disease network database based on dysfunctional regulation mechanism. BMC Syst Biol. 2016;10(1):36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Ganesan K, Kulandaisamy A, Binny Priya S, et al. HuVarBase: a human variant database with comprehensive information at gene and protein levels. PLoS One. 2019;14(1):e0210475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Shen J, Song K, Slater AJ, et al. STOPGAP: a database for systematic target opportunity assessment by genetic association predictions. Bioinformatics. 2017;33(17):2784–6.

    Article  CAS  PubMed  Google Scholar 

  137. Gosalia N, Economides AN, Dewey FE, et al. MAPPIN: a method for annotating, predicting pathogenicity and mode of inheritance for nonsynonymous variants. Nucleic Acids Res. 2017;45(18):10393–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. The Gene Ontology Consortium. The Gene Ontology project in 2008. Nucleic Acids Res. 2008;36:D440–4.

    Article  CAS  Google Scholar 

  139. Kanehisa M. The KEGG database. Novartis Found Symp. 2002;247:91–101.

    Article  CAS  PubMed  Google Scholar 

  140. Kanehisa M, Goto S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000;28(1):27–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Wang Y, **ao J, Suzek TO, et al. PubChem’s BioAssay database. Nucleic Acids Res. 2012;40:D400–12.

    Article  CAS  PubMed  Google Scholar 

  142. Wang Y, Bryant SH, Cheng T, et al. PubChem BioAssay: 2017 update. Nucleic Acids Res. 2017;45(D1):D955–63.

    Article  CAS  PubMed  Google Scholar 

  143. PubChem Source Information. The PubChem Project. USA: National Center for Biotechnology Information.

    Google Scholar 

  144. Chen B, Wild D, Guha R. PubChem as a source of polypharmacology. J Chem Inf Model. 2009;49(9):2044–55.

    Article  CAS  PubMed  Google Scholar 

  145. Hu Y, Gupta-Ostermann D, Bajorath J. Exploring compound promiscuity patterns and multi-target activity spaces. Comput Struct Biotechnol J. 2014;9:e201401003.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Cheng T, Pan Y, Hao M, et al. PubChem applications in drug discovery: a bibliometric analysis. Drug Discov Today. 2014;19(11):1751–6.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Mendez D, Gaulton A, Bento AP, et al. ChEMBL: towards direct deposition of bioassay data. Nucleic Acids Res. 2019;47:D930–40.

    Article  CAS  PubMed  Google Scholar 

  148. Taboureau O, Nielsen SK, Audouze K, et al. ChemProt: a disease chemical biology database. Nucleic Acids Res. 2011;39:D367–72.

    Article  CAS  PubMed  Google Scholar 

  149. Kringelum J, Kjaerulff SK, Brunak S, et al. ChemProt-3.0: a global chemical biology diseases map**. Database (Oxford). 2016;2016:bav123.

    Article  CAS  Google Scholar 

  150. Gong J, Cai C, Liu X, et al. ChemMapper: a versatile web server for exploring pharmacology and chemical structure association based on molecular 3D similarity method. Bioinformatics. 2013;29(14):1827–9.

    Article  CAS  PubMed  Google Scholar 

  151. Chaput L, Guillaume V, Singh N, et al. FastTargetPred: a program enabling the fast prediction of putative protein targets for input chemical databases. Bioinformatics. 2020;36(14):4225–6.

    Article  CAS  PubMed  Google Scholar 

  152. Fenollosa C, Otón M, Andrio P, et al. SEABED: small molEcule activity scanner weB servicE baseD. Bioinformatics. 2015;31(5):773–5.

    Article  CAS  PubMed  Google Scholar 

  153. Yuan Y, Pei J, Lai L. LigBuilder V3: a multi-target de novo drug design approach. Front Chem. 2020;8:142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Ravikumar B, Alam Z, Peddinti G, et al. C-SPADE: a web-tool for interactive analysis and visualization of drug screening experiments through compound-specific bioactivity dendrograms. Nucleic Acids Res. 2017;45(W1):W495–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Issa NT, Kruger J, Wathieu H, et al. DrugGenEx-Net: a novel computational platform for systems pharmacology and gene expression-based drug repurposing. BMC Bioinform. 2016;17(1):202.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, Z., Yang, B. (2022). Databases for Rational Design and Discovery of Multitarget Drugs. In: Polypharmacology. Springer, Cham. https://doi.org/10.1007/978-3-031-04998-9_19

Download citation

Publish with us

Policies and ethics

Navigation