Polypharmacology and Polypharmacokinetics

  • Chapter
  • First Online:
Polypharmacology
  • 819 Accesses

Abstract

Polypharmacokinetics is a new concept in pharmacology. Polypharmacokinetics to polypharmacology is like pharmacokinetics to pharmacology. While pharmacokinetics normally deals with only a single compound with its liberation, absorption, distribution, metabolism, and excretion (LADME), polypharmacokinetics studies multiple compounds as a single therapeutic regimen, a single formulation, or a single pill/tablet. Clearly, polypharmacokinetics is enormously complex and intricate, yet being critical to ensure synergetic efficacy and improved safety with mitigated toxic effects of the clinical applications of polypharmacology in disease therapy. The present chapter summarizes the most updated studies on polypharmacokinetics with an emphasis on the metabolic approach for elucidating LADME of drug therapy and the influence of drug–drug interactions on polypharmacological therapy of human disease. Specifically, this chapter will start with an introduction to the general concept of pharmacokinetics and polypharmacokinetics and then turn to detailed descriptions of the metabolomics approach for studying polypharmacokinetics. Finally, the impact of drug–drug interaction on polypharmacokinetics will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Benet LZ, Zia-Amirhosseini P. Basic principles of pharmacokinetics. Toxicol Pathol. 1995;23(2):115–23.

    Article  CAS  PubMed  Google Scholar 

  2. Johnson JA. Influence of race or ethnicity on pharmacokinetics of drugs. J Pharm Sci. 1997;86(12):1328–33.

    Article  CAS  PubMed  Google Scholar 

  3. Loisios-Konstantinidis I, Paraiso RLM, Fotaki N, et al. Application of the relationship between pharmacokinetics and pharmacodynamics in drug development and therapeutic equivalence: a PEARRL review. J Pharm Pharmacol. 2019;71(4):699–723.

    Article  CAS  PubMed  Google Scholar 

  4. Chen B, Dong JQ, Pan WJ, et al. Pharmacokinetics/pharmacodynamics model-supported early drug development. Curr Pharm Biotechnol. 2012;13(7):1360–75.

    Article  CAS  PubMed  Google Scholar 

  5. Chaikin P, Rhodes GR, Bruno R, et al. Pharmacokinetics/pharmacodynamics in drug development: an industrial perspective. J Clin Pharmacol. 2000;40(12 Pt 2):1428–38.

    CAS  PubMed  Google Scholar 

  6. Knights K, Bryant B. Pharmacology for health professionals. Amsterdam: Elsevier; 2002. ISBN 0-7295-3664-5

    Google Scholar 

  7. Koch HP, Ritschel WA. Liberation. Synopsis der Biopharmazie und Pharmakokinetik (in German). Landsberg, München: Ecomed. 1986:99–131. ISBN 3-609-64970-4

    Google Scholar 

  8. Ruiz-Garcia A, Bermejo M, Moss A, et al. Pharmacokinetics in drug discovery. J Pharm Sci. 2008;97(2):654–90.

    Article  CAS  PubMed  Google Scholar 

  9. Gleiter CH, Gundert-Remy U. Gender differences in pharmacokinetics. Eur J Drug Metab Pharmacokinet. 1996;21(2):123–8.

    Article  CAS  PubMed  Google Scholar 

  10. Schwartz JB. The influence of sex on pharmacokinetics. Clin Pharmacokinet. 2003;42(2):107–21.

    Article  CAS  PubMed  Google Scholar 

  11. Tasnif Y, Morado J, Hebert MF. Pregnancy-related pharmacokinetic changes. Clin Pharmacol Ther. 2016;100(1):53–62.

    Article  CAS  PubMed  Google Scholar 

  12. Swami R, Shahiwala A. Impact of physiochemical properties on pharmacokinetics of protein therapeutics. Eur J Drug Metab Pharmacokinet. 2013;38(4):231–9.

    Article  CAS  PubMed  Google Scholar 

  13. Avram MJ. Pharmacokinetic studies in pregnancy. Semin Perinatol. 2020;44(3):151227.

    Article  PubMed  PubMed Central  Google Scholar 

  14. van Baak MA. Influence of exercise on the pharmacokinetics of drugs. Clin Pharmacokinet. 1990;19(1):32–43.

    Article  PubMed  Google Scholar 

  15. Alcorn J, McNamara PJ. Pharmacokinetics in the newborn. Adv Drug Deliv Rev. 2003;55(5):667–86.

    Article  CAS  PubMed  Google Scholar 

  16. Shi S, Klotz U. Age-related changes in pharmacokinetics. Curr Drug Metab. 2011;12(7):601–10.

    Article  CAS  PubMed  Google Scholar 

  17. Mather GG, Levy RH. Pharmacokinetics of polypharmacy: prediction of drug interactions. Epilepsy Res Suppl. 1996;11:113–21.

    CAS  PubMed  Google Scholar 

  18. Honig PK, Cantilena LR. Polypharmacy. Pharmacokinetic perspectives Clin Pharmacokinet. 1994;26(2):85–90.

    Article  CAS  PubMed  Google Scholar 

  19. Löscher W, Wauquier A. Use of animal models in develo** guiding principles for polypharmacy in epilepsy. Epilepsy Res Suppl. 1996;11:61–5.

    PubMed  Google Scholar 

  20. Lan K, **e G, Jia W. Towards polypharmacokinetics: pharmacokinetics of multicomponent drugs and herbal medicines using a metabolomics approach. Evid Based Complement Alternat Med. 2013;2013:819147.

    PubMed  PubMed Central  Google Scholar 

  21. Xue T, Roy R. Studying traditional Chinese medicine. Science. 2003;300(5620):740–1.

    Article  CAS  PubMed  Google Scholar 

  22. Lindon JC, Holmes E, Nicholson JK. Metabolomics: systems biology in pharmaceutical research and development. Curr Opinion Mol Ther. 2004;6(3):265–72.

    CAS  Google Scholar 

  23. Nicholson JK, Lindon JC. Systems biology: metabonomics. Nature. 2008;455(7216):1054–6.

    Article  CAS  PubMed  Google Scholar 

  24. Nicholson JK, Wilson ID. Understanding “global” systems biology: metabonomics and the continuum of metabolism. Nat Rev Drug Discov. 2003;2(8):668–76.

    Article  CAS  PubMed  Google Scholar 

  25. Wang Y, Tang H, Nicholson JK, et al. A metabonomic strategy for the detection of the metabolic effects of chamomile (Matricaria recutita L.) ingestion. J Agr Food Chem. 2005;53(2):191–6.

    Article  CAS  Google Scholar 

  26. Sumner LW, Urbanczyk-Wochniak E, Broeckling CD. Metabolomics data analysis, visualization, and integration. Meth Mol Biol. 2007;406:409–36.

    CAS  Google Scholar 

  27. **e G, Plumb R, Su M, et al. Ultra-performance LC/TOF MS analysis of medicinal Panax herbs for metabolomic research. J Separation Sci. 2008;31(6–7):1015–26.

    Article  CAS  Google Scholar 

  28. Wu SC, Yen GC, Wang BS, et al. Antimutagenic and antimicrobial activities of pu-erh tea. LWT—Food Science and Technology. 2007;40(3):506–12.

    Article  CAS  Google Scholar 

  29. Wang BS, Yu HM, Chang LW, et al. Protective effects of pu-erh tea on LDL oxidation and nitric oxide generation in macrophage cells. LWT—Food Science and Technology. 2008;41(6):1122–32.

    Article  CAS  Google Scholar 

  30. Ni Y, Su M, Lin J, et al. Metabolic profiling reveals disorder of amino acid metabolism in four brain regions from a rat model of chronic unpredictable mild stress. FEBS Lett. 2008;582(17):2627–36.

    Article  CAS  PubMed  Google Scholar 

  31. Chen XQ, Ye Y, Cheng H, et al. Comparative analysis of theanine, caffein and polyphenolic constituents in green tea, black tea and puer tea. Food Res Dev. 2007;28(12):141–4.

    Google Scholar 

  32. Lan K, Jia W. An integrated metabolomics and pharmacokinetics strategy for multi-component drugs evaluation. Curr Drug Metab. 2010;11(1):105–14.

    Article  CAS  PubMed  Google Scholar 

  33. **e G, Zhao A, Zhao L, et al. Metabolic fate of tea polyphenols in humans. J Proteome Res. 2012;11(6):3449–57.

    Article  CAS  PubMed  Google Scholar 

  34. Chan K. Progress in traditional Chinese medicine. Trends Pharmacol Sci. 1995;16(6):182–7.

    Article  CAS  PubMed  Google Scholar 

  35. Plumb GW, Garcia-Conesa MT, Kroon PA, et al. Metabolism of chlorogenic acid by human plasma, liver, intestine and gut microflora. J Sci Food Agr. 1999;79(3):390–2.

    Article  CAS  Google Scholar 

  36. Nassar AEF, Talaat RE. Strategies for dealing with metabolite elucidation in drug discovery and development. Drug Discov Today. 2004;9(7):317–27.

    Article  CAS  PubMed  Google Scholar 

  37. Pelkonen O, Tolonen A, Korjamo T, et al. From known knowns to known unknowns: predicting in vivo drug metabolites. Bioanalysis. 2009;1(2):393–414.

    Article  CAS  PubMed  Google Scholar 

  38. Tolonen A, Turpeinen M, Pelkonen O. Liquid chromatography-mass spectrometry in in vitro drug metabolite screening. Drug Discov Today. 2009;14(3–4):120–33.

    Article  CAS  PubMed  Google Scholar 

  39. Wei X, Shi X, Kim S, et al. Data preprocessing method for liquid chromatography-mass spectrometry-based metabolomics. Anal Chem. 2012;84(18):7963–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Trygg J, Holmes E, Lundstedt T. Chemometrics in metabolomics. J Proteome Res. 2007;6(2):469–79.

    Article  CAS  PubMed  Google Scholar 

  41. Ma S, Chowdhury SK. Analytical strategies for assessment of human metabolites in preclinical safety testing. Analytical Chem. 2011;83(13):5028–36.

    Article  CAS  Google Scholar 

  42. Plumb RS, Stumpf CL, Granger JH, et al. Use of liquid chromatography/time-of-flight mass spectrometry and multivariate statistical analysis shows promise for the detection of drug metabolites in biological fluids. Rapid Commun Mass Spectrometry. 2003;17(23):2632–8.

    Article  CAS  Google Scholar 

  43. Idborg H, Edlund PO, Jacobsson SP. Multivariate approaches for efficient detection of potential metabolites from liquid chromatography/mass spectrometry data. Rapid Commun in Mass Spectrometry. 2004;18(9):944–54.

    Article  CAS  Google Scholar 

  44. Chen C, Gonzalez FJ, Idle JR. LC-MS-based metabolomics in drug metabolism. Drug Metab Rev. 2007;39(2–3):581–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Patterson AD, Gonzalez FJ, Idle JR. Xenobiotic metabolism: a view through the metabolometer. Chem Res Toxicol. 2010;23(5):851–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Johnson CH, Patterson AD, Idle JR, et al. Xenobiotic metabolomics: major impact on the metabolome. Ann Rev Pharmacol Toxicol. 2012;52:37–56.

    Article  CAS  Google Scholar 

  47. van Velzen EJJ, Westerhuis JA, van Duynhoven JPM, et al. Multilevel data analysis of a crossover designed human nutritional intervention study. J Proteome Res. 2008;7(10):4483–91.

    Article  PubMed  CAS  Google Scholar 

  48. van Velzen EJJ, Westerhuis JA, van Duynhoven JPM, et al. Phenoty** tea consumers by nutrikinetic analysis of polyphenolic end-metabolites. J Proteome Res. 2009;8(7):3317–30.

    Article  PubMed  CAS  Google Scholar 

  49. Smilde AK, Westerhuis JA, Hoefsloot HCJ, et al. Dynamic metabolomic data analysis: a tutorial review. Metabolomics. 2010;6(1):3–17.

    Article  CAS  PubMed  Google Scholar 

  50. Westerhuis JA, van Velzen EJJ, Hoefsloot HCJ, et al. Multivariate paired data analysis: multilevel PLSDA versus OPLSDA. Metabolomics. 2010;6(1):119–28.

    Article  CAS  PubMed  Google Scholar 

  51. van Duynhoven J, Vaughan EE, Jacob DM, et al. Metabolic fate of polyphenols in the human superorganism. Proc Nat Acad Sci U S A. 2011;108(suppl1):4531–8.

    Article  Google Scholar 

  52. van Duynhoven JPM, van Velzena EJJ, Westerhuis JA. Nutrikinetics: concept, technologies, applications, perspectives. Trends Food Sci Technol. 2012;26(1):4–13.

    Article  CAS  Google Scholar 

  53. Llorach R, Garcia-Aloy M, Tulipani S, et al. Nutrimetabolomic strategies to develop new biomarkers of intake and health effects. J Agr Food Chem. 2012;60(36):8797–808.

    Article  CAS  Google Scholar 

  54. Croixmarie V, Umbdenstock T, Cloarec O, et al. Integrated comparison of drug-related and drug-induced ultra performance liquid chromatography/mass spectrometry metabonomic profiles using human hepatocyte cultures. Anal Chem. 2009;81(15):6061–9.

    Article  CAS  PubMed  Google Scholar 

  55. Llorach-Asunción R, Jauregui O, Urpi-Sarda M, et al. Methodological aspects for metabolome visualization and characterization. A metabolomic evaluation of the 24 h evolution of human urine after cocoa powder consumption. J Pharmaceutical Biomedical Analysis. 2010;51(2):373–81.

    Article  CAS  Google Scholar 

  56. Lenz EM, Wilson ID. Analytical strategies in metabonomics. J Proteome Res. 2007;6(2):443–58.

    Article  CAS  PubMed  Google Scholar 

  57. Lan K, Zhang Y, Yang J, et al. Simple quality assessment approach for herbal extracts using high performance liquid chromatography-UV based metabolomics platform. J Chromatography A. 2010;1217(8):1414–8.

    Article  CAS  Google Scholar 

  58. Wang Z, Hu H, Chen F, et al. Metabolic profiling assisted quality assessment of Rhodiola rosea extracts by high-performance liquid chromatography. Planta Med. 2012;78(7):740–6.

    Article  CAS  PubMed  Google Scholar 

  59. Duan L-X, Li M, Chen M, et al. Use of the metabolomics approach to characterize Chinese medicinal material Huangqi. Mol Plant. 2012;5(2):376–86.

    Article  CAS  PubMed  Google Scholar 

  60. Wang M, Lamers RJAN, Korthout HAAJ, et al. Metabolomics in the context of systems biology: bridging traditional Chinese medicine and molecular pharmacology. Phytother Res. 2005;19(3):173–82.

    Article  CAS  PubMed  Google Scholar 

  61. Zhang A, Sun H, Wang Z, et al. Metabolomics: towards understanding traditional Chinese medicine. Planta Med. 2010;76(17):2026–35.

    Article  CAS  PubMed  Google Scholar 

  62. Wang X, Sun H, Zhang A, et al. Potential role of metabolomics approaches in the area of traditional Chinese medicine: as pillars of the bridge between Chinese and Western medicine. J Pharmaceutical Biomedical Analysis. 2011;55(5):859–68.

    Article  CAS  Google Scholar 

  63. Liu P, Liu S, Tian D, et al. The applications and obstacles of metabolomics in traditional Chinese medicine. Evidence-based Complementary Altern Med. 2012;2012:4.

    Google Scholar 

  64. Wu T, Yang M, Wei H-F, et al. Application of metabolomics in traditional Chinese medicine differentiation of deficiency and excess syndromes in patients with diabetes mellitus. Evidence-based Complementary Altern Med. 2012;2012:11.

    Google Scholar 

  65. Jové M, Serrano JCE, Ortega N, et al. Multicompartmental LC-Q-TOF-based metabonomics as an exploratory tool to identify novel pathways affected by polyphenol-rich diets in mice. J Proteome Res. 2011;10(8):3501–12.

    Article  PubMed  CAS  Google Scholar 

  66. Turnbaugh PJ, Ley RE, Hamady M, et al. The human microbiome project. Nature. 2007;449(7164):804–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464(7285):59–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Arumugam M, Raes J, Pelletier E, et al. Enterotypes of the human gut microbiome. Nature. 2011;473(7346):174–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Consortium THMP. A framework for human microbiome research. Nature. 2012;486(7402):215–21.

    Article  CAS  Google Scholar 

  70. Consortium THMP. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486(7402):207–14.

    Article  CAS  Google Scholar 

  71. Rosabelle McManus I, Contag AO, Olson RE. Characterization of endogenous ethanol in the mammal. Science. 1960;131(3393):102–3.

    Article  PubMed  Google Scholar 

  72. Spinucci G, Guidetti M, Lanzoni E, et al. Endogenous ethanol production in a patient with chronic intestinal pseudo-obstruction and small intestinal bacterial overgrowth. Eur J Gastroenterol Hepatol. 2006;18(7):799–802.

    Article  PubMed  Google Scholar 

  73. Compare D, Coccoli P, Rocco A, et al. Gut-liver axis: the impact of gut microbiota on non alcoholic fatty liver disease. Nutrition, Metab Cardiovasc Dis. 2012;22(6):471–6.

    Article  CAS  Google Scholar 

  74. Martin FPJ, Dumas ME, Wang Y, et al. A top-down systems biology view of microbiome-mammalian metabolic interactions in a mouse model. Mol Systems Biol. 2007;3:112.

    Article  CAS  Google Scholar 

  75. Martin FPJ, Wang Y, Sprenger N, et al. Probiotic modulation of symbiotic gut microbial-host metabolic interactions in a humanized microbiome mouse model. Mol Systems Biol. 2008;4:157.

    Article  CAS  Google Scholar 

  76. Martin FPJ, Sprenger N, Yap IKS, et al. Panorganismal gut microbiome-host metabolic crosstalk. J Proteome Res. 2009;8(4):2090–105.

    Article  CAS  PubMed  Google Scholar 

  77. Martin FPJ, Wang Y, Yap IKS, et al. Topographical variation in murine intestinal metabolic profiles in relation to microbiome speciation and functional ecological activity. J Proteome Res. 2009;8(7):3464–74.

    Article  CAS  PubMed  Google Scholar 

  78. Zheng X, **e G, Zhao A, et al. The footprints of gut microbial-mammalian co-metabolism. J Proteome Res. 2011;10(12):5512–22.

    Article  CAS  PubMed  Google Scholar 

  79. Nicholson JK, Holmes E, Burcelin R, et al. Host-gut microbiota metabolic interactions. Science. 2012;336(6086):1262–7.

    Article  CAS  PubMed  Google Scholar 

  80. Wilson ID, Nicholson JK. The role of gut microbiota in drug response. Curr Pharmaceutical Design. 2009;15(13):1519–23.

    Article  CAS  Google Scholar 

  81. Li H, Zhou M, Zhao A, et al. Traditional Chinese medicine: balancing the gut ecosystem. Phytother Res. 2009;23(9):1332–5.

    Article  PubMed  Google Scholar 

  82. Zhao YF, Song FR, Guo XH, et al. Studies on the biotransformation of aconitine in human intestinal bacteria using soft-ionization mass spectrometry. Chem J Chin Universities. 2008;29(1):55–9.

    CAS  Google Scholar 

  83. Wang X, Pi Z, Liu W, et al. Effect of pH on the metabolism of aconitine under rat intestinal bacteria and analysis of metabolites using HPLC/MS-MSn technique. Chin J Chem. 2010;28(12):2494–500.

    Article  CAS  Google Scholar 

  84. Clayton TA, Baker D, Lindon JC, et al. Pharmacometabonomic identification of a significant host-microbiome metabolic interaction affecting human drug metabolism. Proc Nati Acad Sci U S A. 2009;106(34):14728–33.

    Article  CAS  Google Scholar 

  85. Meinl W, Sczesny S, Brigelius-Flohé R, et al. Impact of gut microbiota on intestinal and hepatic levels of phase 2 xenobiotic-metabolizing enzymes in the rat. Drug Metab Dispos. 2009;37(6):1179–86.

    Article  CAS  PubMed  Google Scholar 

  86. Björkholm B, Bok CM, Lundin A, et al. Intestinal microbiota regulate xenobiotic metabolism in the liver. PLoS One. 2009;4(9):e6958.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Peters S, Janssen HG, Vivó-Truyols G. Trend analysis of time-series data: a novel method for untargeted metabolite discovery. Anal Chim Acta. 2010;663(1):98–104.

    Article  CAS  PubMed  Google Scholar 

  88. Jia W, Fan T-P, Wang NX, et al. The polypharmacokinetics of herbal medicines. Science. 2015;350:S76–9.

    Article  CAS  Google Scholar 

  89. Li M, Wang S, **e G, et al. polyPK: an R package for pharmacokinetic analysis of multi-component drugs using a metabolomics approach. Bioinformatics. 2018;34(10):1792–4.

    Article  CAS  PubMed  Google Scholar 

  90. **e G, Wang S, Zhang H, et al. Poly-pharmacokinetic study of a multicomponent herbal medicine in healthy Chinese volunteers. Clin Pharmacol Ther. 2018;103(4):692–702.

    Article  CAS  PubMed  Google Scholar 

  91. ** W, Tinglan Z, Guohua Y, et al. Poly-pharmacokinetic strategy-delineated metabolic fate of bioactive compounds in a traditional Chinese medicine formula, Yuanhu Zhitong tablets, using parallel reaction monitoring mode. Phytomedicine. 2019;53:53–61.

    Article  CAS  PubMed  Google Scholar 

  92. Dmitriev AV, Rudik AV, Karasev DA, et al. In silico prediction of drug-drug interactions mediated by cytochrome P450 isoforms. Pharmaceutics. 2021;13(4):538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Niu J, Straubinger RM, Mager DE. Pharmacodynamic drug-drug interactions. Clin Pharmacol Ther. 2019;105(6):1395–406.

    Article  PubMed  Google Scholar 

  94. Carpenter M, Berry H, Pelletier AL. Clinically relevant drug-drug interactions in primary care. Am Fam Physician. 2019;99(9):558–64.

    PubMed  Google Scholar 

  95. Roblek T, Vaupotic T, Mrhar A, et al. Drug-drug interaction software in clinical practice: a systematic review. Eur J Clin Pharmacol. 2015;71(2):131–42.

    Article  CAS  PubMed  Google Scholar 

  96. Kennedy C, Brewer L, Williams D. Drug Interactions Medicine. 2016;44:422–6.

    Google Scholar 

  97. In Vitro Drug Interaction Studies—Cytochrome P450 Enzyme- and Transporter-Mediated Drug Interactions Guidance for Industry. [(Accessed 27 Oct 2020)]; Available online: https://www.fda.gov/media/134582/download.

  98. Dmitriev AV, Lagunin AA, Karasev DA, et al. Prediction of drug-drug interactions related to inhibition or induction of drug-metabolizing enzymes. Curr Top Med Chem. 2019;19:319–36.

    Article  CAS  PubMed  Google Scholar 

  99. Banerjee P, Dunkel M, Kemmler E, et al. SuperCYPsPred—A web server for the prediction of cytochrome activity. Nucleic Acids Res. 2020;48:W580–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Hochleitner J, Akram M, Ueberall M, et al. A combinatorial approach for the discovery of cytochrome P450 2D6 inhibitors from nature. Sci Rep. 2017;7:8071.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Kaserer T, Höferl M, Müller K, et al. In silico predictions of drug—drug interactions caused by CYP1A2, 2C9 and 3A4 inhibition—a comparative study of virtual screening performance. Mol Inform. 2015;34:431–57.

    Article  CAS  PubMed  Google Scholar 

  102. Torimoto-Katori N, Huang R, Kato H, et al. In silico prediction of hPXR activators using structure-based pharmacophore modeling. J Pharm Sci. 2017;106:1752–9.

    Article  CAS  PubMed  Google Scholar 

  103. Fahmi OA, Maurer TS, Kish M, et al. A combined model for predicting CYP3A4 clinical net drug-drug interaction based on CYP3A4 inhibition, inactivation, and induction determined in vitro. Drug Metab Dispos. 2008;36:1698–708.

    Article  CAS  PubMed  Google Scholar 

  104. Takeda T, Hao M, Cheng T, et al. Predicting drug-drug interactions through drug structural similarities and interaction networks incorporating pharmacokinetics and pharmacodynamics knowledge. J Cheminform. 2017;9:16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Vilar S, Uriarte E, Santana L, et al. Similarity-based modeling in large-scale prediction of drug-drug interactions. Nat Protoc. 2014;9:2147–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Cheng F, Zhao Z. Machine learning-based prediction of drug-drug interactions by integrating drug phenotypic, therapeutic, chemical, and genomic properties. J Am Med Inf Assoc. 2014;21:e278–86.

    Article  Google Scholar 

  107. Duke JD, Han X, Wang Z, et al. Literature based drug interaction prediction with clinical assessment using electronic medical records: novel myopathy associated drug interactions. PLoS Comput Biol. 2012;8:e1002614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Zhang P, Wang F, Hu J, et al. Label propagation prediction of drug-drug interactions based on clinical side effects. Sci Rep. 2015;5:12339.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Ferdousi R, Safdari R, Omidi Y. Computational prediction of drug-drug interactions based on drugs functional similarities. J Biomed Inf. 2017;70:54–64.

    Article  Google Scholar 

  110. Dmitriev AV, Filimonov DA, Rudik AV, et al. Drug-drug interaction prediction using PASS. SAR QSAR Environ Res. 2019;30:655–64.

    Article  CAS  PubMed  Google Scholar 

  111. Dmitriev A, Filimonov D, Lagunin A, et al. Prediction of severity of drug-drug interactions caused by enzyme inhibition and activation. Molecules. 2019;24:3955.

    Article  CAS  PubMed Central  Google Scholar 

  112. DrugBank. [Accessed 27 Oct 2020]; Available online: https://go.drugbank.com/.

  113. ADME Database. [Accessed 27 Oct 2020]; Available online: https://www.fujitsu.com/jp/group/kyushu/en/solutions/industry/lifescience/admedatabase/.

  114. Poroikov VV, Filimonov DA, Borodina YV, et al. Robustness of biological activity spectra predicting by computer program PASS for noncongeneric sets of chemical compounds. J Chem Inf Comput Sci. 2000;40:1349–55.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, Z., Yang, B. (2022). Polypharmacology and Polypharmacokinetics. In: Polypharmacology. Springer, Cham. https://doi.org/10.1007/978-3-031-04998-9_16

Download citation

Publish with us

Policies and ethics

Navigation