A Mechanism to Maintain Node Integrity in Decentralised Systems

  • Chapter
  • First Online:
Big Data Privacy and Security in Smart Cities

Abstract

This paper presents a mechanism to maintain node integrity of decentralised systems consisted of nodes or microservices. The mechanism addresses total counts of nodes or micro-services in a decentralised systems. The proposed mechanism is a further development of a decentralised security model named Ki-Ngā-Kōpuku. Decentralised systems where the total number of active nodes matters to maintain the integrity of the system, it is important for the nodes to form a closed group among the valid nodes; as well as be aware of any node that becomes inactive or of any foreign node that may want to join the closed group of nodes. The nodes of a decentralised system need to be aware of the members of other nodes in the same group of nodes, and need to be able to raise alarm in the event of any changes in total number of nodes for whatever is the reason. The mechanism presented in this paper is a proposed solution to maintain integrity of a decentralised system in terms of number of nodes. The mechanism relies on beacon transmission to achieve its goal. The concept of the proposed mechanism applies to other contexts, for example, where a system consists of multiple micro-services.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lasi H, Fettke P, Kemper H, Feld T, Hoffmann M (2014) Industry 4.0. Bus Inf Syst Eng 6(4):239–242. https://doi.org/10.1007/s12599-014-0334-4

    Article  Google Scholar 

  2. Haseeb M, Hussain H, Ślusarczyk B, Jermsittiparsert K (2019) Industry 4.0: a solution towards technology challenges of sustainable business performance. Soc Scie 8(5):154. https://doi.org/10.3390/socsci8050154

  3. Farwell J, Rohozinski R (2011) Stuxnet and the future of cyber war. Survival 53(1):23–40. https://doi.org/10.1080/00396338.2011.555586

    Article  Google Scholar 

  4. Trautman LJ, Ormerod PC (2017) Industrial cyber vulnerabilities: lessons from Stuxnet and the Internet of Things. U Miami L Rev 72:761

    Google Scholar 

  5. Falliere N, Murchu LO, Chien E (2011) W32. stuxnet dossier. In: White paper, symantec corp., security response, vol 5, no 6, p 29

    Google Scholar 

  6. Ahmed M (2018) Ki-Ngā-Kōpuku: a decentralised, distributed security model for cloud computing. Auckland University of Technology

    Google Scholar 

  7. Fanaeepour M, Kangavari M (2010) Malicious node detection system in wireless sensor networks: a decentralised approach. Int J Internet Technol Secured Trans 2(12):88. https://doi.org/10.1504/ijitst.2010.031473

    Article  Google Scholar 

  8. Dong P et al (2020) Edge computing based healthcare systems: enabling decentralized health monitoring in internet of medical things. IEEE Netw 34(5):254–261. https://doi.org/10.1109/MNET.011.1900636

    Article  Google Scholar 

  9. Bengio Y et al (2021) Inherent privacy limitations of decentralized contact tracing apps. J Am Med Inf Assoc 28(1):193–195. https://doi.org/10.1093/jamia/ocaa153

    Article  Google Scholar 

  10. Hao Y, Duan Z, Chen G (2018) Decentralised fixed modes of networked MIMO systems. Int J Control 91(4):859–873. https://doi.org/10.1080/00207179.2017.1295318

    Article  MathSciNet  Google Scholar 

  11. Melekhova O, Malenfant J, Mescheriakov R, Chueshev A (2018) A decentralised solution for coordinating decisions in large-scale autonomic systems. In: MATEC web of conferences, vol 161, p 03024. https://doi.org/10.1051/matecconf/201816103024

  12. Chen Y, Zhao G, Li A, Deng B, Li X (2009) Handling node churn in decentralised network coordinate system. IET Commun 3(10):1578. https://doi.org/10.1049/iet-com.2008.0671

    Article  Google Scholar 

  13. Hurst W, Shone N, El Rhalibi A, Happe A, Kotze B, Duncan B (2017) Advancing the micro-CI testbed for IoT cyber-security research and education. Cloud Comput 2017:139

    Google Scholar 

  14. Waller A, Craddock R (2011) Managing runtime re-engineering of a System-of-Systems for cyber security. In: 2011 6th International conference on system of systems engineering, pp 13–18. https://doi.org/10.1109/SYSOSE.2011.5966566

  15. Raje S, Vaderia S, Wilson N, Panigrahi R (2017) Decentralised firewall for malware detection. In: 2017 International conference on advances in computing, communication and control (ICAC3), pp 1–5. https://doi.org/10.1109/ICAC3.2017.8318755

  16. Li H, Venugopal S (2013) Efficient node bootstrap** for decentralised shared-nothing key-value stores. Middleware 2013:348–367. https://doi.org/10.1007/978-3-642-45065-5_18

    Article  Google Scholar 

  17. Wood G (2014) Ethereum: a secure decentralised generalised transaction ledger. In: Ethereum Project yellow paper, vol 151, no 2014, pp 1–32

    Google Scholar 

  18. Khan M, Lawal I (2020) Sec-IoT: a framework for secured decentralised IoT using blockchain-based technology. In: Proceedings of fifth international congress on information and communication technology, pp 269-277. https://doi.org/10.1007/978-981-15-5856-6_27

  19. Tejaswini B, Ashwini S, Shilpashree S (2018) Protected Data Reclamation for decentralised disruption-forbearing In wireless sensor network. Int J Eng Res Technol (IJERT)

    Google Scholar 

  20. Manfredi S, Di Tucci E A decentralised topology control to regulate global properties of complex networks. Eur Phys J B 90(4):https://doi.org/10.1140/epjb/e2017-70586-9

  21. Xu Y, Huang Y (2020) An n/2 byzantine node tolerate blockchain sharding approach. In: Proceedings of the 35th annual ACM symposium on applied computing. https://doi.org/10.1145/3341105.3374069

  22. Lin C, Shen Z, Chen Q, Sheldon F (2017) A data integrity verification scheme in mobile cloud computing. J Netw Comput Appl 77:146–151. https://doi.org/10.1016/j.jnca.2016.08.017

    Article  Google Scholar 

  23. Spathoulas G et al (2018) Towards reliable integrity in blacklisting: facing malicious IPs in GHOST smart contracts. Innov Intell Syst Appl (INISTA) 2018:1–8. https://doi.org/10.1109/INISTA.2018.8466327

    Article  Google Scholar 

  24. Schiffman J, Moyer T, Shal C, Jaeger T, McDaniel P (2009) Justifying integrity using a virtual machine verifier. In: Annual computer security applications conference, pp 83–92. https://doi.org/10.1109/ACSAC.2009.18

  25. Altulyan M, Yao L, Kanhere S, Wang X, Huang C (2020) A unified framework for data integrity protection in people-centric smart cities. Multimedia Tools Appl 79(7–8):4989–5002. https://doi.org/10.1007/s11042-019-7182-7

    Article  Google Scholar 

  26. Ezéchiel K, Ojha S, Agarwal R (2020) A new eager replication approach using a non-blocking protocol over a decentralized P2P architecture. Int J Distrib Syst Technol 11(2):69–100. https://doi.org/10.4018/ijdst.2020040106

    Article  Google Scholar 

  27. Ghanati G, Azadi S (2020) Decentralized robust control of a vehicle’s interior sound field. J Vibr Control 26(19–20):1815–1823. https://doi.org/10.1177/1077546320907760

    Article  MathSciNet  Google Scholar 

  28. Sumathi M, Sangeetha S (2020) Blockchain based sensitive attribute storage and access monitoring in banking system. Int J Cloud Appl Comput 10(2):77–92. https://doi.org/10.4018/ijcac.2020040105

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monjur Ahmed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ahmed, M., Bhuiyan, M.M.A. (2022). A Mechanism to Maintain Node Integrity in Decentralised Systems. In: Jiang, R., et al. Big Data Privacy and Security in Smart Cities. Advanced Sciences and Technologies for Security Applications. Springer, Cham. https://doi.org/10.1007/978-3-031-04424-3_4

Download citation

Publish with us

Policies and ethics

Navigation