Liquid Biopsies: Flowing Biomarkers

  • Chapter
  • First Online:
Microfluidics and Biosensors in Cancer Research

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1379))

Abstract

Metastatic dissemination accounts for most of the death in patients during cancer progression. There is thus an urge to identify specific biomarkers as proxies for cancer progression and assessment of treatment efficiency. Cancer is a systemic disease involving the shuttling of tumor cells and tumor secreted factors to distant organs, mostly via biofluids. During this transfer, these factors are accessible for easy sampling and therefore constitute a unique source of information witnessing the presence and the evolution of the disease. Hence, liquid biopsies offer multiple advantages, including simple and low-invasive sampling procedures, low cost, and higher compliance. Importantly, liquid biopsies are adapted to personalized medicine allowing a longitudinal follow-up to monitor treatment efficiency or resistance, and risk of relapse.

The evolution of methodologies to isolate circulating tumor cells (CTCs) and extracellular vesicles (EVs) from blood samples associated with the characterization of their membrane surface repertoire and content have been instrumental in the emergence of liquid biopsies as an easy and non-invasive alternative as opposed to classical surgery-mediated tumor biopsies.

In this chapter, we comment on CTCs and EVs carrying features with great potential as cancer biomarkers. More specifically, we focus on the adhesive and mechanical properties of CTCs as metastatic markers. We also consider the recent development of EVs isolation methods and the identification of new biomarkers. Finally, we discuss their relevance as cancer prognosis tools.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Srivastava S, Koay EJ, Borowsky AD et al (2019) Cancer overdiagnosis: a biological challenge and clinical dilemma. Nat Rev Cancer 19:349–358. https://doi.org/10.1038/S41568-019-0142-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Siegel RL, Miller KD, Jemal A (2020) Cancer statistics, 2020. CA Cancer J Clin 70:7–30. https://doi.org/10.3322/CAAC.21590

    Article  PubMed  Google Scholar 

  3. Alix-Panabières C (2020) The future of liquid biopsy. Nature 579:S9. https://doi.org/10.1038/D41586-020-00844-5

    Article  PubMed  Google Scholar 

  4. Alix-Panabières C, Pantel K (2021) Liquid biopsy: from discovery to clinical application. Cancer Discov 11:858–873. https://doi.org/10.1158/2159-8290.CD-20-1311

    Article  PubMed  Google Scholar 

  5. Zhou E, Li Y, Wu F et al (2021) Circulating extracellular vesicles are effective biomarkers for predicting response to cancer therapy. EBioMedicine 67:103365. https://doi.org/10.1016/j.ebiom.2021.103365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lambert AW, Pattabiraman DR, Weinberg RA (2017) Emerging biological principles of metastasis. Cell 168:670–691. https://doi.org/10.1016/j.cell.2016.11.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Friedl P, Wolf K, Lammerding J (2011) Nuclear mechanics during cell migration. Curr Opin Cell Biol 23:55–64

    Article  CAS  Google Scholar 

  8. Eddy RJ, Weidmann MD, Sharma VP, Condeelis JS (2017) Tumor cell invadopodia: invasive protrusions that orchestrate metastasis. Trends Cell Biol 27:595–607. https://doi.org/10.1016/j.tcb.2017.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ozimski LL, Gremmelspacher D, Aceto N (2021) A fatal affair: circulating tumor cell relationships that shape metastasis. iScience 24:103073. https://doi.org/10.1016/j.isci.2021.103073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Follain G, Herrmann D, Harlepp S et al (2020) Fluids and their mechanics in tumour transit: sha** metastasis. Nat Rev Cancer 20:107–124. https://doi.org/10.1038/s41568-019-0221-x

    Article  CAS  PubMed  Google Scholar 

  11. Obenauf AC, Massagué J (2015) Surviving at a distance: organ-specific metastasis. Trends Cancer 1:76–91. https://doi.org/10.1016/j.trecan.2015.07.009

    Article  PubMed  PubMed Central  Google Scholar 

  12. Klein CA (2020) Cancer progression and the invisible phase of metastatic colonization. Nat Rev Cancer 20:681–694. https://doi.org/10.1038/s41568-020-00300-6

    Article  CAS  PubMed  Google Scholar 

  13. Phan TG, Croucher PI (2020) The dormant cancer cell life cycle. Nat Rev Cancer 20:398–411. https://doi.org/10.1038/s41568-020-0263-0

    Article  CAS  PubMed  Google Scholar 

  14. Dongre A, Weinberg RA (2019) New insights into the mechanisms of epithelial–mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol 20:69. https://doi.org/10.1038/s41580-018-0080-4

    Article  CAS  PubMed  Google Scholar 

  15. Pastushenko I, Blanpain C (2019) EMT transition states during tumor progression and metastasis. Trends Cell Biol 29:212–226. https://doi.org/10.1016/j.tcb.2018.12.001

    Article  CAS  PubMed  Google Scholar 

  16. Brabletz S, Schuhwerk H, Brabletz T, Stemmler MP (2021) Dynamic EMT: a multi-tool for tumor progression. EMBO J 40. https://doi.org/10.15252/embj.2021108647

  17. Lambert AW, Weinberg RA (2021) Linking EMT programmes to normal and neoplastic epithelial stem cells. Nat Rev Cancer 21:325–338. https://doi.org/10.1038/s41568-021-00332-6

    Article  CAS  PubMed  Google Scholar 

  18. Massagué J, Ganesh K (2021) Metastasis-initiating cells and ecosystems. Cancer Discov 11:971–994. https://doi.org/10.1158/2159-8290.CD-21-0010

    Article  PubMed  PubMed Central  Google Scholar 

  19. Fabbiano F, Corsi J, Gurrieri E et al (2020) RNA packaging into extracellular vesicles: an orchestra of RNA-binding proteins? J Extracell Vesicles. https://doi.org/10.1002/jev2.12043

  20. van Niel G, D’Angelo G, Raposo G (2018) Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. https://doi.org/10.1038/nrm.2017.125

  21. Skotland T, Hessvik NP, Sandvig K, Llorente A (2019) Exosomal lipid composition and the role of ether lipids and phosphoinositides in exosome biology. J Lipid Res 60:9–18. https://doi.org/10.1194/jlr.R084343

    Article  CAS  PubMed  Google Scholar 

  22. Balaj L, Lessard R, Dai L et al (2011) Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nat Commun. https://doi.org/10.1038/ncomms1180

  23. Kahlert C, Melo SA, Protopopov A et al (2014) Identification of double-stranded genomic DNA spanning all chromosomes with mutated KRAS and p53 DNA in the serum exosomes of patients with pancreatic cancer. J Biol Chem 289:3869–3875. https://doi.org/10.1074/jbc.C113.532267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Möller A, Lobb RJ (2020) The evolving translational potential of small extracellular vesicles in cancer. Nat Rev Cancer 20:697–709. https://doi.org/10.1038/s41568-020-00299-w

    Article  CAS  PubMed  Google Scholar 

  25. Kalluri R, LeBleu VS (2020) The biology, function, and biomedical applications of exosomes. Science 367. https://doi.org/10.1126/science.aau6977

  26. Sheehan C, D’Souza-Schorey C (2019) Tumor-derived extracellular vesicles: molecular parcels that enable regulation of the immune response in cancer. J Cell Sci 132(20):jcs235085

    Article  CAS  Google Scholar 

  27. Ghoroghi S, Mary B, Asokan N et al (2021) Tumor extracellular vesicles drive metastasis (it’s a long way from home). FASEB BioAdvances 3:930–943. https://doi.org/10.1096/FBA.2021-00079

    Article  PubMed  PubMed Central  Google Scholar 

  28. Peinado H, Zhang H, Matei IR et al (2017) Pre-metastatic niches: organ-specific homes for metastases. Nat Rev Cancer 17:302–317. https://doi.org/10.1038/nrc.2017.6

    Article  CAS  PubMed  Google Scholar 

  29. Arraud N, Linares R, Tan S et al (2014) Extracellular vesicles from blood plasma: determination of their morphology, size, phenotype and concentration. J Thromb Haemost 12:614–627. https://doi.org/10.1111/JTH.12554

    Article  CAS  PubMed  Google Scholar 

  30. Sódar BW, Kittel Á, Pálóczi K et al (2016) Low-density lipoprotein mimics blood plasma-derived exosomes and microvesicles during isolation and detection. Sci Rep 6:1–12. https://doi.org/10.1038/srep24316

    Article  CAS  Google Scholar 

  31. Klein CA (2013) Selection and adaptation during metastatic cancer progression. Nature 501:365–372. https://doi.org/10.1038/nature12628

    Article  CAS  PubMed  Google Scholar 

  32. Naxerova K, Jain RK (2015) Using tumour phylogenetics to identify the roots of metastasis in humans. Nat Rev Clin Oncol 12:258–272. https://doi.org/10.1038/nrclinonc.2014.238

    Article  CAS  PubMed  Google Scholar 

  33. Hu Z, Curtis C (2020) Looking backward in time to define the chronology of metastasis. Nat Commun 11:3213. https://doi.org/10.1038/s41467-020-16995-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Steeg PS (2016) Targeting metastasis. Nat Rev Cancer 16:201–218. https://doi.org/10.1038/nrc.2016.25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Esposito M, Ganesan S, Kang Y (2021) Emerging strategies for treating metastasis. Nat Cancer 2:258–270. https://doi.org/10.1038/s43018-021-00181-0

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ganesh K, Massagué J (2021) Targeting metastatic cancer. Nat Med 27:34–44. https://doi.org/10.1038/s41591-020-01195-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bardelli A, Pantel K (2017) Liquid biopsies, what we do not know (yet). Cancer Cell 31:172–179. https://doi.org/10.1016/j.ccell.2017.01.002

    Article  CAS  PubMed  Google Scholar 

  38. Keller L, Pantel K (2019) Unravelling tumour heterogeneity by single-cell profiling of circulating tumour cells. Nat Rev Cancer 19:553–567. https://doi.org/10.1038/s41568-019-0180-2

    Article  CAS  PubMed  Google Scholar 

  39. Stahel RA, Gilks WR, Lehmann H-P, Schenker T (1994) Third international workshop on lung tumor and differentiation antigens: overview of the results of the central data analysis. Int J Cancer 57:6–26. https://doi.org/10.1002/ijc.2910570704

    Article  Google Scholar 

  40. Cristofanilli M, Budd GT, Ellis MJ et al (2004) Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med 351:781–791. https://doi.org/10.1056/NEJMoa040766

    Article  CAS  PubMed  Google Scholar 

  41. Allard WJ, Matera J, Miller MC et al (2004) Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin Cancer Res 10:6897–6904. https://doi.org/10.1158/1078-0432.CCR-04-0378

    Article  PubMed  Google Scholar 

  42. Kang Y-T, Hadlock T, Lo T-W et al (2020) Dual-isolation and profiling of circulating tumor cells and cancer exosomes from blood samples with melanoma using immunoaffinity-based microfluidic interfaces. Adv Sci 7:2001581. https://doi.org/10.1002/advs.202001581

    Article  CAS  Google Scholar 

  43. Mostert B, Kraan J, Bolt-de Vries J et al (2011) Detection of circulating tumor cells in breast cancer may improve through enrichment with anti-CD146. Breast Cancer Res Treat 127:33–41. https://doi.org/10.1007/s10549-010-0879-y

    Article  CAS  PubMed  Google Scholar 

  44. Onstenk W, Kraan J, Mostert B et al (2015) Improved circulating tumor cell detection by a combined EpCAM and MCAM CellSearch enrichment approach in patients with breast cancer undergoing neoadjuvant chemotherapy. Mol Cancer Ther 14:821–827. https://doi.org/10.1158/1535-7163.MCT-14-0653

    Article  CAS  PubMed  Google Scholar 

  45. Nagrath S, Sequist LV, Maheswaran S et al (2007) Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450:1235–1239. https://doi.org/10.1038/nature06385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Stott SL, Hsu C-H, Tsukrov DI et al (2010) Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proc Natl Acad Sci 107:18392–18397. https://doi.org/10.1073/pnas.1012539107

    Article  PubMed  PubMed Central  Google Scholar 

  47. Diener J, Sommer L (2021) Reemergence of neural crest stem cell-like states in melanoma during disease progression and treatment. Stem Cells Transl Med 10:522–533. https://doi.org/10.1002/sctm.20-0351

    Article  CAS  PubMed  Google Scholar 

  48. Mani SA, Guo W, Liao M-J et al (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133:704–715. https://doi.org/10.1016/j.cell.2008.03.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yu M, Bardia A, Wittner BS et al (2013) Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science 339:580–584. https://doi.org/10.1126/science.1228522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sieuwerts AM, Kraan J, Bolt J et al (2009) Anti-epithelial cell adhesion molecule antibodies and the detection of circulating normal-like breast tumor cells. J Natl Cancer Inst 101:61–66. https://doi.org/10.1093/jnci/djn419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chaffer CL, Brueckmann I, Scheel C et al (2011) Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state. Proc Natl Acad Sci 108:7950–7955. https://doi.org/10.1073/pnas.1102454108

    Article  PubMed  PubMed Central  Google Scholar 

  52. Zhang L, Ridgway LD, Wetzel MD et al (2013) The identification and characterization of breast cancer CTCs competent for brain metastasis. Sci Transl Med 5:180ra48. https://doi.org/10.1126/scitranslmed.3005109

    Article  CAS  PubMed  Google Scholar 

  53. Alix-Panabières C, Vendrell J-P, Slijper M et al (2009) Full-length cytokeratin-19 is released by human tumor cells: a potential role in metastatic progression of breast cancer. Breast Cancer Res 11:1–10. https://doi.org/10.1186/bcr2326

    Article  CAS  Google Scholar 

  54. Denève E, Riethdorf S, Ramos J et al (2013) Capture of viable circulating tumor cells in the liver of colorectal cancer patients. Clin Chem 59:1384–1392. https://doi.org/10.1373/clinchem.2013.202846

    Article  CAS  PubMed  Google Scholar 

  55. Donati G, Watt FM (2015) Stem cell heterogeneity and plasticity in epithelia. Cell Stem Cell 16:465–476. https://doi.org/10.1016/j.stem.2015.04.014

    Article  CAS  PubMed  Google Scholar 

  56. Jahchan NS, Lim JS, Bola B et al (2016) Identification and targeting of long-term tumor-propagating cells in small cell lung cancer. Cell Rep 16:644–656. https://doi.org/10.1016/j.celrep.2016.06.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Al-Hajj M, Wicha MS, Benito-Hernandez A et al (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci 100:3983–3988. https://doi.org/10.1073/pnas.0530291100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chaffer CL, Marjanovic ND, Lee T et al (2013) Poised chromatin at the ZEB1 promoter enables breast cancer cell plasticity and enhances tumorigenicity. Cell 154:61–74. https://doi.org/10.1016/j.cell.2013.06.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Taftaf R, Liu X, Singh S et al (2021) ICAM1 initiates CTC cluster formation and trans-endothelial migration in lung metastasis of breast cancer. Nat Commun 12:4867. https://doi.org/10.1038/s41467-021-25189-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ward Y, Lake R, Faraji F et al (2018) Platelets promote metastasis via binding tumor CD97 leading to bidirectional signaling that coordinates transendothelial migration. Cell Rep 23:808–822. https://doi.org/10.1016/j.celrep.2018.03.092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Eibl RH (2012) Single-molecule studies of integrins by AFM-based force spectroscopy on living cells. In: Scanning probe microscopy in nanoscience and nanotechnology, vol 3. Springer, pp 137–169

    Chapter  Google Scholar 

  62. Oatley M, Bölükbası ÖV, Svensson V et al (2020) Single-cell transcriptomics identifies CD44 as a marker and regulator of endothelial to haematopoietic transition. Nat Commun 11:1–18. https://doi.org/10.1038/s41467-019-14171-5

    Article  CAS  Google Scholar 

  63. Wang T, Ward Y, Tian L et al (2005) CD97, an adhesion receptor on inflammatory cells, stimulates angiogenesis through binding integrin counterreceptors on endothelial cells. Blood 105:2836–2844. https://doi.org/10.1182/blood-2004-07-2878

    Article  CAS  PubMed  Google Scholar 

  64. Humphries JD, Byron A, Humphries MJ (2006) Integrin ligands at a glance. J Cell Sci 119:3901–3903. https://doi.org/10.1242/jcs.03098

    Article  CAS  PubMed  Google Scholar 

  65. Vishnoi M, Peddibhotla S, Yin W et al (2015) The isolation and characterization of CTC subsets related to breast cancer dormancy. Sci Rep 5:17533. https://doi.org/10.1038/srep17533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Boral D, Vishnoi M, Liu HN et al (2017) Molecular characterization of breast cancer CTCs associated with brain metastasis. Nat Commun 8:196. https://doi.org/10.1038/s41467-017-00196-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Osmani N, Labouesse M (2015) Remodeling of keratin-coupled cell adhesion complexes. Curr Opin Cell Biol 32:30–38. https://doi.org/10.1016/j.ceb.2014.10.004

    Article  CAS  PubMed  Google Scholar 

  68. Meyer MJ, Fleming JM, Lin AF et al (2010) CD44posCD49fhiCD133/2hi defines xenograft-initiating cells in estrogen receptor–negative breast cancer. Cancer Res 70:4624–4633. https://doi.org/10.1158/0008-5472.CAN-09-3619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bierie B, Pierce SE, Kroeger C et al (2017) Integrin-β4 identifies cancer stem cell-enriched populations of partially mesenchymal carcinoma cells. Proc Natl Acad Sci 114:E2337–E2346. https://doi.org/10.1073/pnas.1618298114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sharifi M, Zarrin B, Najafi MB et al (2021) Integrin α6 β4 on circulating tumor cells of metastatic breast cancer patients. Adv Biomed Res 10:16. https://doi.org/10.4103/abr.abr_76_21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kröger C, Afeyan A, Mraz J et al (2019) Acquisition of a hybrid E/M state is essential for tumorigenicity of basal breast cancer cells. Proc Natl Acad Sci 116:7353–7362. https://doi.org/10.1073/pnas.1812876116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ganesh K, Basnet H, Kaygusuz Y et al (2020) L1CAM defines the regenerative origin of metastasis-initiating cells in colorectal cancer. Nat Cancer 1:28–45. https://doi.org/10.1038/s43018-019-0006-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Padmanaban V, Krol I, Suhail Y et al (2019) E-cadherin is required for metastasis in multiple models of breast cancer. Nature 573:439–444. https://doi.org/10.1038/s41586-019-1526-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Na T-Y, Schecterson L, Mendonsa AM, Gumbiner BM (2020) The functional activity of E-cadherin controls tumor cell metastasis at multiple steps. Proc Natl Acad Sci 117:5931–5937. https://doi.org/10.1073/pnas.1918167117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hapach LA, Carey SP, Schwager SC et al (2021) Phenotypic heterogeneity and metastasis of breast cancer cells. Cancer Res 81:3649–3663. https://doi.org/10.1158/0008-5472.CAN-20-1799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Fang C, Fan C, Wang C et al (2016) CD133 + CD54 + CD44 + circulating tumor cells as a biomarker of treatment selection and liver metastasis in patients with colorectal cancer. Oncotarget 7:77389–77403. https://doi.org/10.18632/oncotarget.12675

    Article  PubMed  PubMed Central  Google Scholar 

  77. Battula VL, Shi Y, Evans KW et al (2012) Ganglioside GD2 identifies breast cancer stem cells and promotes tumorigenesis. J Clin Invest 122:2066–2078. https://doi.org/10.1172/JCI59735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Liang Y-J, Ding Y, Levery SB et al (2013) Differential expression profiles of glycosphingolipids in human breast cancer stem cells vs. cancer non-stem cells. Proc Natl Acad Sci 110:4968–4973. https://doi.org/10.1073/pnas.1302825110

    Article  PubMed  PubMed Central  Google Scholar 

  79. Chiu CG, Nakamura Y, Chong KK et al (2014) Genome-wide characterization of circulating tumor cells identifies novel prognostic genomic alterations in systemic melanoma metastasis. Clin Chem 60:873–885. https://doi.org/10.1373/clinchem.2013.213611

    Article  CAS  PubMed  Google Scholar 

  80. Fasanya HO, Dopico PJ, Yeager Z et al (2021) Using a combination of gangliosides and cell surface vimentin as surface biomarkers for isolating osteosarcoma cells in microfluidic devices. J Bone Oncol 28:100357. https://doi.org/10.1016/j.jbo.2021.100357

    Article  PubMed  PubMed Central  Google Scholar 

  81. Satelli A, Mitra A, Brownlee Z et al (2015) Epithelial–mesenchymal transitioned circulating tumor cells capture for detecting tumor progression. Clin Cancer Res 21:899–906. https://doi.org/10.1158/1078-0432.CCR-14-0894

    Article  CAS  PubMed  Google Scholar 

  82. Satelli A, Batth I, Brownlee Z et al (2017) EMT circulating tumor cells detected by cell-surface vimentin are associated with prostate cancer progression. Oncotarget 8:49329–49337. https://doi.org/10.18632/oncotarget.17632

    Article  PubMed  PubMed Central  Google Scholar 

  83. **e X, Wang L, Wang X et al (2021) Evaluation of cell surface vimentin positive circulating tumor cells as a diagnostic biomarker for lung cancer. Front Oncol 11:1712. https://doi.org/10.3389/fonc.2021.672687

    Article  Google Scholar 

  84. Ginestier C, Hur MH, Charafe-Jauffret E et al (2007) ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1:555–567. https://doi.org/10.1016/j.stem.2007.08.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Papadaki MA, Stoupis G, Theodoropoulos PA et al (2019) Circulating tumor cells with stemness and epithelial-to-mesenchymal transition features are chemoresistant and predictive of poor outcome in metastatic breast cancer. Mol Cancer Ther 18:437–447. https://doi.org/10.1158/1535-7163.MCT-18-0584

    Article  CAS  PubMed  Google Scholar 

  86. Leng Z, Yang Z, Li L et al (2017) A reliable method for the sorting and identification of ALDHhigh cancer stem cells by flow cytometry. Exp Ther Med 14:2801–2808. https://doi.org/10.3892/etm.2017.4846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Northcott JM, Dean IS, Mouw JK, Weaver VM (2018) Feeling stress: the mechanics of cancer progression and aggression. Front Cell Dev Biol 6. https://doi.org/10.3389/fcell.2018.00017

  88. Levayer R (2020) Solid stress, competition for space and cancer: the opposing roles of mechanical cell competition in tumour initiation and growth. Semin Cancer Biol 63:69–80. https://doi.org/10.1016/j.semcancer.2019.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Stylianopoulos T, Munn LL, Jain RK (2018) Reengineering the physical microenvironment of tumors to improve drug delivery and efficacy: from mathematical modeling to bench to bedside. Trends Cancer 4:292–319. https://doi.org/10.1016/j.trecan.2018.02.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wei SC, Yang J (2016) Forcing through tumor metastasis: the interplay between tissue rigidity and epithelial–mesenchymal transition. Trends Cell Biol 26:111–120. https://doi.org/10.1016/j.tcb.2015.09.009

    Article  CAS  PubMed  Google Scholar 

  91. Kai F, Laklai H, Weaver VM (2016) Force matters: biomechanical regulation of cell invasion and migration in disease. Trends Cell Biol 26:486–497. https://doi.org/10.1016/j.tcb.2016.03.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Gensbittel V, Kräter M, Harlepp S et al (2021) Mechanical adaptability of tumor cells in metastasis. Dev Cell 56:164–179. https://doi.org/10.1016/j.devcel.2020.10.011

    Article  CAS  PubMed  Google Scholar 

  93. Wirtz D, Konstantopoulos K, Searson PC (2011) The physics of cancer: the role of physical interactions and mechanical forces in metastasis. Nat Rev Cancer 11:512–522. https://doi.org/10.1038/nrc3080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ozkumur E, Shah AM, Ciciliano JC et al (2013) Inertial focusing for tumor antigen–dependent and –independent sorting of rare circulating tumor cells. Sci Transl Med 5:179ra47. https://doi.org/10.1126/scitranslmed.3005616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Alibert C, Goud B, Manneville J-B (2017) Are cancer cells really softer than normal cells? Biol Cell 109:167–189. https://doi.org/10.1111/boc.201600078

    Article  PubMed  Google Scholar 

  96. Plodinec M, Loparic M, Monnier CA et al (2012) The nanomechanical signature of breast cancer. Nat Nanotechnol 7:757–765. https://doi.org/10.1038/nnano.2012.167

    Article  CAS  PubMed  Google Scholar 

  97. Vona G, Sabile A, Louha M et al (2000) Isolation by size of epithelial tumor cells: a new method for the immunomorphological and molecular characterization of circulating tumor cells. Am J Pathol 156:57–63. https://doi.org/10.1016/S0002-9440(10)64706-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Toner M, Irimia D (2005) Blood-on-a-chip. Annu Rev Biomed Eng 7:77–103. https://doi.org/10.1146/annurev.bioeng.7.011205.135108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Mohamed H, McCurdy LD, Szarowski DH et al (2004) Development of a rare cell fractionation device: application for cancer detection. IEEE Trans Nanobiosci 3:251–256. https://doi.org/10.1109/TNB.2004.837903

    Article  Google Scholar 

  100. Xu L, Mao X, Imrali A et al (2015) Optimization and evaluation of a novel size based circulating tumor cell isolation system. PLoS One 10:e0138032. https://doi.org/10.1371/journal.pone.0138032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Hou HW, Warkiani ME, Khoo BL et al (2013) Isolation and retrieval of circulating tumor cells using centrifugal forces. Sci Rep 3:1259. https://doi.org/10.1038/srep01259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Miller MC, Robinson PS, Wagner C, O’Shannessy DJ (2018) The Parsortix™ cell separation system—a versatile liquid biopsy platform. Cytometry A 93:1234–1239. https://doi.org/10.1002/cyto.a.23571

    Article  PubMed  PubMed Central  Google Scholar 

  103. Lee Y, Guan G, Bhagat AA (2018) ClearCell® FX, a label-free microfluidics technology for enrichment of viable circulating tumor cells. Cytometry A 93:1251–1254. https://doi.org/10.1002/cyto.a.23507

    Article  PubMed  Google Scholar 

  104. Mishra A, Dubash TD, Edd JF et al (2020) Ultrahigh-throughput magnetic sorting of large blood volumes for epitope-agnostic isolation of circulating tumor cells. Proc Natl Acad Sci 117:16839–16847. https://doi.org/10.1073/pnas.2006388117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kim T-H, Lim M, Park J et al (2017) FAST: size-selective, clog-free isolation of rare cancer cells from whole blood at a liquid–liquid interface. Anal Chem 89:1155–1162. https://doi.org/10.1021/acs.analchem.6b03534

    Article  CAS  PubMed  Google Scholar 

  106. Aceto N, Bardia A, Miyamoto DT et al (2014) Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell 158:1110–1122. https://doi.org/10.1016/j.cell.2014.07.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Gkountela S, Castro-Giner F, Szczerba BM et al (2019) Circulating tumor cell clustering shapes DNA methylation to enable metastasis seeding. Cell 176:98–112.e14. https://doi.org/10.1016/j.cell.2018.11.046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Szczerba BM, Castro-Giner F, Vetter M et al (2019) Neutrophils escort circulating tumour cells to enable cell cycle progression. Nature 566:553. https://doi.org/10.1038/s41586-019-0915-y

    Article  CAS  PubMed  Google Scholar 

  109. Sarioglu AF, Aceto N, Kojic N et al (2015) A microfluidic device for label-free, physical capture of circulating tumor cell clusters. Nat Methods 12:685–691. https://doi.org/10.1038/nmeth.3404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Au SH, Storey BD, Moore JC et al (2016) Clusters of circulating tumor cells traverse capillary-sized vessels. Proc Natl Acad Sci 113:4947–4952. https://doi.org/10.1073/pnas.1524448113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Jiang X, Wong KHK, Khankhel AH et al (2017) Microfluidic isolation of platelet-covered circulating tumor cells. Lab Chip 17:3498–3503. https://doi.org/10.1039/C7LC00654C

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Guck J, Schinkinger S, Lincoln B et al (2005) Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence. Biophys J 88:3689–3698. https://doi.org/10.1529/biophysj.104.045476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Lincoln B, Schinkinger S, Travis K et al (2007) Reconfigurable microfluidic integration of a dual-beam laser trap with biomedical applications. Biomed Microdevices 9:703–710. https://doi.org/10.1007/s10544-007-9079-x

    Article  PubMed  Google Scholar 

  114. Nel I, Morawetz EW, Tschodu D et al (2021) The mechanical fingerprint of circulating tumor cells (CTCs) in breast cancer patients. Cancers 13:1119. https://doi.org/10.3390/cancers13051119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Gossett DR, Tse HTK, Lee SA et al (2012) Hydrodynamic stretching of single cells for large population mechanical phenoty**. Proc Natl Acad Sci 109:7630–7635. https://doi.org/10.1073/pnas.1200107109

    Article  PubMed  PubMed Central  Google Scholar 

  116. Adamo A, Sharei A, Adamo L et al (2012) Microfluidics-based assessment of cell deformability. Anal Chem 84:6438–6443. https://doi.org/10.1021/ac300264v

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Byun S, Son S, Amodei D et al (2013) Characterizing deformability and surface friction of cancer cells. Proc Natl Acad Sci 110:7580–7585. https://doi.org/10.1073/pnas.1218806110

    Article  PubMed  PubMed Central  Google Scholar 

  118. Lange JR, Steinwachs J, Kolb T et al (2015) Microconstriction arrays for high-throughput quantitative measurements of cell mechanical properties. Biophys J 109:26–34. https://doi.org/10.1016/j.bpj.2015.05.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Otto O, Rosendahl P, Mietke A et al (2015) Real-time deformability cytometry: on-the-fly cell mechanical phenoty**. Nat Methods 12:199–202. https://doi.org/10.1038/nmeth.3281

    Article  CAS  PubMed  Google Scholar 

  120. Urbanska M, Muñoz HE, Shaw Bagnall J et al (2020) A comparison of microfluidic methods for high-throughput cell deformability measurements. Nat Methods 17:587–593. https://doi.org/10.1038/s41592-020-0818-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Nyberg KD, Hu KH, Kleinman SH et al (2017) Quantitative deformability cytometry: rapid, calibrated measurements of cell mechanical properties. Biophys J 113:1574–1584. https://doi.org/10.1016/j.bpj.2017.06.073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Bagnall JS, Byun S, Begum S et al (2015) Deformability of tumor cells versus blood cells. Sci Rep 5:18542. https://doi.org/10.1038/srep18542

    Article  CAS  Google Scholar 

  123. Holenstein CN, Horvath A, Schär B et al (2019) The relationship between metastatic potential and in vitro mechanical properties of osteosarcoma cells. Mol Biol Cell 30:887–898. https://doi.org/10.1091/mbc.E18-08-0545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Rosendahl P, Plak K, Jacobi A et al (2018) Real-time fluorescence and deformability cytometry. Nat Methods 15:355–358. https://doi.org/10.1038/nmeth.4639

    Article  CAS  PubMed  Google Scholar 

  125. Toepfner N, Herold C, Otto O et al (2018) Detection of human disease conditions by single-cell morpho-rheological phenoty** of blood. Elife 7:e29213. https://doi.org/10.7554/eLife.29213

    Article  PubMed  PubMed Central  Google Scholar 

  126. Hakim M, Khorasheh F, Alemzadeh I, Vossoughi M (2021) A new insight to deformability correlation of circulating tumor cells with metastatic behavior by application of a new deformability-based microfluidic chip. Anal Chim Acta 1186:339115. https://doi.org/10.1016/j.aca.2021.339115

    Article  CAS  PubMed  Google Scholar 

  127. Ribeiro-Samy S, Oliveira MI, Pereira-Veiga T et al (2019) Fast and efficient microfluidic cell filter for isolation of circulating tumor cells from unprocessed whole blood of colorectal cancer patients. Sci Rep 9:8032. https://doi.org/10.1038/s41598-019-44401-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Lopes C, Piairo P, Chícharo A et al (2021) HER2 expression in circulating tumour cells isolated from metastatic breast cancer patients using a size-based microfluidic device. Cancers 13:4446. https://doi.org/10.3390/cancers13174446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Harouaka RA, Zhou M-D, Yeh Y-T et al (2014) Flexible micro spring array device for high-throughput enrichment of viable circulating tumor cells. Clin Chem 60:323–333. https://doi.org/10.1373/clinchem.2013.206805

    Article  CAS  PubMed  Google Scholar 

  130. Ding X, Li P, Lin S-CS et al (2013) Surface acoustic wave microfluidics. Lab Chip 13:3626–3649. https://doi.org/10.1039/C3LC50361E

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Li P, Mao Z, Peng Z et al (2015) Acoustic separation of circulating tumor cells. Proc Natl Acad Sci 112:4970–4975. https://doi.org/10.1073/pnas.1504484112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Bankó P, Lee SY, Nagygyörgy V et al (2019) Technologies for circulating tumor cell separation from whole blood. J Hematol Oncol 12:48. https://doi.org/10.1186/s13045-019-0735-4

    Article  PubMed  PubMed Central  Google Scholar 

  133. Lei KF (2020) A review on microdevices for isolating circulating tumor cells. Micromachines 11:531. https://doi.org/10.3390/mi11050531

    Article  PubMed Central  Google Scholar 

  134. Belotti Y, Lim CT (2021) Microfluidics for liquid biopsies: recent advances, current challenges, and future directions. Anal Chem 93:4727–4738. https://doi.org/10.1021/acs.analchem.1c00410

    Article  CAS  PubMed  Google Scholar 

  135. Nanou A, Miller MC, Zeune LL et al (2020) Tumour-derived extracellular vesicles in blood of metastatic cancer patients associate with overall survival. Br J Cancer 122:801–811. https://doi.org/10.1038/s41416-019-0726-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Nanou A, Coumans FAW, van Dalum G et al (2018) Circulating tumor cells, tumor-derived extracellular vesicles and plasma cytokeratins in castration-resistant prostate cancer patients. Oncotarget 9:19283–19293. https://doi.org/10.18632/ONCOTARGET.25019

    Article  PubMed  PubMed Central  Google Scholar 

  137. Gurunathan S, Kang M-H, Jeyaraj M et al (2019) Review of the isolation, characterization, biological function, and multifarious therapeutic approaches of exosomes. Cell 8:307. https://doi.org/10.3390/CELLS8040307

    Article  CAS  Google Scholar 

  138. Van Deun J, Mestdagh P, Sormunen R et al (2014) The impact of disparate isolation methods for extracellular vesicles on downstream RNA profiling. J Extracell Vesicles 3:1–14. https://doi.org/10.3402/jev.v3.24858

    Article  Google Scholar 

  139. Veerman RE, Teeuwen L, Czarnewski P et al (2021) Molecular evaluation of five different isolation methods for extracellular vesicles reveals different clinical applicability and subcellular origin. J Extracell Vesicles 10. https://doi.org/10.1002/JEV2.12128

  140. Karimi N, Cvjetkovic A, Jang SC et al (2018) Detailed analysis of the plasma extracellular vesicle proteome after separation from lipoproteins. Cell Mol Life Sci. https://doi.org/10.1007/s00018-018-2773-4

  141. Simonsen JB (2017) What are we looking at? Extracellular vesicles, lipoproteins, or both? Circ Res 121:920–922. https://doi.org/10.1161/CIRCRESAHA.117.311767

    Article  CAS  PubMed  Google Scholar 

  142. Johnsen KB, Gudbergsson JM, Andresen TL, Simonsen JB (2019) What is the blood concentration of extracellular vesicles? Implications for the use of extracellular vesicles as blood-borne biomarkers of cancer. Biochim Biophys Acta Rev Cancer 1871:109–116. https://doi.org/10.1016/j.bbcan.2018.11.006

    Article  CAS  PubMed  Google Scholar 

  143. Nordin JZ, Lee Y, Vader P et al (2015) Ultrafiltration with size-exclusion liquid chromatography for high yield isolation of extracellular vesicles preserving intact biophysical and functional properties. Nanomed Nanotechnol Biol Med 11:879–883. https://doi.org/10.1016/J.NANO.2015.01.003

    Article  CAS  Google Scholar 

  144. Zhang X, Borg EGF, Liaci AM et al (2020) A novel three step protocol to isolate extracellular vesicles from plasma or cell culture medium with both high yield and purity. J Extracell Vesicles 9. https://doi.org/10.1080/20013078.2020.1791450

  145. Chen Y, Zhu Q, Cheng L et al (2021) Exosome detection via the ultrafast-isolation system: EXODUS. Nat Methods 18:212–218. https://doi.org/10.1038/S41592-020-01034-X

    Article  CAS  PubMed  Google Scholar 

  146. Xu R, Greening DW, Zhu HJ et al (2016) Extracellular vesicle isolation and characterization: toward clinical application. J Clin Invest 126:1152–1162. https://doi.org/10.1172/JCI81129

    Article  PubMed  PubMed Central  Google Scholar 

  147. Jeppesen DK, Fenix AM, Franklin JL et al (2019) Reassessment of exosome composition. Cell 177:428–445.e18. https://doi.org/10.1016/j.cell.2019.02.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Kugeratski FG, Hodge K, Lilla S et al (2021) Quantitative proteomics identifies the core proteome of exosomes with syntenin-1 as the highest abundant protein and a putative universal biomarker. Springer

    Book  Google Scholar 

  149. Hoshino A, Kim HS, Bojmar L et al (2020) Extracellular vesicle and particle biomarkers define multiple human cancers. Cell 182:1044–1061.e18. https://doi.org/10.1016/j.cell.2020.07.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Liang Y, Lehrich BM, Zheng S, Lu M (2021) Emerging methods in biomarker identification for extracellular vesicle-based liquid biopsy. J Extracell Vesicles:10. https://doi.org/10.1002/jev2.12090

  151. Welsh JA, Van Der Pol E, Arkesteijn GJA et al (2020) MIFlowCyt-EV: a framework for standardized reporting of extracellular vesicle flow cytometry experiments. J Extracell Vesicles 9. https://doi.org/10.1080/20013078.2020.1713526

  152. Campos-Silva C, Suárez H, Jara-Acevedo R et al (2019) High sensitivity detection of extracellular vesicles immune-captured from urine by conventional flow cytometry. Sci Rep 9:1–12. https://doi.org/10.1038/s41598-019-38516-8

    Article  CAS  Google Scholar 

  153. Rodrigues M, Richards N, Ning B et al (2019) Rapid lipid-based approach for normalization of quantum-dot-detected biomarker expression on extracellular vesicles in complex biological samples. Nano Lett 19:7623–7631

    Article  CAS  Google Scholar 

  154. Wei P, Wu F, Kang B et al (2020) Plasma extracellular vesicles detected by single molecule array technology as a liquid biopsy for colorectal cancer. J Extracell Vesicles 9:1809765. https://doi.org/10.1080/20013078.2020.1809765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Yoshioka Y, Kosaka N, Konishi Y et al (2014) Ultra-sensitive liquid biopsy of circulating extracellular vesicles using ExoScreen. Nat Commun 5:3591. https://doi.org/10.1038/ncomms4591

    Article  CAS  PubMed  Google Scholar 

  156. He D, Ho SL, Chan HN et al (2019) Molecular-recognition-based DNA nanodevices for enhancing the direct visualization and quantification of single vesicles of tumor exosomes in plasma microsamples. Anal Chem 91:2768–2775. https://doi.org/10.1021/ACS.ANALCHEM.8B04509/SUPPL_FILE/AC8B04509_SI_001.PDF

    Article  CAS  PubMed  Google Scholar 

  157. Zhang J, Shi J, Zhang H et al (2020) Localized fluorescent imaging of multiple proteins on individual extracellular vesicles using rolling circle amplification for cancer diagnosis. J Extracell Vesicles 10:e12025. https://doi.org/10.1002/JEV2.12025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Mathew DG, Beekman P, Lemay SG et al (2020) Electrochemical detection of tumor-derived extracellular vesicles on nanointerdigitated electrodes. Nano Lett 20:820–828. https://doi.org/10.1021/ACS.NANOLETT.9B02741

    Article  CAS  PubMed  Google Scholar 

  159. Huang R, He L, **a Y et al (2019) A sensitive aptasensor based on a hemin/G-quadruplex-assisted signal amplification strategy for electrochemical detection of gastric cancer exosomes. Small Weinh Bergstr Ger:15. https://doi.org/10.1002/SMLL.201900735

  160. Zhang W, Jiang L, Diefenbach RJ et al (2020) Enabling sensitive phenotypic profiling of cancer-derived small extracellular vesicles using surface-enhanced Raman spectroscopy nanotags. ACS Sens 5:764–771. https://doi.org/10.1021/ACSSENSORS.9B02377

    Article  CAS  PubMed  Google Scholar 

  161. Wang J, Wuethrich A, Sina AAI et al (2020) Tracking extracellular vesicle phenotypic changes enables treatment monitoring in melanoma. Sci Adv 6. https://doi.org/10.1126/SCIADV.AAX3223

  162. Shao H, Chung J, Lee K et al (2015) Chip-based analysis of exosomal mRNA mediating drug resistance in glioblastoma. Nat Commun 6:1–9. https://doi.org/10.1038/ncomms7999

    Article  CAS  Google Scholar 

  163. Cappello F, Logozzi M, Campanella C et al (2017) Exosome levels in human body fluids: a tumor marker by themselves? Eur J Pharm Sci 96:93–98. https://doi.org/10.1016/j.ejps.2016.09.010

    Article  CAS  PubMed  Google Scholar 

  164. García-Silva S, Benito-Martín A, Sánchez-Redondo S et al (2019) Use of extracellular vesicles from lymphatic drainage as surrogate markers of melanoma progression and BRAF V600E mutation. J Exp Med. https://doi.org/10.1084/jem.20181522

  165. Osti D, Del Bene M, Rappa G et al (2019) Clinical significance of extracellular vesicles in plasma from glioblastoma patients. https://doi.org/10.1158/1078-0432.CCR-18-1941

  166. Peinado H, Alečković M, Lavotshkin S et al (2012) Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med 18:883–891. https://doi.org/10.1038/nm.2753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Sabbagh Q, André-Grégoire G, Alves-Nicolau C et al (2021) The von Willebrand factor stamps plasmatic extracellular vesicles from glioblastoma patients. Sci Rep 11:1–11. https://doi.org/10.1038/s41598-021-02254-7

    Article  CAS  Google Scholar 

  168. Venturella M, Criscuoli M, Carraro F et al (2021) Interplay between hypoxia and extracellular vesicles in cancer and inflammation. Biology 10. https://doi.org/10.3390/BIOLOGY10070606

  169. Keklikoglou I, Cianciaruso C, Güç E et al (2019) Chemotherapy elicits pro-metastatic extracellular vesicles in breast cancer models. Nat Cell Biol 21:190–202. https://doi.org/10.1038/s41556-018-0256-3

    Article  CAS  PubMed  Google Scholar 

  170. Federici C, Petrucci F, Caimi S et al (2014) Exosome release and low pH belong to a framework of resistance of human melanoma cells to cisplatin. PLoS One 9. https://doi.org/10.1371/journal.pone.0088193

  171. Mutschelknaus L, Peters C, Winkler K et al (2016) Exosomes derived from squamous head and neck cancer promote cell survival after ionizing radiation. PLoS One:11. https://doi.org/10.1371/JOURNAL.PONE.0152213

  172. Zaborowski MP, Lee K, Na YJ et al (2019) Methods for systematic identification of membrane proteins for specific capture of cancer-derived extracellular vesicles. Cell Rep 27:255–268.e6. https://doi.org/10.1016/j.celrep.2019.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Whitham M, Parker BL, Friedrichsen M et al (2018) Extracellular vesicles provide a means for tissue crosstalk during exercise. Cell Metab 27:237–251.e4. https://doi.org/10.1016/j.cmet.2017.12.001

    Article  CAS  PubMed  Google Scholar 

  174. Eitan E, Green J, Bodogai M et al (2017) Age-related changes in plasma extracellular vesicle characteristics and internalization by leukocytes. Sci Rep 7:1342. https://doi.org/10.1038/s41598-017-01386-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Newman LA, Fahmy A, Sorich MJ et al (2021) Importance of between and within subject variability in extracellular vesicle abundance and cargo when performing biomarker analyses. Cell 10:1–18. https://doi.org/10.3390/CELLS10030485

    Article  Google Scholar 

  176. Laurenzana I, Trino S, Lamorte D et al (2021) Analysis of amount, size, protein phenotype and molecular content of circulating extracellular vesicles identifies new biomarkers in multiple myeloma. Int J Nanomed 16:3141–3160. https://doi.org/10.2147/IJN.S303391

    Article  CAS  Google Scholar 

  177. Melo SA, Luecke LB, Kahlert C et al (2015) Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature 523:177–182. https://doi.org/10.1038/nature14581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Keup C, Mach P, Aktas B et al (2018) RNA profiles of circulating tumor cells and extracellular vesicles for therapy stratification of metastatic breast cancer patients. https://doi.org/10.1373/clinchem.2017.283531

  179. Lai X, Wang M, McElyea SD et al (2017) A microRNA signature in circulating exosomes is superior to exosomal glypican-1 levels for diagnosing pancreatic cancer. Cancer Lett 393:86–93. https://doi.org/10.1016/J.CANLET.2017.02.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Lucien F, Lac V, Billadeau DD et al (2019) Glypican-1 and glycoprotein 2 bearing extracellular vesicles do not discern pancreatic cancer from benign pancreatic diseases. Oncotarget 10:1045–1055. https://doi.org/10.18632/ONCOTARGET.26620

    Article  PubMed  PubMed Central  Google Scholar 

  181. Hu J, Sheng Y, Kwak KJ et al (2017) A signal-amplifiable biochip quantifies extracellular vesicle-associated RNAs for early cancer detection. Nat Commun 8. https://doi.org/10.1038/S41467-017-01942-1

  182. Li J, Chen Y, Guo X et al (2017) GPC1 exosome and its regulatory miRNAs are specific markers for the detection and target therapy of colorectal cancer. J Cell Mol Med 21:838–847. https://doi.org/10.1111/JCMM.12941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. **ao D, Dong Z, Zhen L et al (2020) Combined exosomal GPC1, CD82, and serum CA19-9 as multiplex targets: a specific, sensitive, and reproducible detection panel for the diagnosis of pancreatic cancer. Mol Cancer Res 18:1300–1310. https://doi.org/10.1158/1541-7786.MCR-19-0588

    Article  Google Scholar 

  184. Buscail E, Chauvet A, Quincy P et al (2019) CD63-GPC1-positive exosomes coupled with CA19-9 offer good diagnostic potential for resectable pancreatic ductal adenocarcinoma. Transl Oncol 12:1395–1403. https://doi.org/10.1016/J.TRANON.2019.07.009

    Article  PubMed  PubMed Central  Google Scholar 

  185. Poggio M, Hu T, Pai CC et al (2019) Suppression of exosomal PD-L1 induces systemic anti-tumor immunity and memory. Cell 177:414–427.e13. https://doi.org/10.1016/j.cell.2019.02.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Chen G, Huang AC, Zhang W et al (2018) Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature 560:382–386

    Article  CAS  Google Scholar 

  187. Cordonnier M, Nardin C, Chanteloup G et al (2020) Tracking the evolution of circulating exosomal-PD-L1 to monitor melanoma patients. J Extracell Vesicles 9:1–11. https://doi.org/10.1080/20013078.2019.1710899

    Article  CAS  Google Scholar 

  188. Zhou B, Xu K, Zheng X et al (2020) Application of exosomes as liquid biopsy in clinical diagnosis. Signal Transduct Target Ther 5. https://doi.org/10.1038/s41392-020-00258-9

  189. Hu T, Wolfram J, Srivastava S (2021) Extracellular vesicles in cancer detection: hopes and hypes. Trends Cancer 7:122–133. https://doi.org/10.1016/j.trecan.2020.09.003

    Article  CAS  PubMed  Google Scholar 

  190. Costa-Silva B, Aiello NM, Ocean AJ et al (2015) Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat Cell Biol:1–7. https://doi.org/10.1038/ncb3169

  191. Choi ES, Al Faruque H, Kim JH et al (2021) CD5L as an extracellular vesicle-derived biomarker for liquid biopsy of lung cancer. Diagnostics (Basel) 11. https://doi.org/10.3390/DIAGNOSTICS11040620

  192. Moon PG, Lee JE, Cho YE et al (2016) Identification of developmental endothelial Locus-1 on circulating extracellular vesicles as a novel biomarker for early breast cancer detection. Clin Cancer Res Off J Am Assoc Cancer Res 22:1757–1766. https://doi.org/10.1158/1078-0432.CCR-15-0654

    Article  CAS  Google Scholar 

  193. Moon PG, Lee JE, Cho YE et al (2016) Fibronectin on circulating extracellular vesicles as a liquid biopsy to detect breast cancer. Oncotarget 7:40189–40199. https://doi.org/10.18632/ONCOTARGET.9561

    Article  PubMed  PubMed Central  Google Scholar 

  194. Khan S, Jutzy JMS, Valenzuela MMA et al (2012) Plasma-derived exosomal survivin, a plausible biomarker for early detection of prostate cancer. PLoS One 7. https://doi.org/10.1371/JOURNAL.PONE.0046737

  195. Khan S, Bennit HF, Turay D et al (2014) Early diagnostic value of survivin and its alternative splice variants in breast cancer. BMC Cancer 14. https://doi.org/10.1186/1471-2407-14-176

  196. Warmoes M, Lam SW, van der Groep P et al (2016) Secretome proteomics reveals candidate non-invasive biomarkers of BRCA1 deficiency in breast cancer. Oncotarget 7:63537–63548. https://doi.org/10.18632/ONCOTARGET.11535

    Article  PubMed  PubMed Central  Google Scholar 

  197. Chanteloup G, Cordonnier M, Isambert N et al (2020) Monitoring HSP70 exosomes in cancer patients’ follow up: a clinical prospective pilot study. J Extracell Vesicles 9:1766192. https://doi.org/10.1080/20013078.2020.1766192

    Article  PubMed  PubMed Central  Google Scholar 

  198. Min L, Zhu S, Chen L et al (2019) Evaluation of circulating small extracellular vesicles derived miRNAs as biomarkers of early colon cancer: a comparison with plasma total miRNAs. J Extracell Vesicles 8. https://doi.org/10.1080/20013078.2019.1643670/SUPPL_FILE/ZJEV_A_1643670_SM8506.ZIP

  199. Ogata-Kawata H, Izumiya M, Kurioka D et al (2014) Circulating exosomal microRNAs as biomarkers of colon cancer. PLoS One 9. https://doi.org/10.1371/JOURNAL.PONE.0092921

  200. Bryant RJ, Pawlowski T, Catto JWF et al (2012) Changes in circulating microRNA levels associated with prostate cancer. Br J Cancer 106:768–774. https://doi.org/10.1038/BJC.2011.595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Matsuzaki K, Fujita K, **gushi K et al (2017) MiR-21-5p in urinary extracellular vesicles is a novel biomarker of urothelial carcinoma. Oncotarget 8:24668–24678. https://doi.org/10.18632/ONCOTARGET.14969

    Article  PubMed  PubMed Central  Google Scholar 

  202. Armstrong DA, Green BB, Seigne JD et al (2015) MicroRNA molecular profiling from matched tumor and bio-fluids in bladder cancer. Mol Cancer 14. https://doi.org/10.1186/S12943-015-0466-2

  203. Kim MW, Park S, Lee H et al (2021) Multi-miRNA panel of tumor-derived extracellular vesicles as promising diagnostic biomarkers of early-stage breast cancer. Cancer Sci. https://doi.org/10.1111/CAS.15155

  204. Hannafon BN, Trigoso YD, Calloway CL et al (2016) Plasma exosome microRNAs are indicative of breast cancer. Breast Cancer Res 18. https://doi.org/10.1186/S13058-016-0753-X

  205. Worst TS, Previti C, Nitschke K et al (2020) miR-10a-5p and miR-29b-3p as extracellular vesicle-associated prostate cancer detection markers. Cancers 12. https://doi.org/10.3390/CANCERS12010043

  206. Asano N, Matsuzaki J, Ichikawa M et al (2019) A serum microRNA classifier for the diagnosis of sarcomas of various histological subtypes. Nat Commun 10:1–10. https://doi.org/10.1038/s41467-019-09143-8

    Article  CAS  Google Scholar 

  207. Chevillet JR, Kang Q, Ruf IK et al (2014) Quantitative and stoichiometric analysis of the microRNA content of exosomes. Proc Natl Acad Sci U S A 111:14888–14893. https://doi.org/10.1073/pnas.1408301111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. McKiernan J, Donovan MJ, O’Neill V et al (2016) A novel urine exosome gene expression assay to predict high-grade prostate cancer at initial biopsy. JAMA Oncol 2:882–889. https://doi.org/10.1001/JAMAONCOL.2016.0097

    Article  PubMed  Google Scholar 

  209. Peng Q, Chiu PKF, Wong CYP et al (2021) Identification of piRNA targets in urinary extracellular vesicles for the diagnosis of prostate cancer. Diagnostics (Basel) 11. https://doi.org/10.3390/DIAGNOSTICS11101828

  210. Lu L, Fang S, Zhang Y et al (2021) Exosomes and exosomal circRNAs: the rising stars in the progression, diagnosis and prognosis of gastric cancer. Cancer Manag Res 13:8121–8129. https://doi.org/10.2147/CMAR.S331221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Zhao X, Guo X, Jiao D et al (2021) Analysis of the expression profile of serum exosomal lncRNA in breast cancer patients. Ann Transl Med 9:1382. https://doi.org/10.21037/ATM-21-3483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Thakur BK, Zhang H, Becker A et al (2014) Double-stranded DNA in exosomes: a novel biomarker in cancer detection. Cell Res 24:766–769. https://doi.org/10.1038/cr.2014.44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Lee JS, Hur JY, Kim IA et al (2018) Liquid biopsy using the supernatant of a pleural effusion for EGFR genoty** in pulmonary adenocarcinoma patients: a comparison between cell-free DNA and extracellular vesicle-derived DNA. BMC Cancer 18:1–8. https://doi.org/10.1186/s12885-018-5138-3

    Article  CAS  Google Scholar 

  214. Fernando MR, Jiang C, Krzyzanowski GD, Ryan WL (2017) New evidence that a large proportion of human blood plasma cell-free DNA is localized in exosomes. PLoS One 12:1–15. https://doi.org/10.1371/journal.pone.0183915

    Article  CAS  Google Scholar 

  215. Wan Y, Liu B, Lei H et al (2018) Nanoscale extracellular vesicle-derived DNA is superior to circulating cell-free DNA for mutation detection in early-stage non-small-cell lung cancer. Ann Oncol 29:2379–2383. https://doi.org/10.1093/ANNONC/MDY458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Castellanos-Rizaldos E, Grimm DG, Tadigotla V et al (2018) Exosome-based detection of EGFR T790M in plasma from non-small cell lung cancer patients. Clin Cancer Res Off J Am Assoc Cancer Res 24:2944–2950. https://doi.org/10.1158/1078-0432.CCR-17-3369

    Article  CAS  Google Scholar 

  217. Madhavan B, Yue S, Galli U et al (2015) Combined evaluation of a panel of protein and miRNA serum-exosome biomarkers for pancreatic cancer diagnosis increases sensitivity and specificity. Int J Cancer 136:2616–2627. https://doi.org/10.1002/IJC.29324

    Article  CAS  PubMed  Google Scholar 

  218. Brzozowski JS, Jankowski H, Bond DR et al (2018) Lipidomic profiling of extracellular vesicles derived from prostate and prostate cancer cell lines. Lipids Health Dis 17:1–12. https://doi.org/10.1186/S12944-018-0854-X/FIGURES/4

    Article  Google Scholar 

  219. Zhang Y, Wu X, Tao WA (2018) Characterization and applications of extracellular vesicle proteome with post-translational modifications. Trends Anal Chem 107:21–30. https://doi.org/10.1016/J.TRAC.2018.07.014

    Article  CAS  Google Scholar 

  220. Chen I-H, Xue L, Hsu C-C et al (2017) Phosphoproteins in extracellular vesicles as candidate markers for breast cancer. Proc Natl Acad Sci 114:3175–3180. https://doi.org/10.1073/pnas.1618088114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Luo P, Mao K, Xu J et al (2020) Metabolic characteristics of large and small extracellular vesicles from pleural effusion reveal biomarker candidates for the diagnosis of tuberculosis and malignancy. J Extracell Vesicles 9:1790158. https://doi.org/10.1080/20013078.2020.1790158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Gualerzi A, Picciolini S, Carlomagno C et al (2019) Raman profiling of circulating extracellular vesicles for the stratification of Parkinson’s patients. Nanomed Nanotechnol Biol Med 22. https://doi.org/10.1016/J.NANO.2019.102097

  223. Enciso-Martinez A, Van Der Pol E, Hau CM et al (2020) Label-free identification and chemical characterisation of single extracellular vesicles and lipoproteins by synchronous Rayleigh and Raman scattering. J Extracell Vesicles 9. https://doi.org/10.1080/20013078.2020.1730134

  224. Penders J, Nagelkerke A, Cunnane EM et al (2021) Single particle automated Raman trap** analysis of breast cancer cell-derived extracellular vesicles as cancer biomarkers. ACS Nano. https://doi.org/10.1021/acsnano.1c07075

  225. LeClaire M, Gimzewski J, Sharma S (2021) A review of the biomechanical properties of single extracellular vesicles. Nano Select 2:1–15. https://doi.org/10.1002/nano.202000129

    Article  CAS  Google Scholar 

  226. Barnes JM, Nauseef JT, Henry MD (2012) Resistance to fluid shear stress is a conserved biophysical property of malignant cells. PLoS One 7:e50973. https://doi.org/10.1371/journal.pone.0050973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Mitchell MJ, Denais C, Chan MF et al (2015) Lamin A/C deficiency reduces circulating tumor cell resistance to fluid shear stress. Am J Physiol Cell Physiol 309:C736–C746. https://doi.org/10.1152/ajpcell.00050.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Moose DL, Krog BL, Kim T-H et al (2020) Cancer cells resist mechanical destruction in circulation via RhoA/actomyosin-dependent mechano-adaptation. Cell Rep 30:3864–3874.e6. https://doi.org/10.1016/j.celrep.2020.02.080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Margolis E, Brown G, Partin A et al (2021) Predicting high-grade prostate cancer at initial biopsy: clinical performance of the ExoDx (EPI) prostate intelliscore test in three independent prospective studies. Prostate Cancer Prostatic Dis. https://doi.org/10.1038/S41391-021-00456-8

  230. Ayers L, Pink R, Carter DRF, Nieuwland R (2019) Clinical requirements for extracellular vesicle assays. 8(1):1593755. https://doi.org/10.1080/20013078.2019.1593755

  231. Coumans FAW, Brisson AR, Buzas EI et al (2017) Methodological guidelines to study extracellular vesicles. Circ Res 120:1632–1648. https://doi.org/10.1161/CIRCRESAHA.117.309417

    Article  CAS  PubMed  Google Scholar 

  232. Buscail E, Alix-Panabières C, Quincy P et al (2019) High clinical value of liquid biopsy to detect circulating tumor cells and tumor exosomes in pancreatic ductal adenocarcinoma patients eligible for up-front surgery. Cancers (Basel) 11:1656. https://doi.org/10.3390/CANCERS11111656

    Article  CAS  Google Scholar 

  233. Suo Y, Gu Z, Wei X (2020) Advances of in vivo flow cytometry on cancer studies. Cytometry A 97:15–23. https://doi.org/10.1002/cyto.a.23851

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Tumor Biomechanics lab (www.goetzlab.fr), for support and discussions. This work has been supported by Plan Cancer, INCa, Cancéropôle Grand-Est and La Ligue Contre le Cancer and by institutional funds from INSERM and the University of Strasbourg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naël Osmani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hyenne, V., Goetz, J.G., Osmani, N. (2022). Liquid Biopsies: Flowing Biomarkers. In: Caballero, D., Kundu, S.C., Reis, R.L. (eds) Microfluidics and Biosensors in Cancer Research. Advances in Experimental Medicine and Biology, vol 1379. Springer, Cham. https://doi.org/10.1007/978-3-031-04039-9_14

Download citation

Publish with us

Policies and ethics

Navigation