Plant Assisted Bioremediation of Heavy Metal Polluted Soils

  • Chapter
  • First Online:
Bio-Inspired Land Remediation

Abstract

Industrial and anthropogenic activities are the major reason for heavy metal pollution. To date, thousands of hectares of farmland globally and in India specifically have been contaminated by heavy metals. This has adversely affected the crop productivity, soil microbial diversity and eventually deteriorated the soil quality. Soil quality is closely associated with crop quality, human health and welfare. Therefore, the remediation of these metal-polluted soils becomes imperative. Conventional remediation methods like precipitation, oxidation/reduction, filtration, evaporation and adsorption etc. are energy demanding or require a large number of chemical reagents and are associated with possible production of secondary pollutants. Fortunately, some microorganisms with the capability to induce resistance to heavy metals, and reduce or adsorb them in non-toxic form can be used for possible bioremediation of polluted soils, thus representing an economical and environment-friendly remediation method. These microbes detoxify the heavy metals, clean up the environment and  increase the soil fertility, but, the adsorbed or converted metal still remains in the soil is the problem associated with it. Phytoremediation can be another option for detoxification of heavy metal polluted soils. However, phytoremediation alone has its limitations. Hence, the most effective way of remediation of heavy metal polluted soils is an integrated approach that involves both plants and microbes. Understanding the whole mechanism of plant assisted bioremediation along with bioavailability, uptake, translocation, sequestration and different defence mechanisms will help to develop heavy metal stress-resistant cultivars and highly efficient plant species for phytoremediation in harmony with microflora through genetic engineering technologies. Hence, this chapter will provide an understanding of plant assisted bioremediation, the fate of heavy metals in plant and soil, different plant defence mechanisms and potential microflora for plant assisted bioremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Abbas SH, Ismail IM, Mostafa TM, Sulaymon AH (2014) Biosorption of heavy metals: a review. J Chem Sci Technol 3(4):74–79

    Google Scholar 

  • Abou-Shanab RA, Angle JS, Delorme TA, Chaney RL, van Berkum P, Moawad H, Ghanem K, Ghozlan HA (2003) Rhizobacterial effects on nickel extraction from soil and uptake by Alyssum murale. New Phytol 158:219–224

    Article  CAS  Google Scholar 

  • Adediran GA, Ngwenyaa BT, MosselmansJFW Heal KV, Harvie BA (2015) Mechanisms behind bacteria induced plant growth promotion and Zn accumulation in Brassica juncea. J Hazard Mater 283:490–499

    Article  CAS  Google Scholar 

  • Ahemad M (2014) Phosphate solubilizing bacteria-assisted phytoremediation of metalliferous soils: a review. 3 Biotech. https://doi.org/10.1007/s13205-014-0206-0

  • Ahirwal J, Pandey VC (2021) Restoration of mine-degraded land for sustainable environmental development. Restor Ecol 29(4):e13268. https://doi.org/10.1111/rec.13268

    Article  Google Scholar 

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals—concepts and applications. Chemosphere 91:869–881

    Article  CAS  Google Scholar 

  • Altinözlü H, Karagöz A, Polat T, Ünver I (2012) Nickel hyperaccumulation by natural plants in Turkish serpentine soils. Turk J Bot 36:269–280. https://doi.org/10.3906/bot-1101-10

    Article  CAS  Google Scholar 

  • Andres-Colas N, Perea-Garcia A, Puig S, Penarrubia L (2010) Deregulated copper transport affects Arabidopsis development especially in the absence of environmental cycles. Plant Physiol 153:170–184

    Article  CAS  Google Scholar 

  • Anonymous (2010) World Water Day, United Nations

    Google Scholar 

  • Babu AG, Kim JD, Oh BT (2013) Enhancement of heavy metal phytoremediation by Alnus firmawith endophytic Bacillus thuringiensis GDB-1. J Hazard Mater 250:477–483

    Article  Google Scholar 

  • Bani A, Pavlova D, Echevarria G, Mullaj A, Reeves RD, Morel JL, Sulçe S (2010) Nickel hyperaccumulation by the species of Alyssum and Thlaspi (Brassicaceae) from the ultramafic soils of the Balkans. Bot Serb 34:3–14

    Google Scholar 

  • Benazir JF, Suganthi R, Rajvel D, Pooja MP, Mathithumilan B (2010) Bioremediation of chromium in tannery effluent by microbial consortia. African J Biotech 9:3140–3143

    Google Scholar 

  • Bereczky Z, Wang HY, Schubert V, Ganal M, Bauer P (2003) Differential regulation of Nramp and IRT metal transporter genes in wild type and iron uptake mutants of tomato. J Bio Chem 278:24697–24704

    Article  CAS  Google Scholar 

  • Bernal M, Testillano PS, Alfonso M, Del Carmen RM, Picorel R, Yruela I (2007) Identification and subcellular localization of the soybean copper P1B-ATPase GmHMA8 transporter. J Struct Biol 158:146–158

    Article  Google Scholar 

  • Bharagava RN, Mishra S (2018) Hexavalent chromium reduction potential of Cellulosimicrobium sp. isolated from common effluent treatment plant of tannery industries. Ecotoxicol Environ Safety 147:102–109

    Article  CAS  Google Scholar 

  • Bhardwaj RM (2005) Status of wastewater generation and treatment in India. IWG-Env, International work session on water statistics, Vienna, p 9. Available at http://unstats.un.org/unsd/environment/envpdf/pap_wasess3b6india.pdf

  • Bhargava A, Carmona FF, Bhargava M et al (2012) Approaches for enhanced phytoextraction of heavy metals. J Environ Manage 105:103–120

    Article  CAS  Google Scholar 

  • Bhattacharya A, Gupta A, Kaur A, Malik D (2019) Alleviation of hexavalent chromium by using microorganisms: insight into the strategies and complications. Water Sci Technol 79.3:411–424. https://doi.org/10.2166/wst.2019.060

  • Bhojiya AA, Joshi H, Upadhyay SK, Srivastava AK, Pathak VV, Pandey VC, Jain D (2021) Screening and optimization of zinc removal potential in Pseudomonas aeruginosa—HMR1 and its plant growth-promoting attributes. Bull Environ Contam Toxicol. https://doi.org/10.1007/s00128-021-03232-5

  • BIS (2012) Indian standard for drinking water, Bureau of Indian Standards (IS-10500), New Delhi

    Google Scholar 

  • Black H (1995) Absorbing possibilities: phytoremediation. Environ Health Perspect 103:1106–1108

    Article  CAS  Google Scholar 

  • Bluskov S, Arocena JM (2005) Uptake, distribution, and speciation of chromium in Brassica juncea. Int J Phytoremediation 7:153–165

    Article  CAS  Google Scholar 

  • Bowen HJM (1979) Environmental chemistry of the elements. Academic press, London

    Google Scholar 

  • Braud A, Jézéquel K, Bazot S and Lebeau T (2009) Enhanced phytoextraction of an agricultural Cr-, Hg- and Pb-contaminated soil by bioaugmentation with siderophore producing bacteria. Chemosphere 74: 280–286.

    Google Scholar 

  • Bravin MN, Garnier C, Lenoble V, Gerard F, Dudal Y, Hinsinger P (2012) Root-induced changes in pH and dissolved organic matter binding capacity affect copper dynamic speciation in the rhizosphere. Geochim Cosmochim Ac 84:256–268

    Article  CAS  Google Scholar 

  • Buendía-González L, Orozco-Villafuerte J, Cruz-Sosa F, Barrera-Díaz C, Vernon-Carter E (2010) Prosopis laevigataa potential chromium (VI) and cadmium (II) hyperaccumulator desert plant. Bioresour Technol 101:5862–5867. https://doi.org/10.1016/j.biortech.2010.03.027

    Article  CAS  Google Scholar 

  • Cailliatte R, Schikora A, Briat JF, Mari S, Curie C (2010) High affinity manganese uptake by the metal transporter nramp1 is essential for Arabidopsis growth in low manganese conditions. Plant Cell 22:904–917

    Article  CAS  Google Scholar 

  • Cardoso P, Corticeiro S, Freitas R, Figueira E (2018) Different efficiencies of the same mechanisms result in distinct Cd tolerance T within Rhizobium. Ecotoxicol Environ Saf 150:260–269

    Article  CAS  Google Scholar 

  • Chaney RL, Angle JS, McIntosh MS, Reeves RD, Li YM, Brewer EP, Chen KY, Roseberg RJ, Perner H, Synkowski EC, Broadhurst CL, Wang S, Baker AJ (2005) Using hyperaccumulator plants to phytoextract soil Ni and Cd. Z Naturforsch C 60:190–198

    CAS  Google Scholar 

  • Chaney RL, Broadhurst CL, Centofanti T (2010) Phytoremediation of soil trace elements. In: Hooda PS (ed) Trace elements in soils chichester. John Wiley & Sons, Inc. pp 311–352

    Google Scholar 

  • Chaturvedi R, Favas P, Pratas J, Varun M, Paul MS (2018) Assessment of edibility and effect of arbuscular mycorrhizal fungi on T Solanum melongena L. grown under heavy metal(loid) contaminated soil. Ecotoxicol Environ Saf 148:318–326

    Article  CAS  Google Scholar 

  • Chehregani A, Malayeri BE (2007) Removal of heavy metals by native accumulator plants. Int J Agric Biol 9:462–465

    CAS  Google Scholar 

  • Courbot M, Willems G, Motte P, Arvidsson S, Roosens N, Saumitou-Laprade P, Verbruggen N (2007) A major quantitative trait locus for Cd tolerance in Arabidopsis halleri colocalizes with HMA4, a gene encoding a heavy metal ATPase. Plant Physiol 144:1052–1065

    Article  CAS  Google Scholar 

  • CPCB (2009) Comprehensive environmental assessment of industrial clusters. Ecological impact assessment series: EIAS/5/2009–2010. Central pollution control board, ministry of environment and forests, Govt. of India, New Delhi

    Google Scholar 

  • Cunningham SD, Ow DW (1996) Promises and prospects of phytoremediation. Plant Physiol 110:715. https://doi.org/10.1104/pp.110.3.715

    Article  CAS  Google Scholar 

  • Dakora FD, Phillips DA (2002) Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil 13:35–47

    Article  Google Scholar 

  • Dary M, Chamber-Pérez MA, Palomares AJ, Pajuelo E (2010) In situ phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria. J Hazard Mater 177: 323–330

    Google Scholar 

  • Deng Z, Cao L (2017) Fungal endophytes and their interactions with plants in phytoremediation: a review. Chemosphere 168:1100–1106

    Article  CAS  Google Scholar 

  • Deng Z, Cao L, Huang H, Jiang X, Wang W, Shi Y et al (2011) Characterization of Cd- and Pb-resistant fungal endophyte Mucor sp. CBRF59 isolated from rapes (Brassica chinensis) in a metal-contaminated soil. J Hazard Mater 185:717–724

    Article  CAS  Google Scholar 

  • Deng Z, Zhang R, Shi Y, Hu L, Tan H, Cao L (2013a) Characterization of Cd-, Pb-, Zn-resistant endophytic Lasiodiplodiasp. MXSF31 from metal accumulating Portulaca oleracea and its potential in promoting the growth of rape in metal-contaminated soils. Environ Sci Pollut Res 21:2346–2357

    Article  Google Scholar 

  • Deng Z, Zhang R, Shi Y, Hu L, Tan H, Cao L (2013b) Enhancement of phytoremediation of Cd- and Pb-contaminated soils by self-fusion of protoplasts from endophytic fungus Mucor sp. CBRF59. Chemosphere 91:41–47

    Article  CAS  Google Scholar 

  • Di Gregorio S, Barbafieri M, Lampis S, Sanangelantoni AM, Tassi E, Vallini G (2006) Combined application of Triton X-100 and Sinorhizobium sp. Pb002 inoculum for the improvement of lead phytoextraction by Brassica juncea in EDTA amended soil. Chemosphere 63:293–299

    Article  Google Scholar 

  • Dickinson NM, Pulford ID (2005) Cadmium phytoextraction using short-rotation coppice Salix: the evidence trail. Environ Int 31:609–613

    Article  CAS  Google Scholar 

  • DiDonato RJ, Roberts LA, Sanderson T, Eisley RB, Walker EL (2004) Arabidopsis yellow stripe-Like2 (YSL2): a metal-regulated gene encoding a plasma membrane transporter of nicotianamine metal complexes. Plant J 39:403–414

    Article  CAS  Google Scholar 

  • Dietz AC, SchnoorJL (2001) Advances in phytoremediation. Environmental health perspectives 109(suppl 1):163–168

    Google Scholar 

  • Dixit R, Wasiullah MD, Pandiyan K, Singh UB, Sahu A, Shukla R, Singh BP, Rai JP, Sharma PK, Lake H, Paul D (2015) Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability 7:2189–2212. https://doi.org/10.3390/su7022189

    Article  Google Scholar 

  • Dursun A, Uslu G, Cuci Y, Aksu Z (2003) Bioaccumulation of copper(II), lead(II) and chromium(VI) by growing Aspergillus niger. Process Biochem 38:1647–1651

    Article  CAS  Google Scholar 

  • Freeman JL, Michael WP, Nieman K, Salt DE (2005) Nickel and cobalt resistance engineered in Escherichia coli by overexpression of serine acetyltransferase from the nickel hyperaccumulator plant Thlaspigoes ingense. Appl Environ Microbiol 12:8627–8633

    Article  Google Scholar 

  • Fu YQ, Li S, Zhu HY, Jiang R, Yin LF (2012) Biosorption of copper(II) from aqueous solution by mycelial pellets of Rhizopus oryzae. Afr J Biotechnol 11:1403–1411

    CAS  Google Scholar 

  • Garcia-Salgado S, Garcia-Casillas D, Quijano-Nieto MA, Bonilla-Simon MM (2012) Arsenic and heavy metal uptake and accumulation in native plant species from soils polluted by mining activities. Water Air Soil Pollut 223:559–572

    Article  CAS  Google Scholar 

  • Garg N, Aggarwal N (2011) Effects of interactions between cadmium and lead on growth, nitrogen fixation, phytochelatin, and glutathione production in mycorrhizal Cajanus cajan (L.) Millsp. J Plant Growth Regul 30:286–300

    Article  CAS  Google Scholar 

  • Gendre D, Czernic P, Conéjéro G, Pianelli K, Briat JF, Lebrun M, Mari S (2006) TcYSL3, a member of the YSL gene family from the hyperaccumulator Thlaspi caerulescens, encodes a nicotianamine- Ni/Fe transporter. Plant J 49:1–15

    Article  Google Scholar 

  • Ghosh M, Singh SP (2005) A review on phytoremediation of heavy metals and utilization of its byproducts. Appl Ecol Environ Res 3:1–18

    Article  Google Scholar 

  • Giasson P, Karam A, Jaouich A (2008) Arbuscular mycorrhizae and alleviation of soil stresses onplant growth. In: Siddiqui ZA, Akhtar MS, Futai K (eds) Mycorrhizae: sustainable agriculture and forestry. Springer, Dordrecht, pp 99–134

    Chapter  Google Scholar 

  • Gil-Cardeza ML, Müller DR, Amaya-Martin SM, Viassolo R, Gómez E (2018) Differential responses to high soil chromium of two arbuscular mycorrhizal fungi communities isolated from Cr-polluted and non-polluted rhizospheres of Ricinus communis. Sci Total Environ 625:1113–1121

    Article  CAS  Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Hindawi Publishing Corporation, Scientifica

    Google Scholar 

  • Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 327:812–818

    Article  CAS  Google Scholar 

  • Goher ME, El-Monem AMA, Abdel-Satar AM, Ali MH, Hussian AEM, Napíorkowska-Krzebietke A (2016) Biosorption of some toxic metals from aqueous solution using nonliving algal cells of Chlorella vulgaris. J Elementol 21(3):703–714

    Google Scholar 

  • Gupta VK, Rastogi A (2008) Biosorption of lead from aqueous solutions by green algae Spirogyra species: kinetics and equilibrium studies. Jhazardous Mater 152(1):407–414

    Article  CAS  Google Scholar 

  • Gupta A, Meyer JM, Goel R (2002) Development of heavy metal resistant mutants of phosphate solubilizing Pseudomonas sp. NBRI4014 and their characterization. CurrMicrobiol 45:323–332

    CAS  Google Scholar 

  • Gupta VK, Nayak A, Agarwal S (2015) Bioadsorbents for remediation of heavy metals: current status and their future prospects. Environ Eng Res 20:1–18

    Article  Google Scholar 

  • Hanikenne M, Kramer U, Demoulin V, Baurain D (2005) A comparative inventory of metal transporters in the green alga Chlamydomonas reinhardtiiand the red alga Cyanidioschizonmerolae. Plant Physiol 137:428–446

    Article  CAS  Google Scholar 

  • Hansen HK, Ribeiro A, Mateus E (2006) Biosorption of arsenic (V) with Lessonia nigrescens. Miner Eng 19(5):486–490

    Article  CAS  Google Scholar 

  • Hardoim PR, Overbeek LS, Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16:63–471

    Article  Google Scholar 

  • Hemambika B, Rani MJ, Kannan VR (2011) Biosorption of heavy metals by immobilized and dead fungal cells: a comparative assessment. J Ecol Nat Environ 3:168–175

    CAS  Google Scholar 

  • Hussain SA, Palmer DH, Moon S, Rea DW (2004) Endocrine therapy and other targeted therapies for metastatic breast cancer. Expert Rev Anticancer Ther 4:1179–1195

    Article  CAS  Google Scholar 

  • Ingle RA, Mugford ST, Rees JD, Campbell MM, Smith JAC (2005) Constitutively high expression of the histidine biosynthetic pathway contributes to nickel tolerance in hyperaccumulator plants. Plant Cell 17:2089–2106

    Article  CAS  Google Scholar 

  • Iqbal M, Edyvean R (2004) Biosorption of lead, copper and zinc ions on loofa sponge immobilized biomass of Phanero chaetechrysosporium. Miner Eng 17:217–223

    Article  CAS  Google Scholar 

  • Ishimaru Y, Suzuki M, Kobayashi T, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2005) OsZIP4, a novel zinc-regulated zinc transporter in rice. J Exp Bot 56:3207–3214

    Article  CAS  Google Scholar 

  • Jafari SA, Cheraghi S, Mirbakhsh M, Mirza R, Maryamabadi A (2015) Employing response surface methodology for optimization of mercury bioremediation by Vibrio parahaemolyticus PG02 in coastal sediments of Bushehr, Iran. CLEAN Soil, Air, Water 43(1):118–126

    Article  CAS  Google Scholar 

  • Järup L (2003) Hazards of heavy metal contamination. Br Med Bull 68:167–182. https://doi.org/10.1093/bmb/ldg032

    Article  Google Scholar 

  • **g YD, Zhen Li HE, Yang XE (2007) Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils. J Zhejiang Univ Sci B 8:192–207

    Article  CAS  Google Scholar 

  • Kabata-Pendias A, Pendias H (1984) Trace elements in soils and plants. CPRC Press, Boca Raton, Fla

    Google Scholar 

  • Kalve S, Sarangi BK, Pandey RA, Chakrabarti T (2011) Arsenic and chromium hyperaccumulation by an ecotype of Pteris vittata—prospective for phytoextraction from contaminated water and soil. Curr Sci India 100:888–894

    CAS  Google Scholar 

  • Kang S, Lee J, Kim K (2005) Metal removal from wastewater by bacterial sorption: kinetics and competition studies. Environ Technol 26:615–624

    Article  CAS  Google Scholar 

  • Kawachi M, Kobae Y, Mimura T, Maeshima M (2008) Deletion of a histidine-rich loop of AtMTP1, a vacuolar Zn2þ/Hþ antiporter of Arabidopsis thaliana, stimulates the transport activity. J Biol Chem 283:8374–8383

    Article  CAS  Google Scholar 

  • Kerkeb L, Mukherjee I, Chatterjee I, Lahner B, Salt DE, Connolly EL (2008) Iron-induced turnover of the arabidopsis iron-regulated transporter1 metal transporter requires lysine residues. Plant Physiol 146:1964–1973

    Article  CAS  Google Scholar 

  • Khan FI, Husain T, Hejazi R (2004) An overview and analysis of site remediation technologies. J Environ Manag 71:95–112

    Article  Google Scholar 

  • Kim SY, Kim JH, Kim CJ, Oh DK (1996) Metal adsorption of the polysaccharide produced from Methylobacterium organophilum. Biotech Lett 18(10):1161–1164

    Article  CAS  Google Scholar 

  • Kim D, GustinJL LB, Persans MW, Baek D, Yun DJ, Salt DE (2004) The plant CDF family member TgMTP1 from the Ni/Zn hyperaccumulator Thlaspigoesingenseacts to enhance efflux of Zn at the plasma membrane when expressed in Saccharomyces cerevisiae. Plant J 39:237–251

    Article  CAS  Google Scholar 

  • Kim IH, Choi JH, Joo JO, Kim YK, Choi JW, Oh BK (2015) Development of a microbe-zeolite carrier for the effective elimination of heavy metals from seawater. J Microbiol Biotechnol 25:1542–1546

    Article  CAS  Google Scholar 

  • Koptsik G (2014) Problems and prospects concerning the phytoremediation of heavy metal polluted soils: a review. Eurasian Soil Sci 47:923–939. https://doi.org/10.1134/S1064229314090075

    Article  CAS  Google Scholar 

  • Krupa P, Kozdrój J (2007) Ectomycorrhizal fungi and associated bacteria provide protection against heavy metals in inoculated pine (Pinus sylvestris L.) seedlings. Water Air Soil Pollut 182:83–90

    Article  CAS  Google Scholar 

  • Kucharski R, Sas-Nowosielska A, Małkowski E, Japenga J, Kuperberg J, Pogrzeba M et al (2005) The use of indigenous plant species and calcium phosphate for the stabilization of highly metal-polluted sites in southern Poland. Plant Soil 273:291–305. https://doi.org/10.1007/s11104-004-8068-6

    Article  CAS  Google Scholar 

  • Kuiper I, Lagendijk EL, Bloemberg GV, Lugtenberg BJJ (2004) Rhizoremediation: a beneficial plant-microbe interaction. Mol Plant-Microbe Interact 17:6–15

    Article  CAS  Google Scholar 

  • Kuklinsky-Sobral J, Araujo WL, Mendes R, Geraldi IO, Pizzirani-Kleiner AA, Azevedo JL (2004) Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environ Microbiol 6:1244–1251

    Article  CAS  Google Scholar 

  • Kumar KV, Srivastava S, Singh N, Behl HM (2009) Role of metal resistant plant growth promoting bacteria in ameliorating fly ash to the growth of Brassica juncea. J Hazard Mater 170:51–57

    Article  CAS  Google Scholar 

  • Kumar SS, Kadier A, Malyan SK, Ahmad A, Bishnoi NR (2017) Phytoremediation and rhizoremediation: uptake, mobilization and sequestration of heavy metals by plants. In: Singh DP (ed) Plant-Microbe interactions in agro-ecological perspectives Springer, pp 367–394. https://doi.org/10.1007/978-981-10-6593-4_15

  • Kumaran NS, Sundaramanicam A, Bragadeeswaran S (2011) Adsorption studies on heavy metals by isolated cyanobacterial strain (nostoc sp.) from uppanar estuarine water, southeast coast of India. J Appl Sci Res 7(11):1609–1615

    Google Scholar 

  • Kupper H, Lombi E, Zhao FJ, Wieshammer G, McGrath SP (2001) Cellular compartmentation of Ni in the hyperaccumulators Alyssum lesbiacum A. Bertoloniiand Thlaspigoesingense. J Exp Bot 52:2291–2300

    Article  CAS  Google Scholar 

  • Lee S, Moon JS, Ko TS, Petros D, Goldsbrough PB, Korban SS (2003) Over expression of Arabidopsis phytochelatin synthase paradoxically leads to hypersensitivity to cadmium stress. Plant Physiol 131:656–663

    Article  CAS  Google Scholar 

  • Lee S, Kim YY, Lee Y, An G (2007) Rice P1B-type heavy-metal ATPase, OsHMA9, is a metal efflux protein. Plant Physiol 145:831–842

    Article  CAS  Google Scholar 

  • Li YM, Chaney R, Brewer E, Roseberg R, Angle JS, Baker A, Reeves R, Nelkin J (2003) Development of a technology for commercial phytoextraction of nickel: economic and technical considerations. Plant Soil 249:107–115

    Article  CAS  Google Scholar 

  • Li X, Zhang X, Yang Y, Li B, Wu Y, Sun H et al (2016) Cadmium accumulation characteristics in turnip landraces from China and assessment of their phytoremediation potential for contaminated soils. Front Plant Sci 7:1862. https://doi.org/10.3389/fpls.2016.01862

    Article  Google Scholar 

  • Liu LW, Li W, Song WP, Guo MX (2018) Remediation techniques for heavy metal–contaminated soils: principles and applicability. Sci Total Environ 633:206–219. https://doi.org/10.1016/j.scitotenv.2018.03.161

    Article  CAS  Google Scholar 

  • Lombi E, Zhao FJ, Dunham SJ, McGrath SP (2001) Phytoremediation of heavy metal-contaminated soils: natural hyperaccumulation versus chemical enhanced phytoextraction. J Environ Qual 30:1919–1926

    Article  CAS  Google Scholar 

  • Lone MI, He ZL, Stoffella PJ, Yang XE (2008) Phytoremediation of heavy metal polluted soils and water: progresses and perspectives. J Zhejiang Univ-Sci. B (biomed Biotechnol) 9:210–220. https://doi.org/10.1631/jzus.B0710633

    Article  CAS  Google Scholar 

  • Lopez-Millan AF, Ellis DR, Grusak MA (2004) Identification and characterization of several new members of the ZIP family of metal ion transporters in Medicago truncatula. Plant Mol Biol 54:583–596

    Article  CAS  Google Scholar 

  • Ma Y, Rajkumar M, Freitas H (2009) Inoculation of plant growth promoting bacterium Achromobacter xylosoxidans strain Ax10 for the improvement of copper phytoextraction by Brassica juncea. J Environ Manag 90:831–837

    Article  Google Scholar 

  • Ma Y, Prasad M, Rajkumar M, Freitas H (2011a) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29:248–258

    Article  CAS  Google Scholar 

  • Ma Y, Rajkumar M, Luo Y, Freitas H (2011b) Inoculation of endophytic bacteria on host and non-host plants-effects on plant growth and Ni uptake. J Hazard Mater 195:230–237

    Article  CAS  Google Scholar 

  • Malik G, Hood S, Majeed S, Pandey VC (2022). Understanding assisted phytoremediation: potential tools to enhance plant performance. In: Pandey VC (eds) Assisted phytoremediation. Elsevier, Amsterdam, pp 1–24. https://doi.org/10.1016/B978-0-12-822893-7.00015-X

  • Mane PC, Bhosle AB (2012) Bioremoval of some metals by living Algae Spirogyra sp. and Spirullina sp. from aqueous solution. Int J Environ Res 6(2):571–576

    Google Scholar 

  • Mani D, Kumar C, Patel NK (2016) Integrated micro-biochemical approach for phytoremediation of cadmium and lead contaminated soils using Gladiolus grandiflorus L. cut flower. Ecotoxicol Environ Saf 124:435–446

    Article  CAS  Google Scholar 

  • Marmiroli M, Pietrini F, Maestri E, Zacchini M, Marmiroli N, Massacci A (2011) Growth, physiological and molecular traits in Salicaceae trees investigated for phytoremediation of heavy metals and organics. Tree Physiol 31:1319–1334

    Article  CAS  Google Scholar 

  • Marques AP, Rangel AO, Castro PM (2009) Remediation of heavy metal contaminated soils: phytoremediation as a potentially promising clean-up technology. Crit Rev Env Sci Technol 39:622–654. https://doi.org/10.1080/10643380701798272

    Article  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Oxford University Press, London

    Google Scholar 

  • McGrath SP (1998) Phytoextraction for soil remediation. In: Brooks RR (ed) Plants that hyperac-cumulate heavy metals. CABI Publishing, Wallingford, pp 261–287

    Google Scholar 

  • Memon A, Aktoprakligil D, Ozdemir Z, Vertii A (2001) Heavy metal accumulation and detoxification mechanism in plants. Turk J Bot 25:111–121

    Google Scholar 

  • Mesjasz-Przybyłowicz J, Nakonieczny M, Migula P, Augustyniak M, Tarnawska M, Reimold U et al (2004) Uptake of cadmium, lead nickel and zinc from soil and water solutions by the nickel hyperaccumulator Berkheyacoddii. Acta BiolCracoviensia Ser Bot 46:75–85

    Google Scholar 

  • Milner MJ, Kochian LV (2008) Investigating heavy-metal hyperaccumulation using Thlaspi caerulescensas a model system. Ann Bot 102:3–13

    Article  CAS  Google Scholar 

  • Mitch ML (2002) Phytoextraction of toxic metals: a review of biological mechanism. J Environ Qual 31:109–120. https://doi.org/10.2134/jeq2002.1090

    Article  Google Scholar 

  • Mizuno T, Usui K, Horie K, Nosaka S, Mizuno N, Obata H (2005) Cloning of three ZIP/NRAMP transporter genes from a Ni hyperaccumulator plant Thlaspi japonicum and their Ni 2þ-transport abilities. Plant Physiol Biochem 43:793–801

    Article  CAS  Google Scholar 

  • Morel M, Crouzet J, Gravot A, Auroy P, Leonhardt N, Vavasseur A, Richaud P (2008) AtHMA3, a P1B-ATPase allowing Cd/Zn/Co/Pb vacuolar storage in Arabidopsis. Plant Physiol 149:894–904

    Article  Google Scholar 

  • Mosa KA, Saadoun I, Kumar K, Helmy M, Dhankher OP (2016) Potential biotechnological strategies for the cleanup of heavy metals and metalloids. Frontiers Plant Sci 7:303. https://doi.org/10.3389/fpls.2016.00303

    Article  Google Scholar 

  • Muradoglu F, Gundogdu M, Ercisli S, Encu T, Balta F, Jaafar HZE, Zia-Ul-Haq M (2015) Cadmium toxicity affects chlorophyll a and b content, antioxidant enzyme activities and mineral nutrient accumulation in strawberry. Biol Res 48:1–7. https://doi.org/10.1186/S40659-015-0001-3

    Article  Google Scholar 

  • Ortiz DF, Theresa R, McCue KF, Ow DW (1995) Transport of metal-binding peptides by HMT1, a fission yeast ABC-type vacuolar membrane protein. J Biol Chem 270(9):4721–4728

    Article  CAS  Google Scholar 

  • Pandey VC (2020) Phytomanagement of fly ash. Elsevier (Authored book), ISBN: 9780128185445. https://doi.org/10.1016/C2018-0-01318-3, pp 334

  • Pandey VC, Bajpai O (2019) Phytoremediation: from theory towards practice. In: Pandey VC, Bauddh K (eds) Phytomanagement of polluted sites. Elsevier, Amsterdam, pp 1–49. https://doi.org/10.1016/B978-0-12-813912-7.00001-6

  • Pandey VC, Singh V (2019) Exploring the potential and opportunities of recent tools for removal of hazardous materials from environments. In: Pandey VC, Bauddh K (eds) Phytomanagement of polluted sites. Elsevier, Amsterdam, pp 501–516. https://doi.org/10.1016/B978-0-12-813912-7.00020-X

  • Pandey VC, Singh N (2010) Impact of fly ash incorporation in soil systems. Agr Ecosyst Environ 136:16–27. https://doi.org/10.1016/j.agee.2009.11.013

    Article  Google Scholar 

  • Pathak S, Agarwal AV, Pandey VC (2020) Phytoremediation—a holistic approach for remediation of heavy metals and metalloids. In: Pandey VC, Singh V (eds) Bioremediation of pollutants. Elsevier, Amsterdam, pp 3–14. https://doi.org/10.1016/B978-0-12-819025-8.00001-6

  • Pierart A, Dumat C, Maes AQM, Sejalon-Delmas N (2018) Influence of arbuscular mycorrhizal fungi on antimony phyto-uptake and compartmentation in vegetables cultivated in urban gardens. Chemosphere 191:272–279

    Article  CAS  Google Scholar 

  • Plaza S, Tearall KL, Zhao FJ, Buchner P, McGrath SP, Hawkesford MJ (2007) Expression and functional analysis of metal transporter genes in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens. J Exp Bot 58:1717–1728

    Article  CAS  Google Scholar 

  • Prasad MNV, Freitas HM (2003) Metal hyperaccumulation in plants—biodiversity prospecting for phytoremediation technology. Electron J Biotechnol 6:285–321

    Article  Google Scholar 

  • Puschenreiter M, Türktaş M, Sommer P, Wieshammer G, Laaha G, Wenzel WW, Hauser MT (2010) Differentiation of metallicolous and non-metallicolous Salix caprea populations based on phenotypic characteristics and nuclear microsatellite (SSR) markers. Plant, Cell Environ 33:1641–1655

    Article  CAS  Google Scholar 

  • Rai PK (2008) Phytoremediation of Hg and Cd from industrial effluents using an aquatic free floating macrophyte Azolla pinnata. Int J Phytorem 10:430–439

    Article  CAS  Google Scholar 

  • Rajkumar M, Ma Y, Freitas H (2008) Characterization of metalresistant plant-growth promoting Bacillus weihenstephanensis isolated from serpentine soil. Portugal J Basic Microbiol 48:500–508

    Article  CAS  Google Scholar 

  • Rajkumar M, Sandhya S, Prasad M, Freitas H (2012) Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol Adv 30(6):1562–1574

    Article  CAS  Google Scholar 

  • Rattan RK (2002) Heavy metals in environments-Indian scenario. Fertil News 47:21–40

    CAS  Google Scholar 

  • Rattan RK (2005) Long-term impact of irrigation with sewage effluents on heavy metal content in soils, crops and groundwater—a case study. Agric Ecosys Environ 109:310–322

    Article  CAS  Google Scholar 

  • Rengel Z (2004) Heavy metals as essential nutrients. In: Prasad MNV (ed) Heavy metal stress in plants, 2nd edn. Springer, Berlin

    Google Scholar 

  • Rensing C, Maier RM (2003) Issues underlying use of biosensors to reduce measure bioavailability. Ecotoxicol Environ Sat 56:140–147

    Article  CAS  Google Scholar 

  • Rodriguez L, Lopez-Bellido F, Carnicer A, Alcalde-Morano V (2003) Phytoremediation of mercury-polluted soils using crop plants. Fresen Environ Bull 9:328–332. https://doi.org/10.1007/s11356-019-06563-3

    Article  CAS  Google Scholar 

  • Román-Ponce B, Reza-Vazquez DM, Gutierrez-Paredes S, De Haro-Cruz MJ, Maldonado-Hernandez J, Bahena-Osorio Y et al (2017) Plant growth-promoting traits in rhizobacteria of heavy metal-resistant plants and their effects on Brassica nigra seed germination. Pedosphere 27:511–526

    Article  Google Scholar 

  • Romera E, González F, Ballester A, Blázquez M, Munoz J (2007) Comparative study of biosorption of heavy metals using different types of algae. BioresourTechnol 98:3344–3353

    Article  CAS  Google Scholar 

  • Roosens NH, Willems G, Saumitou-Laprade P (2008) Using Arabidopsis to explore zinc tolerance and hyperaccumulation. Trends Plant Sci 13:208–215

    Article  CAS  Google Scholar 

  • Rzymski P, Niedzielski P, Poniedziałek B, Klimaszyk P (2014) Bioaccumulation of selected metals in bivalves (Unionidae) and Phragmites australis inhabiting a municipal water reservoir. Environ Monitor Asses 186:3199–3212. https://doi.org/10.1007/s10661-013-3610-8

    Article  CAS  Google Scholar 

  • Saha JK, Panwar NR (2013) Environmental pollution in the country in relation to soil quality and human health. In: Manna MC, Biswas AK, Chaudhary RS, Lakaria BL, Rao AS (eds) Kundu S. IISS contribution in frontier areas of soil research, Indian Institute of Soil Science, Bhopal, India, pp 281–306

    Google Scholar 

  • Saha JK, Selladurai R, Coumar MV, Dotaniya ML, Kundu S, Patra AK (2017) Soil pollution-an emerging threat to agriculture. Springer. pp 1–9

    Google Scholar 

  • Sakakibara M, Ohmori Y, Ha NTH, Sano S, Sera K (2011) Phytoremediation of heavy metal contaminated water and sediment by Eleocharis acicularis. Clean Soil Air Water 39:735–741

    Article  CAS  Google Scholar 

  • Sancenon V, Puig S, Mateu-Andres I, Dorcey E, Thiele DJ, Penarrubia L (2004) The Arabidopsis copper transporter COPT1 functions in root elongation and pollen development. J Bio Chem 279:15348–15355

    Article  CAS  Google Scholar 

  • Sandarin TR, Hoffman DR (2007) Bioremediation of organic and metal contaminated environments: effects of metal toxicity, speciation and bioavailability or biodegradation. Environ Bioremd Technol 1–34

    Google Scholar 

  • Sas-Nowosielska A, Galimska-Stypa R, Kucharski R, Zielonka U, Małkowski E, Gray L (2008) Remediation aspect of microbial changes of plant rhizosphere in mercury contaminated soil. Environ Monit Assess 137:101–109. https://doi.org/10.1007/s10661-007-9732-0

    Article  CAS  Google Scholar 

  • Schikora A, Thimm O, Linke B, Buckhout TJ, Müller M, Schmidt W (2006) Expression, localization, and regulation of the iron transporter LeIRT1 in tomato roots. Plant Soil 284:101–108

    Article  CAS  Google Scholar 

  • Sheoran V, Sheoran A, Poonia P (2009) Phytomining: a review. Miner Eng 22:1007–1019. https://doi.org/10.1016/j.mineng.2009.04.001

    Article  CAS  Google Scholar 

  • Shingu Y, Kudo T, Ohsato S, Kimura M, Ono Y, Yamaguchi I, Hamamoto H (2005) Characterization of genes encoding metal tolerance proteins isolated from Nicotiana glauca and Nicotiana tabacum. Biochem Biophys Res Commun 331:675–680

    Article  CAS  Google Scholar 

  • Silva P, Matos M (2016) Assessment of the impact of aluminum on germination, early growth and free proline content in Lactuca sativa L. Ecotoxicol Environ Saf 131:151–156

    Article  CAS  Google Scholar 

  • Simmons RW (2006) Impact of wastewater irrigation on Cd and Pb concentrations in rice straw and paragrass

    Google Scholar 

  • Singh V, Chauhan PK, Kanta R, Dhewa T, Kumar V (2010) Isolation and characterization of Pseudomonas resistant to heavy metals contaminants. Int J Pharm Sci Rev Res 3:164–167

    CAS  Google Scholar 

  • Srivastava M, Ma LQ, Santos JAG (2006) Three new arsenic hyperaccumulating ferns. Sci Total Environ 364:24–31

    Article  CAS  Google Scholar 

  • Srivastava S, Agrawal SB, Mondal MK (2015) A review on progress of heavy metal removal using adsorbents of microbial and plant origin. Environ Sci Pollu Res 22(20):15386–15415

    Article  Google Scholar 

  • Tastan BE, Ertûgrul S, Dönmez G (2010) Efectivebioremoval of reactive dye and heavy metals by Aspergillus versicolor. Bioresource Technol 10(3):870–876

    Google Scholar 

  • Thambavani DS, Prathipa V (2012) Quantitative assessment of soil metal pollution with principal component analysis, geo accumulation index and enrichment index. Asian J Environ Sci 7(2):125–134

    Google Scholar 

  • Tripathi M, Munot HP, Shouch Y, Meyer JM, Goel R (2005) Isolation and functional characterization of siderophore-producing lead- and cadmium-resistant Pseudomonas putida KNP9. Curr Microbiol 5:233–237

    Article  Google Scholar 

  • Ungureanu G, Santos S, Boaventura R, Botelho C (2015) Biosorption of antimony by brown algae S. muticum and A. nodosum. Environ Eng Manag J 14:455–463

    Article  Google Scholar 

  • USEPA (1999) Report on bioavailability of chemical wastes with respect to the potential for soil remediation. T28006: QT-DC-99-003260

    Google Scholar 

  • van de Mortel JE, Villanueva LA, Schat H, Kwekkeboom J, Coughlan S, Moerland PD, Loren V, van Themaat E, Koornneef M, Aarts MGM (2006) Large expression differences in genes for iron and Zn homeostasis, stress response, and lignin biosynthesis distinguish roots of Arabidopsis thaliana and the related metal hyperaccumulator Thlaspicaerulescens. Plant Physiol 142:1127–1147

    Article  Google Scholar 

  • Wackernagel M, Schulz B, Deumling D et al (2002) Tracking the ecological overshoot of the human economy. PNAS, Proc Nat Acad Sci 99:9266–9271

    Article  CAS  Google Scholar 

  • Wang J, Feng X, Anderson CW, **ng Y, Shang L (2012) Remediation of mercury contaminated sites–a review. J Hazard Mater 221:1–18. https://doi.org/10.1016/j.jhazmat.2012.04.035

    Article  CAS  Google Scholar 

  • Wei S, Zhou Q, Saha UK (2008) Hyperaccumulative characteristics of weed species to heavy metals. Water Air Soil Pollut 192:173–181

    Article  CAS  Google Scholar 

  • Weyens N, Croes S, Dupae J, Newman L, van der Lelie D, Carleer R et al (2010) Endophytic bacteria improve phytoremediation of Ni and TCE co-contamination. Environ Pollut 158:2422–2427

    Article  CAS  Google Scholar 

  • Willems G, Drager DB, Courbot M, Gode C, Verbruggen N, Saumitou- Laprade P (2007) The genetic basis of Zn tolerance in the metallophyte Arabidopsis halleri ssp. Halleri (Brassicaceae): an analysis of quantitative trait loci. Genetics 176:659–674

    Article  CAS  Google Scholar 

  • **ao H, Yin L, Xu X, Li T, Han Z (2008) The Iron-regulated transporter, MbNRAMP1, isolated from Malus baccatais involved in Fe, Mn and Cd trafficking. Ann Bot 102:881–889

    Article  CAS  Google Scholar 

  • Yang JX, Liu Y, Ye ZH (2012) Root-Induced changes of pH, Eh, Fe(II) and fractions of Pb and Zn in rhizosphere soils of four wetland plants with different radial oxygen losses. Pedosphere 22:518–527

    Article  CAS  Google Scholar 

  • Yang J, Li K, Zheng W, Zhang H, Cao X, Lan Y, Yang C, Li C (2015) Characterization of early transcriptional responses to cadmium in the root and leaf of Cd-resistant Salix matsudanaKoidz. BMC Genomics 16:705

    Article  Google Scholar 

  • Zhang X, **a H, Li Z, Zhuang P, Gao B (2011) Identification of a new potential Cd-hyperaccumulator Solanum photeinocarpum by soil seed bank-metal concentration gradient method. J Hazard Mater 189:414–419

    Article  CAS  Google Scholar 

  • Zhang M, **an S, Xu J (2020) Heavy metal pollution in the East China sea: a review. Mar Pollut Bull 159:111473

    Article  CAS  Google Scholar 

  • Zhao FJ, Ma JF, Meharg AA, McGrath SP (2009) Arsenic uptake and metabolism in plants. New Phytol 181:777–794

    Article  CAS  Google Scholar 

  • Zhu YG, Kneer R, Tong YP (2004) Vacuolar compartmentalization: a second-generation approach to engineering plants for phytoremediation. Trends Plant Sci 9:7–9

    Article  Google Scholar 

  • Zouboulis A, Loukidou M, Matis K (2004) Biosorption of toxic metals from aqueous solutions by bacteria strains isolated from metal-polluted soils. Process Biochem 39:909–916

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumita Chandel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chandel, S., Dar, R.A., Singh, D., Thakur, S., Kaur, R., Singh, K. (2023). Plant Assisted Bioremediation of Heavy Metal Polluted Soils. In: Pandey, V.C. (eds) Bio-Inspired Land Remediation. Environmental Contamination Remediation and Management. Springer, Cham. https://doi.org/10.1007/978-3-031-04931-6_4

Download citation

Publish with us

Policies and ethics

Navigation