Salihli Granitoid, Menderes Massif, Western Anatolia: A Sustainable Clean Energy Source for Mitigating CO2 Emissions

  • Conference paper
  • First Online:
Climate Change, Natural Resources and Sustainable Environmental Management (NRSEM 2021)

Abstract

Turkey has a great opportunity to promote renewable energy, which is produced from high heat-generating granitoids using EGS (Enhanced Geothermal Systems) technology. Exploiting the energy from the radiogenic granitoid will help the country save about 32211 million kg of CO2 from gas-based electricity power plants. In addition to the hydrothermal energy sources, energy from EGS will make the country free from energy deficit and provide sustainable power, water, and food. In the present paper, we assess the power generation capacity of Salihli granitoid (SG), with an outcrop** area of about 100 km2 located within the western Anatolian plateau, and describe the technology involved in harnessing the heat from these granitoids. The Anatolian Plateau is known for extension tectonics and is explained by the westward tectonic escape and subduction rollback processes. The most prominent structures of western Anatolia are E-W and ENE-WSW trending graben and horst controlled by low and high-angle oblique to dip-slip normal faults, exposing the Menderes Massif. Magmatic activity in western Anatolia is mainly related to episodic-two stage extensional regime, where the early phase is characterized mainly by calc-alkaline Early-Middle Miocene felsic lavas and pyroclastic and the latter by late Miocene-Quaternary rift-related alkaline basaltic volcanism. The plutonic activity started during 12 to 15 Ma represented by SG. The heat generation capacity of the SG varies from 5.5 to 6.7 (µW/m3), while the heat flow values over SG range from 68 to 107 HF (mW/m2). These values are much higher compared to the global average crustal values.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. International Energy Agency. Energy Technology Perspectives 2014 (Harnessing Electricity’s Potential Explore the data behind ETP) (2014). https://doi.org/10.1787/energy_tech-2010-en

  2. International Energy Agency. Review 2021 Assessing the effects of economic recoveries on global energy demand and CO 2 emissions in 2021 Global Energy (2021). www.iea.org/t&c/. Accessed: 19 Oct 2021

  3. “Turkey’s National Climate Change Adaptation Strategy and Action Plan,” 2011

    Google Scholar 

  4. World Energy Outlook 2020 – Analysis - IEA (2020). https://www.iea.org/reports/world-energy-outlook-2020

  5. Catlos, E.J., Baker, C.B., Sorensen, S.S., Jacob, L., Çemen, I.: Linking microcracks and mineral zoning of detachment-exhumed granites to their tectonomagmatic history: evidence from the Salihli and Turgutlu plutons in western Turkey (Menderes Massif). J. Struct. Geol. 33(5), 951–969 (2011). https://doi.org/10.1016/j.jsg.2011.02.005

    Article  Google Scholar 

  6. Jolivet, L., Brun, J.P.: Cenozoic geodynamic evolution of the Aegean. Int. J. Earth Sci. 99(1), 109–138 (2010). https://doi.org/10.1007/s00531-008-0366-4

    Article  CAS  Google Scholar 

  7. Ketin, İ.: Anadolu’nun tektonik birlikleri. Maden Tetk. ve Aram. Derg. 66(66) (1966)

    Google Scholar 

  8. Sengör, A.M.C., Yilmaz, Y.: Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics 75(3–4) (1981). https://doi.org/10.1016/0040-1951(81)90275-4

  9. Okay, A.I., Tüysüz, O.: Tethyan sutures of northern Turkey. Geol. Soc. Spec. Publ. 156, 475–515 (1999). https://doi.org/10.1144/GSL.SP.1999.156.01.22

    Article  Google Scholar 

  10. Okay, A.I., Harris, N.B.W., Kelley, S.P.: Exhumation of blueschists along a Tethyan suture in northwest Turkey. Tectonophysics 285(3–4), 275–299 (1998). https://doi.org/10.1016/S0040-1951(97)00275-8

    Article  CAS  Google Scholar 

  11. Okay, A.I.: Stratigraphic and metamorphic inversions in the central Menderes Massif: a new structural model. Int. J. Earth Sci. 89(4), 709–727 (2001). https://doi.org/10.1007/s005310000098

    Article  CAS  Google Scholar 

  12. Pourteau, A., Sudo, M., Candan, O., Lanari, P., Vidal, O., Oberhänsli, R.: Neotethys closure history of Anatolia: Insights from 40Ar-39Ar geochronology and P-T estimation in high-pressure metasedimentary rocks. J. Metamorph. Geol. 31(6), 585–606 (2013). https://doi.org/10.1111/jmg.12034

    Article  CAS  Google Scholar 

  13. Seyitoǧlu, G., Scott, B.: Late Cenozoic crustal extension and basin formation in west Turkey. Geol. Mag. 128(2), 155–166 (1991). https://doi.org/10.1017/S0016756800018343

    Article  Google Scholar 

  14. Seyitoğlu, G., Scott, B.C., Rundle, C.C.: Timing of Cenozoic extensional tectonics in west Turkey. J. Geol. Soc. London. 149(4), 533–538 (1992). https://doi.org/10.1144/GSJGS.149.4.0533

    Article  Google Scholar 

  15. Seyitoǧlu, G., Scott, B.C.: The cause of N-S extensional tectonics in western Turkey: tectonic escape vs back-arc spreading vs orogenic collapse. J. Geodyn. 22(1–2), 145–153 (1996)

    Article  Google Scholar 

  16. Jolivet, L., Goffé, B., Monié, P., Truffert-Luxey, C., Patriat, M., Bonneau, M.: Miocene detachment in Crete and exhumation P-T-t paths of high-pressure metamorphic rocks. Tectonics 15(6), 1129–1153 (1996)

    Article  Google Scholar 

  17. Hetzel, R., Ring, U., Akal, C., Troesch, M.: Miocene NNE-directed extensional unroofing in the Menderes Massif, southwestern Turkey. J. Geol. Soc. London. 152(4), 639–654 (1995). https://doi.org/10.1144/GSJGS.152.4.0639

    Article  CAS  Google Scholar 

  18. Gessner, K., Gallardo, L.A., Markwitz, V., Ring, U., Thomson, S.N.: What caused the denudation of the Menderes Massif: review of crustal evolution, lithosphere structure, and dynamic topography in southwest Turkey. Gondwana Res. 24(1), 243–274 (2013). https://doi.org/10.1016/J.GR.2013.01.005

    Article  Google Scholar 

  19. Gessner, K., Piazolo, S., Güngör, T., Ring, U., Kröner, A., Passchier, C.W.: Tectonic significance of deformation patterns in granitoid rocks of the Menderes nappes, Anatolide belt, southwest Turkey. Int. J. Earth Sci. 89(4), 766–780 (2001). https://doi.org/10.1007/S005310000106

    Article  CAS  Google Scholar 

  20. Ring, U., Johnson, C., Hetzel, R., Gessner, K.: Tectonic denudation of a Late Cretaceous-Tertiary collisional belt: regionally symmetric cooling patterns and their relation to extensional faults in the Anatolide belt of western Turkey. Geol. Mag. 140(4), 421–441 (2003). https://doi.org/10.1017/S0016756803007878

    Article  Google Scholar 

  21. Ring, U., Collins, A.S.: U–Pb SIMS dating of synkinematic granites: timing of core-complex formation in the northern Anatolide belt of western Turkey. J. Geol. Soc. London. 162(2), 289–298 (2005)

    Article  CAS  Google Scholar 

  22. Thomson, S.N., Ring, U.: Thermochronologic evaluation of postcollision extension in the Anatolide orogen, western Turkey. Tectonics 25(3), 3005 (2006). https://doi.org/10.1029/2005TC001833

    Article  Google Scholar 

  23. Rossetti, F., Asti, R., Faccenna, C., Gerdes, A., Lucci, F., Theye, T.: Magmatism and crustal extension: constraining activation of the ductile shearing along the Gediz detachment, Menderes Massif (western Turkey). Lithos 282–283, 145–162 (2017). https://doi.org/10.1016/J.LITHOS.2017.03.003

    Article  Google Scholar 

  24. Bozkurt, E., Oberhänsli, R.: Menderes Massif (Western Turkey): structural, metamorphic and magmatic evolution - a synthesis. Int. J. Earth Sci. 89(4), 679–708 (2001). https://doi.org/10.1007/S005310000173

    Article  Google Scholar 

  25. Hetzel, R., Passchier, C.W., Ring, U., Dora, O.O.: Bivergent extension in orogenic belts: the Menderes Massif (southwestern Turkey). Geology 23(5), 455–458 (1995). https://doi.org/10.1130/0091-7613(1995)023%3c0455:BEIOBT%3e2.3.CO;2

    Article  Google Scholar 

  26. Sözbilir, H.: Extensional Tectonics and the Geometry of Related Macroscopic Structures: Field Evidence from the Gediz Detachment. Western Turkey. Turkish J. Earth Sci. 10(2), 51–67 (2001)

    Google Scholar 

  27. Seyitoğlu, G., Tekeli, O., Çemen, İ, Şen, Ş, Işık, V.: The role of the flexural rotation/rolling hinge model in the tectonic evolution of the Alaşehir graben, western Turkey. Geol. Mag. 139(1), 15–26 (2002)

    Article  Google Scholar 

  28. Isik, V., Seyitoǧlu, G., Çemen, I.: Ductile–brittle transition along the Alaşehir detachment fault and its structural relationship with the Simav detachment fault, Menderes massif, western Turkey. Tectonophysics 374(1–2), 1–18 (2003). https://doi.org/10.1016/S0040-1951(03)00275-0

    Article  Google Scholar 

  29. Bozkurt, E., Sözbilir, H.: Tectonic evolution of the Gediz Graben: Field evidence for an episodic, two-stage extension in western Turkey. Geol. Mag. 141(1), 63–79 (2004). https://doi.org/10.1017/S0016756803008379

    Article  Google Scholar 

  30. Buscher, J.T., et al.: Quantifying rates of detachment faulting and erosion in the central Menderes Massif (western Turkey) by thermochronology and cosmogenic 10Be. J. Geol. Soc. London. 170(4), 669–683 (2013)

    Article  CAS  Google Scholar 

  31. Cemen, I., et al.: Kinematics of post-collisional extensional tectonics and exhumation of the Menderes massif in the western Anatolia extended terrane, Turkey. AGUFM, vol. 2006, pp. T41E-01 (2006). Accessed 19 Oct 2021

    Google Scholar 

  32. Dilek, Y., Altunkaynak, Ş, Öner, Z.: Syn-extensional granitoids in the Menderes core complex and the late Cenozoic extensional tectonics of the Aegean province. Geol. Soc. Spec. Publ. 321, 197–223 (2009)

    Article  Google Scholar 

  33. Catlos, E.J., Baker, C.B., Çemen, I., Ozerdem, C.: Whole rock major element influences on monazite growth: examples from igneous and metamorphic rocks in the Menderes Massif, western Turkey. Mineralogia 39(1–2), 7–30 (2008). https://doi.org/10.2478/v10002-008-0002-8

    Article  Google Scholar 

  34. Catlos, E.J., Baker, C., Sorensen, S.S., Çemen, I., Hançer, M.: Geochemistry, geochronology, and cathodoluminescence imagery of the Salihli and Turgutlu granites (central Menderes Massif, western Turkey): Implications for Aegean tectonics. Tectonophysics 488(1–4), 110–130 (2010)

    Article  CAS  Google Scholar 

  35. Alpine orogeny - Wikipedia. https://en.wikipedia.org/wiki/Alpine_orogeny. Accessed 19 Oct 2021

  36. Akbaş, B., et al.: Geological Map of Turkey, 1:1.250.000 scaled. General Directorate of Mineral Research and Exploration Publication, Ankara-Turkey (2011)

    Google Scholar 

  37. Candan, O., et al.: Late Neoproterozoic gabbro emplacement followed by early Cambrian eclogite-facies metamorphism in the Menderes Massif (W. Turkey): implications on the final assembly of Gondwana. Gondwana Res. 34, 158–173 (2016). https://doi.org/10.1016/j.gr.2015.02.015

    Article  CAS  Google Scholar 

  38. Tatar Erkül, S., Özmen, S.F., Erkül, F., Boztosun, İ.: Comparison between natural radioactivity levels and geochemistry of some granitoids in western Turkey. Turkish J. Earth Sci. 25(3), 242–255 (2016). https://doi.org/10.3906/yer-1511-6

  39. Seyitoğlu, G., Çemen, İ, Tekeli, O.: Extensional folding in the Alaşehir (Gediz) graben, western Turkey. J. Geol. Soc. London. 157(6), 1097–1100 (2000). https://doi.org/10.1144/JGS.157.6.1097

    Article  Google Scholar 

  40. Purvis, M., Robertson, A.: Sedimentation of the Neogene-Recent Alaşehir (Gediz) continental graben system used to test alternative tectonic models for western (Aegean) Turkey. Sediment. Geol. 173(1–4), 373–408 (2005). https://doi.org/10.1016/J.SEDGEO.2003.08.005

    Article  Google Scholar 

  41. Seyitoǧlu, G., Koçyiǧit, A., Bozkurt, E., Yusufoǧlu, H.: Discussion on evidence from the Gediz Graben for episodic two-stage extension in western Turkey. J. Geol. Soc. London. 156(6), 1240–1242 (1999). https://doi.org/10.1144/GSJGS.156.6.1240

    Article  Google Scholar 

  42. Emre, T.: Gediz grabeni’nin (Salihli-Alasehir arasi) jeolojisi. no. 45 (1992)

    Google Scholar 

  43. Roche, V., et al.: Structural, lithological, and geodynamic controls on geothermal activity in the Menderes geothermal Province (Western Anatolia, Turkey). Int. J. Earth Sci. 108(1), 301–328 (2018). https://doi.org/10.1007/s00531-018-1655-1

    Article  CAS  Google Scholar 

  44. Asti, R., et al.: The Gediz Supradetachment system (SW Turkey): magmatism, tectonics, and sedimentation during crustal extension. Tectonics 38(4), 1414–1440 (2019). https://doi.org/10.1029/2018TC005181

    Article  Google Scholar 

  45. Emre, F., Duman, Ö., Özalp, T.Y., Elmacı, S., Olgun, H., Şaroğlu, Ş.: Active fault map of turkey with an explanatory text. 1:1,250,000 Scale. General Directorate of Mineral Research and Exploration, Special Publication Series-30, Ankara-Turkey (2013). ISBN: 978-605-5310-56-1

    Google Scholar 

  46. Mclaren, S., Sandiford, M., Powell, R., Neumann, N., Woodhead, J.: Palaeozoic intraplate crustal anatexis in the Mount Painter Province, South Australia: timing, thermal budgets and the role of crustal heat production. J. Petrol. 47(12), 2281–2302 (2006). https://doi.org/10.1093/PETROLOGY/EGL044

    Article  CAS  Google Scholar 

  47. Mareschal, J.C., Jaupart, C.: Radiogenic heat production, thermal regime and evolution of continental crust. Tectonophysics 609, 524–534 (2013). https://doi.org/10.1016/J.TECTO.2012.12.001

    Article  Google Scholar 

  48. Jaupart, C., Mareschal, J.C.: Post-orogenic thermal evolution of newborn Archean continents. Earth Planet. Sci. Lett. 432, 36–45 (2015). https://doi.org/10.1016/J.EPSL.2015.09.047

    Article  CAS  Google Scholar 

  49. Jaupart, C., Mareschal, J.C., Iarotsky, L.: Radiogenic heat production in the continental crust. Lithos 262, 398–427 (2016). https://doi.org/10.1016/J.LITHOS.2016.07.017

    Article  CAS  Google Scholar 

  50. Pleitavino, M., Carro Pérez, M.E., García Aráoz, E., Cioccale, M.A.: Radiogenic heat production in granitoids from the Sierras de Córdoba, Argentina. Geothermal Energy 9(1), 1–24 (2021). https://doi.org/10.1186/s40517-021-00198-9

    Article  Google Scholar 

  51. Haenel, R., Rybach, L., Stegena, L.: Fundamentals of Geothermics. Handb. Terr. Heat-Flow Density Determ., pp. 9–57 (1988). https://doi.org/10.1007/978-94-009-2847-3_2

  52. Lachenbruch, A.H.: Preliminary geothermal model of the Sierra Nevada. J. Geophys. Res. 73(22), 6977–6989 (1968). https://doi.org/10.1029/JB073I022P06977

    Article  Google Scholar 

  53. Tezel, T., Shibutani, T., Kaypak, B.: Crustal thickness of Turkey determined by receiver function. J. Asian Earth Sci. 75, 36–45 (2013). https://doi.org/10.1016/j.jseaes.2013.06.016

    Article  Google Scholar 

  54. Massachusetts Institute of Technology. The future of geothermal energy (2006)

    Google Scholar 

  55. Chandrasekharam, D., Lashin, A., Al Arafi, N., Varun, C., Al Bassam, A.: Climate change mitigation strategy through utilization of geothermal energy resources from Western Arabian Shield, Saudi Arabia. J. Clim. Chang. 1(1–2), 129–134 (2015). https://doi.org/10.3233/JCC-150011

  56. Aydin, I., Karat, H.I., Koçak, A.: Curie-point depth map of Turkey. Geophys. J. Int. 162(2), 633–640 (2005). https://doi.org/10.1111/j.1365-246X.2005.02617.x

    Article  Google Scholar 

  57. Ozgenc, I. Ilbeyli, N.: Petrogenesis of the Late Cenozoic Egrigöz Pluton in Western Anatolia, Turkey: implications for magma genesis and crustal processes. 50(4), 375–391 (2008). https://doi.org/10.2747/0020-6814.50.4.375

  58. Akay, E.: Geology and petrology of the Simav Magmatic Complex (NW Anatolia) and its comparison with the Oligo-Miocene granitoids in NW Anatolia: implications on Tertiary tectonic evolution of the region. Int. J. Earth Sci. 98(7), 1655–1675 (2009). https://doi.org/10.1007/s00531-008-0s325-0

    Article  CAS  Google Scholar 

  59. Erkül, S.T., Erkül, F.: Magma interaction processes in syn-extensional granitoids: the tertiary Menderes metamorphic core complex, western Turkey. Lithos 142–143, 16–33 (2012)

    Article  Google Scholar 

  60. Bilim, F., Akay, T., Aydemir, A., Kosaroglu, S.: Curie point depth, heat-flow and radiogenic heat production deduced from the spectral analysis of the aeromagnetic data for geothermal investigation on the Menderes Massif and the Aegean Region, western Turkey. Geothermics 60, 44–57 (2016). https://doi.org/10.1016/J.GEOTHERMICS.2015.12.002

    Article  Google Scholar 

  61. Erkül, S.T., Erkül, F.: Magma interaction processes in syn-extensional granitoids: the Tertiary Menderes Metamorphic Core Complex, western Turkey. Lithos 142–143, 16–33 (2012)

    Article  Google Scholar 

  62. Difiglio, C., Guray, B.S., Merdan, E.: Turkey Energy Outlook (2020)

    Google Scholar 

  63. Chandrasekharam, D., Baba, A.: High heat generating granites of Kestanbol: future Enhanced Geothermal System (EGS) province in Western Anatolia. J Earth Sci, Spec. (in press)

    Google Scholar 

  64. Erdin, C., Ozkaya, G.: Turkey’s 2023 energy strategies and investment opportunities for renewable energy sources: site selection based on ELECTRE. Sustainability 11(7), 2136 (2019)

    Article  CAS  Google Scholar 

  65. WECTNC. Energy report of Turkey for 2009 (2009)

    Google Scholar 

  66. Chandrasekharam, D., Baba, A.: Carbon dioxide emissions mitigation strategy through Enhanced Geothermal systems: western Anatolia, Turkey. Environ. Earth Sci. (under review)

    Google Scholar 

  67. Turkey Natural Gas: Imports, 1975 – 2021 | CEIC Data (2021). https://www.ceicdata.com/en/indicator/turkey/natural-gas-imports. Accessed 20 Oct 2021

  68. Baba, A., et al.: Assessment of opportunities and interest in direct uses of geothermal energy (2021)

    Google Scholar 

  69. International Energy Agency. Turkey 2021: Energy Policy Review (2021)

    Google Scholar 

  70. Koelbel, T., Genter, A.: Enhanced geothermal systems: the Soultz-sous-Forêts project. In: Uyar, T.S. (ed.) Towards 100% Renewable Energy. SPE, pp. 243–248. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-45659-1_25

    Chapter  Google Scholar 

  71. Letcher, T.M.: Future energy: improved, sustainable and clean options for our planet (2013). Accessed 20 Oct 2021. https://www.researchgate.net/publication/27718079

  72. Chandrasekharam, D., Lashin, A., Al Arifi, N.: The potential contribution of geothermal energy to electricity supply in Saudi Arabia 35(9), 824–833 (2014). https://doi.org/10.1080/14786451.2014.950966

  73. Chandrasekharam, D., Lashin, A., Al Arifi, N., Bassam, A.: Red Sea Geothermal Provinces, p. 220. CRC Press, London (2016)

    Google Scholar 

  74. Lashin, A., Chandrasekharam, D., Al Arifi, N., Al Bassam, A., Varun, C.: Geothermal energy resources of wadi Al-Lith, Saudi Arabia. J. African Earth Sci. 97, 357–367 (2014). https://doi.org/10.1016/J.JAFREARSCI.2014.05.016

  75. Omenda, D., Varun, P., Chandrasekharam, C.: High heat generating granites of East Africa: Possible EGS sources. In: Proceedings of the 4th African Rift Geothermal Conference Nairobi, Kenya, 2012, pp. 1–4 (2012)

    Google Scholar 

Download references

Acknowledgments

This paper is part of the EGS project funded by TUBITAK (project No:120C079) through a Fellowship grant to DC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tolga Ayzit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ayzit, T., Chandrasekharam, D., Baba, A. (2022). Salihli Granitoid, Menderes Massif, Western Anatolia: A Sustainable Clean Energy Source for Mitigating CO2 Emissions. In: Gökçekuş, H., Kassem, Y. (eds) Climate Change, Natural Resources and Sustainable Environmental Management. NRSEM 2021. Environmental Earth Sciences. Springer, Cham. https://doi.org/10.1007/978-3-031-04375-8_31

Download citation

Publish with us

Policies and ethics

Navigation