Quantum-Dot Spin Chains

  • Chapter
  • First Online:
Entanglement in Spin Chains

Part of the book series: Quantum Science and Technology ((QST))

Abstract

Semiconductor quantum dots are a promising platform for quantum simulation and computing. This chapter will review the fundamentals of semiconductor quantum dots and the Heisenberg exchange coupling that occurs between neighboring quantum dots. Despite directly coupling only nearest-neighbor quantum dots, exchange coupling underlies a great many approaches for quantum information processing, quantum state transfer, and the simulation of spin chain dynamics. This chapter will review recent progress and future work along these directions.

This work was sponsored by the Defense Advanced Research Projects Agency under grant D18AC00025; the Army Research Office under grants W911NF-17-1-0260 and W911NF-19-1-0167; the National Science Foundation under grants DMR-1809343, DMR 2003287, and OMA 1936250; and the Office of Naval Research under grant N00014-20-1-2424. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the Army Research Office or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for government purposes notwithstanding any copyright notation herein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Y.P. Kandel, H. Qiao, J.M. Nichol, Perspective on exchange-coupled quantum-dot spin chains. Appl. Phys. Lett. 119, 030501 (2021). https://doi.org/10.1063/5.0055908

    Article  ADS  Google Scholar 

  2. M. Anderlini, P.J. Lee, B.L. Brown, J. Sebby-Strabley, W.D. Phillips, J.V. Porto, Controlled exchange interaction between pairs of neutral atoms in an optical lattice. Nature 448, 452 (2007). https://doi.org/10.1038/nature06011

    Article  ADS  Google Scholar 

  3. Y. He, S.K. Gorman, D. Keith, L. Kranz, J.G. Keizer, M.Y. Simmons, A two-qubit gate between phosphorus donor electrons in silicon. Nature 571, 371 (2019). https://doi.org/10.1038/s41586-019-1381-2

    Article  ADS  Google Scholar 

  4. L. Kouwenhoven, C. Marcus, Quantum dots. Physics World 11(6), 35 (1998). https://doi.org/10.1088/2058-7058/11/6/26

  5. L. Kouwenhoven, D.G. Austing, S. Tarucha, Few-electron quantum dots. Rep. Prog. Phys. 64, 701 (2001). https://stacks.iop.org/0034-4885/64/i=6/a=201

    Article  ADS  Google Scholar 

  6. W.G. van der Wiel, S. De Franceschi, J.M. Elzerman, T. Fujisawa, S. Tarucha, L.P. Kouwenhoven, Electron transport through double quantum dots. Rev. Mod. Phys. 75, 1 (2002). https://doi.org/10.1103/RevModPhys.75.1. https://link.aps.org/doi/10.1103/RevModPhys.75.1

  7. W.G. van der Wiel, M. Stopa, T. Kodera, T. Hatano, S. Tarucha, Semiconductor quantum dots for electron spin qubits. New J. Phys. 8(2), 28 (2006). https://doi.org/10.1088/1367-2630/8/2/028

  8. R. Hanson, L.P. Kouwenhoven, J.R. Petta, S. Tarucha, L.M.K. Vandersypen, Spins in few-electron quantum dots, Rev. Mod. Phys. 79, 1217 (2007). https://doi.org/10.1103/RevModPhys.79.1217. https://link.aps.org/doi/10.1103/RevModPhys.79.1217

  9. F.A. Zwanenburg, A.S. Dzurak, A. Morello, M.Y. Simmons, L.C.L. Hollenberg, G. Klimeck, S. Rogge, S.N. Coppersmith, M.A. Eriksson, Silicon quantum electronics. Rev. Mod. Phys. 85, 961 (2013). https://doi.org/10.1103/RevModPhys.85.961

    Article  ADS  Google Scholar 

  10. G. Scappucci, C. Kloeffel, F.A. Zwanenburg, D. Loss, M. Myronov, J.J. Zhang, S. De Franceschi, G. Katsaros, M. Veldhorst, The germanium quantum information route. Nature Rev. Mater., 1–18 (2020)

    Google Scholar 

  11. J.M. Taylor, J.R. Petta, A.C. Johnson, A. Yacoby, C.M. Marcus, M.D. Lukin, Relaxation, dephasing, and quantum control of electron spins in double quantum dots. Phys. Rev. B 76(3), 035315 (2007). https://doi.org/10.1103/PhysRevB.76.035315

  12. E. Barnes, D.L. Deng, R.E. Throckmorton, Y.L. Wu, S. Das Sarma, Noise-induced collective quantum state preservation in spin qubit arrays. Phys. Rev. B 93, 085420 (2016). https://doi.org/10.1103/PhysRevB.93.085420

    Article  ADS  Google Scholar 

  13. C. Volk, A.M.J. Zwerver, U. Mukhopadhyay, P.T. Eendebak, C.J. van Diepen, J.P. Dehollain, T. Hensgens, T. Fujita, C. Reichl,W.Wegscheider, L.M.K. Vandersypen, Loading a quantumdot based “qubyte” register. npj Quantum Inf. 5, 29 (2019). https://doi.org/10.1038/s41534-019-0146-y

  14. J.P. Dehollain, U. Mukhopadhyay, V.P. Michal, Y. Wang, B. Wunsch, C. Reichl, W. Wegscheider, M.S. Rudner, E. Demler, L.M. Vandersypen, Nagaoka ferromagnetism observed in a quantum dot plaquette. Nature 579, 528 (2020). https://doi.org/10.1038/s41586-020-2051-0

    Article  ADS  Google Scholar 

  15. A.R. Mills, D.M. Zajac, M.J. Gullans, F.J. Schupp, T.M. Hazard, J.R. Petta, Shuttling a single charge across a one-dimensional array of silicon quantum dots. Nature Communications 10(1), 1063 (2019). https://doi.org/10.1038/s41467-019-08970-z

  16. M. Field, C.G. Smith, M. Pepper, D.A. Ritchie, J.E.F. Frost, G.A.C. Jones, D.G. Hasko, Measurements of coulomb blockade with a noninvasive voltage probe. Phys. Rev. Lett. 70, 1311 (1993). https://doi.org/10.1103/PhysRevLett.70.1311

    Article  ADS  Google Scholar 

  17. L. DiCarlo, H.J. Lynch, A.C. Johnson, L.I. Childress, K. Crockett, C.M. Marcus, M.P. Hanson, A.C. Gossard, Differential charge sensing and charge delocalization in a tunable double quantum dot. Phys. Rev. Lett. 92, 226801 (2004). https://doi.org/10.1103/PhysRevLett.92.226801

    Article  ADS  Google Scholar 

  18. D.J. Reilly, C.M. Marcus, M.P. Hanson, A.C. Gossard, Fast single-charge sensing with a rf quantum point contact. Appl. Phys. Lett. 91(16), 162101 (2007). https://doi.org/10.1063/1.2794995

  19. C. Barthel, D.J. Reilly, C.M. Marcus, M.P. Hanson, A.C. Gossard, Rapid single-shot measurement of a singlet-triplet qubit. Phys. Rev. Lett. 103, 160503 (2009). https://doi.org/10.1103/PhysRevLett.103.160503. https://link.aps.org/doi/10.1103/PhysRevLett.103.160503

  20. L.M.K. Vandersypen, M.A. Eriksson, Quantum computing with semiconductor spins. Physics Today 72(8), 38 (2019). https://doi.org/10.1063/PT.3.4270

  21. S. Tarucha, D.G. Austing, T. Honda, R.J. van der Hage, L.P. Kouwenhoven, Shell filling and spin effects in a few electron quantum dot. Phys. Rev. Lett. 77(17), 3613 (1996). https://doi.org/10.1103/PhysRevLett.77.3613. https://link.aps.org/doi/10.1103/PhysRevLett.77.3613

  22. L.P. Kouwenhoven, T.H. Oosterkamp, M.W.S. Danoesastro, M. Eto, D.G. Austing, T. Honda, S. Tarucha, Excitation spectra of circular, few-electron quantum dots. Science 278, 1788 (1997). https://doi.org/10.1126/science.278.5344.1788. https://www.sciencemag.org/content/278/5344/1788.abstract

  23. M. Ciorga, A.S. Sachrajda, P. Hawrylak, C. Gould, P. Zawadzki, S. Jullian, Y. Feng, Z. Wasilewski, Addition spectrum of a lateral dot from coulomb and spin-blockade spectroscopy. Phys. Rev. B 61, R16315 (2000). https://doi.org/10.1103/PhysRevB.61.R16315. https://link.aps.org/doi/10.1103/PhysRevB.61.R16315

  24. S.J. Angus, A.J. Ferguson, A.S. Dzurak, R.G. Clark, Gate-defined quantum dots in intrinsic silicon. Nano Lett. 7, 2051 (2007). https://doi.org/10.1021/nl070949k

    Article  ADS  Google Scholar 

  25. M.G. Borselli, K. Eng, R.S. Ross, T.M. Hazard, K.S. Holabird, B. Huang, A.A. Kiselev, P.W. Deelman, L.D. Warren, I. Milosavljevic, A.E. Schmitz, M. Sokolich, M.F. Gyure, A.T. Hunter, Undoped accumulation-mode Si/SiGe quantum dots. Nanotechnol. 26, 375202 (2015). https://doi.org/10.1088/0957-4484/26/37/375202

    Article  Google Scholar 

  26. D.M. Zajac, T.M. Hazard, X. Mi, E. Nielsen, J.R. Petta, Scalable gate architecture for a one-dimensional array of semiconductor spin qubits. Phys. Rev. Appl. 6, 054013 (2016). https://doi.org/10.1103/PhysRevApplied.6.054013

    Article  ADS  Google Scholar 

  27. T.A. Baart, P.T. Eendebak, C. Reichl, W. Wegscheider, L.M.K. Vandersypen, Computer-automated tuning of semiconductor double quantum dots into the single-electron regime. Appl. Phys. Lett. 108(21), 213104 (2016). https://doi.org/10.1063/1.4952624

  28. T. Hensgens, T. Fujita, L. Janssen, X. Li, C.J. Van Diepen, C. Reichl, W. Wegscheider, S. Das Sarma, L.M.K. Vandersypen, Quantum simulation of a Fermi-Hubbard model using a semiconductor quantum dot array. Nature 548, 70 EP (2017). https://doi.org/10.1038/nature23022

  29. U. Mukhopadhyay, J.P. Dehollain, C. Reichl, W. Wegscheider, L.M.K. Vandersypen, A 2 x 2 quantum dot array with controllable inter-dot tunnel couplings. Appl. Phys. Lett. 112(18), 183505 (2018). https://doi.org/10.1063/1.5025928

  30. A.J. Sigillito, M.J. Gullans, L.F. Edge, M. Borselli, J.R. Petta, Coherent transfer of quantum information in a silicon double quantum dot using resonant swap gates. npj Quantum Inf. 5(1), 110 (2019). https://doi.org/10.1038/s41534-019-0225-0

  31. C.J. van Diepen, P.T. Eendebak, B.T. Buijtendorp, U. Mukhopadhyay, T. Fujita, C. Reichl, W. Wegscheider, L.M.K. Vandersypen, Automated tuning of inter-dot tunnel coupling in double quantum dots. Appl. Phys. Lett. 113(3), 033101 (2018). https://doi.org/10.1063/1.5031034

  32. A.R. Mills, M.M. Feldman, C. Monical, P.J. Lewis, K.W. Larson, A.M. Mounce, J.R. Petta, Computer-automated tuning procedures for semiconductor quantum dot arrays. Appl. Phys. Lett. 115(11), 113501 (2019). https://doi.org/10.1063/1.5121444

  33. T.K. Hsiao, C. van Diepen, U. Mukhopadhyay, C. Reichl, W. Wegscheider, L. Vandersypen, Efficient orthogonal control of tunnel couplings in a quantum dot array. Phys. Rev. Appl. 13, 054018 (2020). https://doi.org/10.1103/PhysRevApplied.13.054018

    Article  ADS  Google Scholar 

  34. J.P. Zwolak, T. McJunkin, S.S. Kalantre, J. Dodson, E. MacQuarrie, D. Savage, M. Lagally, S. Coppersmith, M.A. Eriksson, J.M. Taylor, Autotuning of double-dot devices in situ with machine learning. Phys. Rev. Appl. 13, 034075 (2020). https://doi.org/10.1103/PhysRevApplied.13.034075

    Article  ADS  Google Scholar 

  35. S.S. Kalantre, J.P. Zwolak, S. Ragole, X. Wu, N.M. Zimmerman, M.D. Stewart, J.M. Taylor, Machine learning techniques for state recognition and auto-tuning in quantum dots. npj Quantum Inf. 5(1), 6 (2019). https://doi.org/10.1038/s41534-018-0118-7

  36. P.A.M. Dirac, R.H. Fowler, On the theory of quantum mechanics. Proc. R. Soc. Lond. A Contain. Papers Math. Phys. Character 112(762), 661 (1926). https://doi.org/10.1098/rspa.1926.0133

  37. W. Heisenberg, Mehrkörperproblem und resonanz in der quantenmechanik. Zeitschrift für Physik 38(6), 411 (1926). https://doi.org/10.1007/BF01397160

  38. N.W. Ashcroft, N.D. Mermin, Solid State Physics (Saunders College Publishing, 1976)

    Google Scholar 

  39. M. Russ, G. Burkard, Three-electron spin qubits. J. Phys. Condens. Matter 29(39), 393001 (2017). https://doi.org/10.1088/1361-648x/aa761f

  40. G. Burkard, D. Loss, D.P. DiVincenzo, Coupled quantum dots as quantum gates. Phys. Rev. B 59, 2070 (1999). https://doi.org/10.1103/PhysRevB.59.2070. https://link.aps.org/doi/10.1103/PhysRevB.59.2070

  41. E. Nielsen, R.P. Muller, A configuration interaction analysis of exchange in double quantum dots. ar**v:1006.2735 (2010). https://arxiv.org/abs/1006.2735

  42. A. Pan, T.E. Keating, M.F. Gyure, E.J. Pritchett, S. Quinn, R.S. Ross, T.D. Ladd, J. Kerckhoff, Resonant exchange operation in triple-quantum-dot qubits for spin–photon transduction. Quantum Sci. Technol. 5(3), 034005 (2020). https://doi.org/10.1088/2058-9565/ab86c9. https://iopscience.iop.org/article/10.1088/2058-9565/ab86c9

  43. J.R. Petta, A.C. Johnson, J.M. Taylor, E. Laird, A. Yacoby, M.D. Lukin, C.M. Marcus, M.P. Hanson, A.C. Gossard, Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309(5744), 2180 (2005). https://doi.org/10.1126/science.1116955

  44. M.D. Reed, B.M. Maune, R.W. Andrews, M.G. Borselli, K. Eng, M.P. Jura, A.A. Kiselev, T.D. Ladd, S.T. Merkel, I. Milosavljevic, E.J. Pritchett, M.T. Rakher, R.S. Ross, A.E. Schmitz, A. Smith, J.A. Wright, M.F. Gyure, A.T. Hunter, Reduced sensitivity to charge noise in semiconductor spin qubits via symmetric operation. Phys. Rev. Lett. 116, 110402 (2016). https://doi.org/10.1103/PhysRevLett.116.110402

    Article  ADS  Google Scholar 

  45. F. Martins, F.K. Malinowski, P.D. Nissen, E. Barnes, S. Fallahi, G.C. Gardner, M.J. Manfra, C.M. Marcus, F. Kuemmeth, Noise suppression using symmetric exchange gates in spin qubits. Phys. Rev. Lett. 116, 116801 (2016). https://doi.org/10.1103/PhysRevLett.116.116801

    Article  ADS  MathSciNet  Google Scholar 

  46. O.E. Dial, M.D. Shulman, S.P. Harvey, H. Bluhm, V. Umansky, A. Yacoby, Charge noise spectroscopy using coherent exchange oscillations in a singlet-triplet qubit. Phys. Rev. Lett. 110, 146804 (2013). https://doi.org/10.1103/PhysRevLett.110.146804. https://link.aps.org/doi/10.1103/PhysRevLett.110.146804

  47. H. Qiao, Y.P. Kandel, K. Deng, S. Fallahi, G.C. Gardner, M.J. Manfra, E. Barnes, J.M. Nichol, Coherent multispin exchange coupling in a quantum-dot spin chain. Phys. Rev. X 10, 031006 (2020). https://doi.org/10.1103/PhysRevX.10.031006

    Google Scholar 

  48. T.A. Baart, M. Shafiei, T. Fujita, C. Reichl, W. Wegscheider, L.M.K. Vandersypen, Single-spin CCD. Nature Nanotechnology 11, 330 (2016). https://doi.org/10.1038/nnano.2015.291

    Article  ADS  Google Scholar 

  49. C.J. van Diepen, T.K. Hsiao, U. Mukhopadhyay, C. Reichl, W. Wegscheider, L.M.K. Vandersypen. Quantum simulation of antiferromagnetic Heisenberg chain with gate-defined quantum dots. Phys. Rev. X 11, 041025 (2021). https://doi.org/10.1103/PhysRevX.11.041025

    Google Scholar 

  50. M. Veldhorst, J.C.C. Hwang, C.H. Yang, A.W. Leenstra, B. de Ronde, J.P. Dehollain, J.T. Muhonen, F.E. Hudson, K.M. Itoh, A. Morello, A.S. Dzurak, An addressable quantum dot qubit with fault-tolerant control-fidelity. Nature Nanotechnology 9, 981 (2014). https://doi.org/10.1038/nnano.2014.216

    Article  ADS  Google Scholar 

  51. F.K. Malinowski, F. Martins, P.D. Nissen, E. Barnes, M.S. Rudner, S. Fallahi, G.C. Gardner, M.J. Manfra, C.M. Marcus, F. Kuemmeth, Notch filtering the nuclear environment of a spin qubit. Nature Nanotechnology 12, 16–20 (2016). https://doi.org/10.1038/nnano.2016.170

    Article  ADS  Google Scholar 

  52. A.M.J. Zwerver, T. Krähenmann, T.F. Watson, L. Lampert, H.C. George, R. Pillarisetty, S.A. Bojarski, P. Amin, S.V. Amitonov, J.M. Boter, R. Caudillo, D. Corras-Serrano, J.P. Dehollain, G. Droulers, E.M. Henry, R. Kotlyar, M. Lodari, F. Luthi, D.J. Michalak, B.K. Mueller, S. Neyens, J. Roberts, N. Samkharadze, G. Zheng, O.K. Zietz, G. Scappucci, M. Veldhorst, L.M.K. Vandersypen, J.S. Clarke, Qubits made by advanced semiconductor manufacturing. ar**v:2101.12650 [cond-mat, physics:quant-ph] (2021). https://arxiv.org/abs/2101.12650

  53. W. Ha, S.D. Ha, M.D. Choi, Y. Tang, A.E. Schmitz, M.P. Levendorf, K. Lee, T.s. Chappell, J. M. ad Adams, D.R. Hulbert, E. Acuna, R.S. Noah, J.W. Matten, M.P. Jura, J.A. Wright, M.T. Rakher, M.G. Borselli, A flexible design platform for Si/SiGe exchange-only qubits with low disorder. Nano Letters 22(3), 1443 (2022). https://doi.org/10.1021/acs.nanolett.1c03026

  54. J. Levy, Universal quantum computation with spin-1/2 pairs and Heisenberg exchange. Phys. Rev. Lett. 89(14), 147902 (2002). https://doi.org/10.1103/PhysRevLett.89.147902

  55. D.P. DiVincenzo, D. Bacon, J. Kempe, G. Burkard, K.B. Whaley, Universal quantum computation with the exchange interaction. Nature 408(6810), 339 (2000). https://doi.org/10.1038/35042541

  56. A. Sala, J. Danon, Exchange-only singlet-only spin qubit. Phys. Rev. B 95, 241303 (2017). https://doi.org/10.1103/PhysRevB.95.241303

    Article  ADS  Google Scholar 

  57. A. Sala, J.H. Qvist, J. Danon, Highly tunable exchange-only singlet-only qubit in a GaAs triple quantum dot. Phys. Rev. Res. 2, 012062 (2020). https://doi.org/10.1103/PhysRevResearch.2.012062

    Article  Google Scholar 

  58. M. Russ, J.R. Petta, G. Burkard, Quadrupolar exchange-only spin qubit. Phys. Rev. Lett. 121, 177701 (2018). https://doi.org/10.1103/PhysRevLett.121.177701

    Article  ADS  Google Scholar 

  59. D. Loss, D.P. DiVincenzo, Quantum computation with quantum dots. Phys. Rev. A 57(1), 120 (1998). https://doi.org/10.1103/PhysRevA.57.120

  60. J. Yoneda, K. Takeda, T. Otsuka, T. Nakajima, M.R. Delbecq, G. Allison, T. Honda, T. Kodera, S. Oda, Y. Hoshi, N. Usami, K.M. Itoh, S. Tarucha, A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9%. Nature Nanotechnology 13(2), 102 (2018). https://doi.org/10.1038/s41565-017-0014-x

  61. K.C. Nowack, M. Shafiei, M. Laforest, G.E.D.K. Prawiroatmodjo, L.R. Schreiber, C. Reichl, W. Wegscheider, L.M.K. Vandersypen, Single-shot correlations and two-qubit gate of solid-state spins. Science 333(6047), 1269 (2011). https://doi.org/10.1126/science.1209524

  62. R. Brunner, Y.S. Shin, T. Obata, M. Pioro-Ladrière, T. Kubo, K. Yoshida, T. Taniyama, Y. Tokura, S. Tarucha, Two-qubit gate of combined single-spin rotation and interdot spin exchange in a double quantum dot. Phys. Rev. Lett. 107, 146801 (2011). https://doi.org/10.1103/PhysRevLett.107.146801

    Article  ADS  Google Scholar 

  63. B.E. Kane, A silicon-based nuclear spin quantum computer. Nature 393, 133 (1998). https://doi.org/10.1038/30156

    Article  ADS  Google Scholar 

  64. T. Meunier, V.E. Calado, L.M.K. Vandersypen, Efficient controlled-phase gate for single-spin qubits in quantum dots. Phys. Rev. B 83, 121403 (2011). https://doi.org/10.1103/PhysRevB.83.121403

    Article  ADS  Google Scholar 

  65. M. Russ, D.M. Zajac, A.J. Sigillito, F. Borjans, J.M. Taylor, J.R. Petta, G. Burkard, High-fidelity quantum gates in Si/SiGe double quantum dots. Phys. Rev. B 97, 085421 (2018). https://doi.org/10.1103/PhysRevB.97.085421

    Article  ADS  Google Scholar 

  66. M. Veldhorst, C.H. Yang, J.C.C. Hwang, W. Huang, J.P. Dehollain, J.T. Muhonen, S. Simmons, A. Laucht, F.E. Hudson, K.M. Itoh, A. Morello, A.S. Dzurak, A two-qubit logic gate in silicon. Nature 526(7573), 410 (2015). https://doi.org/10.1038/nature15263

  67. D.M. Zajac, A.J. Sigillito, M. Russ, F. Borjans, J.M. Taylor, G. Burkard, J.R. Petta, Resonantly driven CNOT gate for electron spins. Science 359, 439 (2018). https://doi.org/10.1126/science.aao5965

    Article  ADS  MathSciNet  MATH  Google Scholar 

  68. T.F. Watson, S.G.J. Philips, E. Kawakami, D.R. Ward, P. Scarlino, M. Veldhorst, D.E. Savage, M.G. Lagally, M. Friesen, S.N. Coppersmith, M.A. Eriksson, L.M.K. Vandersypen, A programmable two-qubit quantum processor in silicon. Nature 555, 633 (2018). https://doi.org/10.1038/nature25766

    Article  ADS  Google Scholar 

  69. W. Huang, C.H. Yang, K.W. Chan, T. Tanttu, B. Hensen, R.C.C. Leon, M.A. Fogarty, J.C.C. Hwang, F.E. Hudson, K.M. Itoh, A. Morello, A. Laucht, A.S. Dzurak, Fidelity benchmarks for two-qubit gates in silicon. Nature 569(7757), 532 (2019). https://doi.org/10.1038/s41586-019-1197-0

  70. X. Xue, M. Russ, N. Samkharadze, B. Undseth, A. Sammak, G. Scappucci, L.M.K. Vandersypen, Computing with spin qubits at the surface code error threshold. Nature 601, 343 (2022). https://doi.org/10.1038/s41586-021-04273-w

    Article  ADS  Google Scholar 

  71. A.G. Fowler, M. Mariantoni, J.M. Martinis, A.N. Cleland, Surface codes: Towards practical large-scale quantum computation. Phys. Rev. A 86, 032324 (2012). https://doi.org/10.1103/PhysRevA.86.032324. https://link.aps.org/doi/10.1103/PhysRevA.86.032324

  72. M.J. Gullans, J.R. Petta, Protocol for a resonantly driven three-qubit Toffoli gate with silicon spin qubits. Phys. Rev. B 100, 085419 (2019). https://doi.org/10.1103/PhysRevB.100.085419

    Article  ADS  Google Scholar 

  73. D. Bacon, J. Kempe, D.A. Lidar, K.B. Whaley, Universal fault-tolerant quantum computation on decoherence-free subspaces. Phys. Rev. Lett. 85, 1758 (2000). https://doi.org/10.1103/PhysRevLett.85.1758. https://link.aps.org/doi/10.1103/PhysRevLett.85.1758

  74. S. Foletti, H. Bluhm, D. Mahalu, V. Umansky, A. Yacoby, Universal quantum control of two-electron spin quantum bits using dynamic nuclear polarization. Nature Physics 5(12), 903 (2009). https://doi.org/10.1038/nphys1424

  75. H. Bluhm, S. Foletti, I. Neder, M.S. Rudner, D. Mahalu, V. Umansky, A. Yacoby, Dephasing time of GaAs electron-spin qubits coupled to a nuclear bath exceeding 200 μs. Nature Physics 7(2), 109 (2010). https://doi.org/10.1038/nphys1856

  76. H. Qiao, Y.P. Kandel, J.S.V. Dyke, S. Fallahi, G.C. Gardner, M.J. Manfra, E. Barnes, J.M. Nichol, Floquet-enhanced spin swaps. Nature Communications 12(1), 2142 (2021). https://doi.org/10.1038/s41467-021-22415-6

  77. H. Bluhm, S. Foletti, D. Mahalu, V. Umansky, A. Yacoby, Enhancing the coherence of a spin qubit by operating it as a feedback loop that controls its nuclear spin bath. Phys. Rev. Lett. 105(21), 216803 (2010). https://doi.org/10.1103/PhysRevLett.105.216803

  78. M.D. Shulman, O.E. Dial, S.P. Harvey, H. Bluhm, V. Umansky, A. Yacoby, Demonstration of entanglement of electrostatically coupled singlet-triplet qubits. Science 336(6078), 202 (2012). https://doi.org/10.1126/science.1217692

  79. B.M. Maune, M.G. Borselli, B. Huang, T.D. Ladd, P.W. Deelman, K.S. Holabird, A.A. Kiselev, I. Alvarado-Rodriguez, R.S. Ross, A.E. Schmitz, M. Sokolich, C.A. Watson, M.F. Gyure, A.T. Hunter, Coherent singlet-triplet oscillations in a silicon-based double quantum dot. Nature 481(7381), 344 (2012). https://doi.org/10.1038/nature10707

  80. M.D. Shulman, S.P. Harvey, J.M. Nichol, S.D. Bartlett, A.C. Doherty, V. Umansky, A. Yacoby, Suppressing qubit dephasing using real-time Hamiltonian estimation. Nature Communications 5(May), 5156 (2014). https://doi.org/10.1038/ncomms6156

  81. X. Wu, D.R. Ward, J.R. Prance, D. Kim, J.K. Gamble, R.T. Mohr, Z. Shi, D.E. Savage, M.G. Lagally, M. Friesen, S.N. Coppersmith, M.A. Eriksson, Two-axis control of a singlet—triplet qubit with an integrated micromagnet. Proc. Natl. Acad. Sci. 111(33), 11938 (2014). https://doi.org/10.1073/pnas.1412230111

  82. J.M. Nichol, S.P. Harvey, M.D. Shulman, A. Pal, V. Umansky, E.I. Rashba, B.I. Halperin, A. Yacoby, Quenching of dynamic nuclear polarization by spin-orbit coupling in GaAs quantum dots. Nature Communications 6, 7682 (2015). https://doi.org/10.1038/ncomms8682

    Article  ADS  Google Scholar 

  83. J..M. Nichol, L.A. Orona, S.P. Harvey, S. Fallahi, G.C. Gardner, M.J. Manfra, A. Yacoby, High-fidelity entangling gate for double-quantum-dot spin qubits. npj Quantum Inf. 3(1), 3 (2017). https://doi.org/10.1038/s41534-016-0003-1

  84. A. Noiri, T. Nakajima, J. Yoneda, M.R. Delbecq, P. Stano, T. Otsuka, K. Takeda, S. Amaha, G. Allison, K. Kawasaki, Y. Kojima, A. Ludwig, A.D. Wieck, D. Loss, S. Tarucha, A fast quantum interface between different spin qubit encodings. Nature Communications 9(1), 5066 (2018). https://doi.org/10.1038/s41467-018-07522-1

  85. P. Harvey-Collard, N.T. Jacobson, C. Bureau-Oxton, R.M. Jock, V. Srinivasa, A.M. Mounce, D.R. Ward, J.M. Anderson, R.P. Manginell, J.R. Wendt, T. Pluym, M.P. Lilly, D.R. Luhman, M. Pioro-Ladrière, M.S. Carroll, Spin-orbit interactions for singlet-triplet qubits in silicon. Phys. Rev. Lett. 122, 217702 (2019). https://doi.org/10.1103/PhysRevLett.122.217702

    Article  ADS  Google Scholar 

  86. M.A. Fogarty, K.W. Chan, B. Hensen, W. Huang, T. Tanttu, C.H. Yang, A. Laucht, M. Veldhorst, F.E. Hudson, K.M. Itoh, D. Culcer, T.D. Ladd, A. Morello, A.S. Dzurak, Integrated silicon qubit platform with single-spin addressability, exchange control and singleshot singlet-triplet readout. Nature Communications 9(1), 4370 (2018). https://doi.org/10.1038/s41467-018-06039-x

  87. P. Cerfontaine, T. Botzem, J. Ritzmann, S.S. Humpohl, A. Ludwig, D. Schuh, D. Bougeard, A.D. Wieck, H. Bluhm, Closed-loop control of a GaAs-based singlet-triplet spin qubit with 99.5% gate fidelity and low leakage. Nature Communications 11(1), 1 (2020). https://doi.org/10.1038/s41467-020-17865-3 P. Cerfontaine, T. Botzem, J. Ritzmann, S.S. Humpohl, A. Ludwig, D. Schuh, D. Bougeard, A.D. Wieck, H. Bluhm, Closed-loop control of a GaAs-based singlet-triplet spin qubit with 99.5% gate fidelity and low leakage. Nature Communications 11(1), 1 (2020)

  88. K. Takeda, A. Noiri, J. Yoneda, T. Nakajima, S. Tarucha, Resonantly driven singlet-triplet spin qubit in silicon. Phys. Rev. Lett. 124, 117701 (2020). https://doi.org/10.1103/PhysRevLett.124.117701

    Article  ADS  Google Scholar 

  89. J. Klinovaja, D. Stepanenko, B.I. Halperin, D. Loss, Exchange-based CNOT gates for singlet-triplet qubits with spin-orbit interaction. Phys. Rev. B 86, 085423 (2012). https://link.aps.org/doi/10.1103/PhysRevB.86.085423

    Article  ADS  Google Scholar 

  90. R. Li, X. Hu, J.Q. You, Controllable exchange coupling between two singlet-triplet qubits. Phys. Rev. B 86, 205306 (2012). https://doi.org/10.1103/PhysRevB.86.205306

    Article  ADS  Google Scholar 

  91. M.P. Wardrop, A.C. Doherty, Exchange-based two-qubit gate for singlet-triplet qubits. Phys. Rev. B 90, 045418 (2014). https://doi.org/10.1103/PhysRevB.90.045418

    Article  ADS  Google Scholar 

  92. P. Cerfontaine, R. Otten, M.A. Wolfe, P. Bethke, H. Bluhm, High-fidelity gate set for exchange-coupled singlet-triplet qubits. Phys. Rev. B 101, 155311 (2020). https://doi.org/10.1103/PhysRevB.101.155311. https://link.aps.org/doi/10.1103/PhysRevB.101.155311

  93. J. Medford, J. Beil, J.M. Taylor, S.D. Bartlett, A.C. Doherty, E.I. Rashba, D.P. DiVincenzo, H. Lu, A.C. Gossard, C.M. Marcus, Self-consistent measurement and state tomography of an exchange-only spin qubit. Nature Nanotechnology 8, 654 (2013). https://doi.org/10.1038/nnano.2013.168

    Article  ADS  Google Scholar 

  94. J. Medford, J. Beil, J.M. Taylor, E.I. Rashba, H. Lu, A.C. Gossard, C.M. Marcus, Quantum-dot-based resonant exchange qubit. Phys. Rev. Lett. 111, 050501 (2013). https://doi.org/10.1103/PhysRevLett.111.050501

    Article  ADS  Google Scholar 

  95. R.W. Andrews, C. Jones, M.D. Reed, A.M. Jones, S.D. Ha, M.P. Jura, J. Kerckhoff, M. Levendorf, S. Meenehan, S.T. Merkel, A. Smith, B. Sun, A.J. Weinstein, M.T. Rakher, T.D. Ladd, M.G. Borselli, Quantifying error and leakage in an encoded Si/SiGe triple-dot qubit. Nature Nanotechnology 14(8), 747 (2019). https://doi.org/10.1038/s41565-019-0500-4

  96. E.A. Laird, J.M. Taylor, D.P. DiVincenzo, C.M. Marcus, M.P. Hanson, A.C. Gossard, Coherent spin manipulation in an exchange-only qubit. Phys. Rev. B 82, 075403 (2010). https://doi.org/10.1103/PhysRevB.82.075403

    Article  ADS  Google Scholar 

  97. L. Gaudreau, G. Granger, A. Kam, G.C. Aers, S.A. Studenikin, P. Zawadzki, M. Pioro-Ladriere, Z.R. Wasilewski, A.S. Sachrajda, Coherent control of three-spin states in a triple quantum dot. Nature Physics 8, 54 (2012). https://doi.org/10.1038/nphys2149

    Article  ADS  Google Scholar 

  98. K. Eng, T.D. Ladd, A. Smith, M.G. Borselli, A.A. Kiselev, B.H. Fong, K.S. Holabird, T.M. Hazard, B. Huang, P.W. Deelman, I. Milosavljevic, A.E. Schmitz, R.S. Ross, M.F. Gyure, A.T. Hunter, Isotopically enhanced triple-quantum-dot qubit. Sci. Adv. 1, 1500214 (2015). https://doi.org/10.1126/sciadv.1500214. https://advances.sciencemag.org/content/1/4/e1500214

  99. Y.P. Shim, C. Tahan, Charge-noise-insensitive gate operations for always-on, exchange-only qubits. Phys. Rev. B 93, 121410 (2016). https://doi.org/10.1103/PhysRevB.93.121410

    Article  ADS  Google Scholar 

  100. F.K. Malinowski, F. Martins, P.D. Nissen, S. Fallahi, G.C. Gardner, M.J. Manfra, C.M. Marcus, F. Kuemmeth, Symmetric operation of the resonant exchange qubit. Phys. Rev. B 96, 045443 (2017). https://doi.org/10.1103/PhysRevB.96.045443

    Article  ADS  Google Scholar 

  101. Z. Shi, C.B. Simmons, J.R. Prance, J.K. Gamble, T.S. Koh, Y.P. Shim, X. Hu, D.E. Savage, M.G. Lagally, M.A. Eriksson, M. Friesen, S.N. Coppersmith, Fast hybrid silicon double-quantum-dot qubit. Phys. Rev. Lett. 108, 140503 (2012). https://doi.org/10.1103/PhysRevLett.108.140503

    Article  ADS  Google Scholar 

  102. D. Kim, Z. Shi, C.B. Simmons, D.R. Ward, J.R. Prance, T.S. Koh, J.K. Gamble, D.E. Savage, M.G. Lagally, M. Friesen, S.N. Coppersmith, M.A. Eriksson, Quantum control and process tomography of a semiconductor quantum dot hybrid qubit. Nature 511(7507), 70 (2014). https://doi.org/10.1038/nature13407

  103. B.H. Fong, S.M. Wandzura, Universal quantum computation and leakage reduction in the 3-qubit decoherence free subsystem. Quantum Inf. Comput. 11(11-12) 1003–1018 (2011)

    MathSciNet  MATH  Google Scholar 

  104. F. Setiawan, H.Y. Hui, J.P. Kestner, X. Wang, S.D. Sarma, Robust two-qubit gates for exchange-coupled qubits. Phys. Rev. B 89, 085314 (2014). https://doi.org/10.1103/PhysRevB.89.085314. https://link.aps.org/doi/10.1103/PhysRevB.89.085314

  105. M.P. Wardrop, A.C. Doherty, Characterization of an exchange-based two-qubit gate for resonant exchange qubits. Phys. Rev. B 93, 075436 (2016). https://doi.org/10.1103/PhysRevB.93.075436. https://link.aps.org/doi/10.1103/PhysRevB.93.075436

  106. D. Zeuch, R. Cipri, N.E. Bonesteel, Analytic pulse-sequence construction for exchange-only quantum computation. Phys. Rev. B 90, 045306 (2014). https://doi.org/10.1103/PhysRevB.90.045306. https://link.aps.org/doi/10.1103/PhysRevB.90.045306

  107. A. Auerbach, Interacting electrons and quantum magnetism (Springer Science & Business Media, 2012)

    Google Scholar 

  108. L. Tarruell, L. Sanchez-Palencia, Quantum simulation of the Hubbard model with ultracold fermions in optical lattices. Comptes Rendus Physique 19(6), 365 (2018). https://doi.org/10.1016/j.crhy.2018.10.013

  109. P. Barthelemy, L.M.K. Vandersypen, Quantum dot systems: a versatile platform for quantum simulations. Annalen der Physik 525(10-11), 808 (2013). https://doi.org/10.1002/andp.201300124

  110. S. Bose, Quantum communication through spin chain dynamics: an introductory overview. Contemporary Physics 48(1), 13 (2007). https://doi.org/10.1080/00107510701342313

  111. A. Pal, D.A. Huse, Many-body localization phase transition. Phys. Rev. B 82, 174411 (2010). https://doi.org/10.1103/PhysRevB.82.174411

    Article  ADS  Google Scholar 

  112. F.R. Braakman, P. Barthelemy, C. Reichl, W. Wegscheider, L.M.K. Vandersypen, Long-distance coherent coupling in a quantum dot array. Nature Nanotechnology 8, 432 (2013). https://doi.org/10.1038/nnano.2013.67

    Article  ADS  Google Scholar 

  113. X. Wang, S. Yang, S. Das Sarma, Quantum theory of the charge-stability diagram of semiconductor double-quantum-dot systems. Phys. Rev. B 84, 115301 (2011). https://doi.org/10.1103/PhysRevB.84.115301. https://link.aps.org/doi/10.1103/PhysRevB.84.115301

  114. A. Singha, M. Gibertini, B. Karmakar, S. Yuan, M. Polini, G. Vignale, M. Katsnelson, A. Pinczuk, L. Pfeiffer, K. West, et al., Two-dimensional Mott-Hubbard electrons in an artificial honeycomb lattice. Science 332(6034), 1176 (2011). https://doi.org/10.1126/science.1204333

  115. M. Gibertini, A. Singha, V. Pellegrini, M. Polini, G. Vignale, A. Pinczuk, L.N. Pfeiffer, K.W. West, Engineering artificial graphene in a two-dimensional electron gas. Phys. Rev. B 79, 241406 (2009). https://doi.org/10.1103/PhysRevB.79.241406. https://link.aps.org/doi/10.1103/PhysRevB.79.241406

  116. K.W. Chan, H. Sahasrabudhe, W. Huang, Y. Wang, H.C. Yang, M. Veldhorst, J.C.C. Hwang, F.A. Mohiyaddin, F.E. Hudson, K.M. Itoh, A. Saraiva, A. Morello, A. Laucht, R. Rahman, A.S. Dzurak, Exchange coupling in a linear chain of three quantum-dot spin qubits in silicon. Nano Letters 21(3), 1517–1522 (2020). https://doi.org/10.1021/acs.nanolett.0c04771

    Article  ADS  Google Scholar 

  117. Y. Nagaoka, Ferromagnetism in a narrow, almost half-filled s band. Phys. Rev. 147, 392 (1966). https://doi.org/10.1103/PhysRev.147.392. https://link.aps.org/doi/10.1103/PhysRev.147.392

  118. Y.P. Kandel, H. Qiao, S. Fallahi, G.C. Gardner, M.J. Manfra, J.M. Nichol, Adiabatic quantum state transfer in a semiconductor quantum-dot spin chain. Nature Communications 12(1), 2156 (2021). https://doi.org/10.1038/s41467-021-22416-5

  119. H. Qiao, Y.P. Kandel, S. Fallahi, G.C. Gardner, M.J. Manfra, X. Hu, J.M. Nichol, Long-distance superexchange between semiconductor quantum-dot electron spins. Phys. Rev. Lett. 126, 017701 (2021). https://doi.org/10.1103/PhysRevLett.126.017701

    Article  ADS  Google Scholar 

  120. R. de Sousa, X. Hu, S. Das Sarma, Effect of an inhomogeneous external magnetic field on a quantum-dot quantum computer. Phys. Rev. A 64, 042307 (2001). https://doi.org/10.1103/PhysRevA.64.042307

    Article  ADS  Google Scholar 

  121. D. Bacon, S.T. Flammia, Adiabatic gate teleportation. Phys. Rev. Lett. 103, 120504 (2009). https://doi.org/10.1103/PhysRevLett.103.120504

    Article  ADS  MathSciNet  Google Scholar 

  122. N.V. Vitanov, A.A. Rangelov, B.W. Shore, K. Bergmann, Stimulated Raman adiabatic passage in physics, chemistry, and beyond. Rev. Mod. Phys. 89, 015006 (2017). https://doi.org/10.1103/RevModPhys.89.015006

    Article  ADS  Google Scholar 

  123. E. Farhi, J. Goldstone, S. Gutmann, M. Sipser, Quantum computation by adiabatic evolution, ar**v:quant-ph/0001106 (2000). https://doi.org/10.48550/ar**v.quant-ph/0001106

  124. A.D. Greentree, J.H. Cole, A.R. Hamilton, L.C.L. Hollenberg, Coherent electronic transfer in quantum dot systems using adiabatic passage. Phys. Rev. B 70, 235317 (2004). https://doi.org/10.1103/PhysRevB.70.235317

    Article  ADS  Google Scholar 

  125. V. Srinivasa, J. Levy, C.S. Hellberg, Flying spin qubits: A method for encoding and transporting qubits within a dimerized Heisenberg spin-\(\frac {1}{2}\) chain. Phys. Rev. B 76, 094411 (2007). https://doi.org/10.1103/PhysRevB.76.094411

  126. D. Petrosyan, G.M. Nikolopoulos, P. Lambropoulos, State transfer in static and dynamic spin chains with disorder. Phys. Rev. A 81, 042307 (2010). https://doi.org/10.1103/PhysRevA.81.042307

    Article  ADS  Google Scholar 

  127. N. Chancellor, S. Haas, Using theJ1–j2quantum spin chain as an adiabatic quantum data bus. New J. Phys. 14(9), 095025 (2012). https://doi.org/10.1088/1367-2630/14/9/095025

  128. S. Oh, Y.P. Shim, J. Fei, M. Friesen, X. Hu, Resonant adiabatic passage with three qubits. Phys. Rev. A 87, 022332 (2013). https://doi.org/10.1103/PhysRevA.87.022332

    Article  ADS  Google Scholar 

  129. U. Farooq, A. Bayat, S. Mancini, S. Bose, Adiabatic many-body state preparation and information transfer in quantum dot arrays. Phys. Rev. B 91, 134303 (2015). https://doi.org/10.1103/PhysRevB.91.134303

    Article  ADS  Google Scholar 

  130. R. Menchon-Enrich, A. Benseny, V. Ahufinger, A.D. Greentree, T. Busch, J. Mompart, Reports on progress in physics spatial adiabatic passage: A review of recent progress related content. Rep. Prog. Phys. 79, 074401 (2016). https://doi.org/10.1088/0034-4885/79/7/074401

    Article  ADS  Google Scholar 

  131. Y. Ban, X. Chen, S. Kohler, G. Platero, Spin entangled state transfer in quantum dot arrays: Coherent adiabatic and speed-up protocols. Adv. Quantum Tech. 2(10) (2019). https://doi.org/10.1002/qute.201900048

  132. M.J. Gullans, J.R. Petta, Coherent transport of spin by adiabatic passage in quantum dot arrays. Phys. Rev. B 102, 155404 (2020). https://doi.org/10.1103/PhysRevB.102.155404

    Article  ADS  Google Scholar 

  133. S. Bose, Quantum communication through an unmodulated spin chain. Phys. Rev. Lett. 91, 207901 (2003). https://doi.org/10.1103/PhysRevLett.91.207901

    Article  ADS  Google Scholar 

  134. A. Wójcik, T. Łuczak, P. Kurzyński, A. Grudka, T. Gdala, M. Bednarska, Unmodulated spin chains as universal quantum wires. Phys. Rev. A 72, 034303 (2005). https://doi.org/10.1103/PhysRevA.72.034303

    Article  ADS  MathSciNet  Google Scholar 

  135. L. Campos Venuti, C. Degli Esposti Boschi, M. Roncaglia, Long-distance entanglement in spin systems. Phys. Rev. Lett. 96, 247206 (2006). https://doi.org/10.1103/PhysRevLett.96.247206

  136. M. Friesen, A. Biswas, X. Hu, D. Lidar, Efficient multiqubit entanglement via a spin bus. Phys. Rev. Lett. 98, 230503 (2007). https://doi.org/10.1103/PhysRevLett.98.230503

    Article  ADS  Google Scholar 

  137. S. Oh, M. Friesen, X. Hu, Even-odd effects of heisenberg chains on long-range interaction and entanglement. Phys. Rev. B 82, 140403 (2010). https://doi.org/10.1103/PhysRevB.82.140403

    Article  ADS  Google Scholar 

  138. S. Oh, L.A. Wu, Y.P. Shim, J. Fei, M. Friesen, X. Hu, Heisenberg spin bus as a robust transmission line for quantum-state transfer. Phys. Rev. A 84, 022330 (2011). https://doi.org/10.1103/PhysRevA.84.022330

    Article  ADS  Google Scholar 

  139. T.A. Baart, T. Fujita, C. Reichl, W. Wegscheider, L.M.K. Vandersypen, Coherent spin-exchange via a quantum mediator. Nature Nanotechnology 12, 26 (2016). https://doi.org/10.1038/nnano.2016.188

    Article  ADS  Google Scholar 

  140. F.K. Malinowski, F. Martins, T.B. Smith, S.D. Bartlett, A.C. Doherty, P.D. Nissen, S. Fallahi, G.C. Gardner, M.J. Manfra, C.M. Marcus, F. Kuemmeth, Fast spin exchange across a multielectron mediator. Nature Communications 10(1), 1196 (2019). https://doi.org/10.1038/s41467-019-09194-x

  141. M. Schreiber, S.S. Hodgman, P. Bordia, H.P. Lüschen, M.H. Fischer, R. Vosk, E. Altman, U. Schneider, I. Bloch, Observation of many-body localization of interacting fermions in a quasirandom optical lattice. Science 349(6250), 842 (2015). https://doi.org/10.1126/science.aaa7432

  142. J.y. Choi, S. Hild, J. Zeiher, P. Schauß, A. Rubio-Abadal, T. Yefsah, V. Khemani, D.A. Huse, I. Bloch, C. Gross, Exploring the many-body localization transition in two dimensions. Science 352(6293), 1547 (2016). https://doi.org/10.1126/science.aaf8834

  143. S.S. Kondov, W.R. McGehee, W. Xu, B. DeMarco, Disorder-induced localization in a strongly correlated atomic Hubbard gas. Phys. Rev. Lett. 114, 083002 (2015). https://doi.org/10.1103/PhysRevLett.114.083002

    Article  ADS  Google Scholar 

  144. J. Smith, A. Lee, P. Richerme, B. Neyenhuis, P.W. Hess, P. Hauke, M. Heyl, D.A. Huse, C. Monroe, Many-body localization in a quantum simulator with programmable random disorder. Nature Physics 12(10), 907 (2016). https://doi.org/10.1038/nphys3783

  145. K.X. Wei, C. Ramanathan, P. Cappellaro, Exploring localization in nuclear spin chains. Phys. Rev. Lett. 120, 070501 (2018). https://doi.org/10.1103/PhysRevLett.120.070501

    Article  ADS  Google Scholar 

  146. V. Khemani, A. Lazarides, R. Moessner, S.L. Sondhi, Phase structure of driven quantum systems. Phys. Rev. Lett. 116, 250401 (2016). https://doi.org/10.1103/PhysRevLett.116.250401

    Article  ADS  Google Scholar 

  147. D.V. Else, B. Bauer, C. Nayak, Floquet time crystals. Phys. Rev. Lett. 117, 090402 (2016). https://doi.org/10.1103/PhysRevLett.117.090402

    Article  ADS  Google Scholar 

  148. C.W. von Keyserlingk, S.L. Sondhi, Phase structure of one-dimensional interacting Floquet systems. II. symmetry-broken phases. Phys. Rev. B 93, 245146 (2016). https://doi.org/10.1103/PhysRevB.93.245146

    Google Scholar 

  149. N.Y. Yao, A.C. Potter, I.D. Potirniche, A. Vishwanath, Discrete time crystals: Rigidity, criticality, and realizations. Phys. Rev. Lett. 118, 030401 (2017). https://doi.org/10.1103/PhysRevLett.118.030401

    Article  ADS  MathSciNet  Google Scholar 

  150. E. Barnes, J.M. Nichol, S.E. Economou, Stabilization and manipulation of multispin states in quantum-dot time crystals with heisenberg interactions. Phys. Rev. B 99, 035311 (2019). https://doi.org/10.1103/PhysRevB.99.035311

    Article  ADS  Google Scholar 

  151. J. Zhang, P.W. Hess, A. Kyprianidis, P. Becker, A. Lee, J. Smith, G. Pagano, I.D. Potirniche, A.C. Potter, A. Vishwanath, N.Y. Yao, C. Monroe, Observation of a discrete time crystal. Nature 543(7644), 217 (2017). https://doi.org/10.1038/nature21413

  152. S. Choi, J. Choi, R. Landig, G. Kucsko, H. Zhou, J. Isoya, F. Jelezko, S. Onoda, H. Sumiya, V. Khemani, C. von Keyserlingk, N.Y. Yao, E. Demler, M.D. Lukin, Observation of discrete time-crystalline order in a disordered dipolar many-body system. Nature 543(7644), 221 (2017). https://doi.org/10.1038/nature21426

  153. J. Rovny, R.L. Blum, S.E. Barrett, Observation of discrete-time-crystal signatures in an ordered dipolar many-body system. Phys. Rev. Lett. 120, 180603 (2018). https://doi.org/10.1103/PhysRevLett.120.180603

    Article  ADS  MathSciNet  Google Scholar 

  154. S. Pal, N. Nishad, T.S. Mahesh, G.J. Sreejith, Temporal order in periodically driven spins in star-shaped clusters. Phys. Rev. Lett. 120, 180602 (2018). https://doi.org/10.1103/PhysRevLett.120.180602

    Article  ADS  Google Scholar 

  155. B. Li, J.S. Van Dyke, A. Warren, S.E. Economou, E. Barnes, Discrete time crystal in the gradient-field heisenberg model. Phys. Rev. B 101, 115303 (2020). https://doi.org/10.1103/PhysRevB.101.115303

    Article  ADS  Google Scholar 

  156. J.S. Van Dyke, Y.P. Kandel, H. Qiao, J.M. Nichol, S.E. Economou, E. Barnes, Protecting quantum information in quantum dot spin chains by driving exchange interactions periodically. Phys. Rev. B 103, 245303 (2021). https://doi.org/10.1103/PhysRevB.103.245303

    Article  ADS  Google Scholar 

  157. H. Flentje, P.A. Mortemousque, R. Thalineau, A. Ludwig, A.D. Wieck, C. Bäuerle, T. Meunier, Coherent long-distance displacement of individual electron spins. Nature Communications 8(1), 501 (2017)

    Google Scholar 

  158. Y.P. Kandel, H. Qiao, S. Fallahi, G.C. Gardner, M.J. Manfra, J.M. Nichol, Coherent spin-state transfer via heisenberg exchange. Nature 573(7775), 553 (2019). https://doi.org/10.1038/s41586-019-1566-8

  159. H. Qiao, Y.P. Kandel, S.K. Manikandan, A.N. Jordan, S. Fallahi, G.C. Gardner, M.J. Manfra, J.M. Nichol, Conditional teleportation of quantum-dot spin states. Nature Communications 11(1), 3022 (2020). https://doi.org/10.1038/s41467-020-16745-0

  160. A.G. Fowler, C.D. Hill, L.C.L. Hollenberg, Quantum-error correction on linear-nearest-neighbor qubit arrays. Phys. Rev. A 69, 042314 (2004). https://doi.org/10.1103/PhysRevA.69.042314

    Article  ADS  Google Scholar 

  161. N.M. Linke, D. Maslov, M. Roetteler, S. Debnath, C. Figgatt, K.A. Landsman, K. Wright, C. Monroe, Experimental comparison of two quantum computing architectures. Proc. Natl. Acad. Sci. 114(13), 3305 (2017). https://doi.org/10.1073/pnas.1618020114

  162. T. Fujita, T.A. Baart, C. Reichl, W. Wegscheider, L.M.K. Vandersypen, Coherent shuttle of electron-spin states. npj Quantum Inf. 3(1), 22 (2017). https://doi.org/10.1038/s41534-017-0024-4

  163. T. Nakajima, M.R. Delbecq, T. Otsuka, S. Amaha, J. Yoneda, A. Noiri, K. Takeda, G. Allison, A. Ludwig, A.D. Wieck, X. Hu, F. Nori, S. Tarucha, Coherent transfer of electron spin correlations assisted by dephasing noise. Nature Communications 9(1), 2133 (2018). https://doi.org/10.1038/s41467-018-04544-7

  164. J. Yoneda, W. Huang, M. Feng, C.H. Yang, K.W. Chan, T. Tanttu, W. Gilbert, R. Leon, F. Hudson, K. Itoh, et al., Coherent spin qubit transport in silicon. Nature Communications 12(1), 1 (2021). https://doi.org/10.1038/s41467-021-24371-7

  165. C.H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W.K. Wootters, Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993). https://doi.org/10.1103/PhysRevLett.70.1895

    Article  ADS  MathSciNet  MATH  Google Scholar 

  166. R.L. de Visser, M. Blaauboer, Deterministic teleportation of electrons in a quantum dot nanostructure. Phys. Rev. Lett. 96, 246801 (2006). https://doi.org/10.1103/PhysRevLett.96.246801

    Article  ADS  Google Scholar 

  167. P.A. Mortemousque, E. Chanrion, B. Jadot, H. Flentje, A. Ludwig, A.D. Wieck, M. Urdampilleta, C. Bäuerle, T. Meunier, Coherent control of individual electron spins in a two-dimensional quantum dot array. Nature Nanotechnology 16(3), 296 (2021). https://doi.org/10.1038/s41565-020-00816-w

  168. E.J. Connors, J. Nelson, H. Qiao, L.F. Edge, J.M. Nichol, Low-frequency charge noise in Si/SiGe quantum dots. Phys. Rev. B 100, 165305 (2019). https://doi.org/10.1103/PhysRevB.100.165305

    Article  ADS  Google Scholar 

  169. E.J. Connors, J. Nelson, J.M. Nichol. Charge-noise spectroscopy of Si/SiGe quantum dots via dynamically-decoupled exchange oscillations, Nature Communications 13, 940 (2022). https://doi.org/10.1038/s41467-022-28519-x

    Article  ADS  Google Scholar 

  170. X. Wang, L.S. Bishop, J.P. Kestner, E. Barnes, K. Sun, S. Das Sarma, Composite pulses for robust universal control of singlet-triplet qubits. Nature Communications 3, 997 (2012). https://doi.org/10.1038/ncomms2003

    Article  ADS  Google Scholar 

  171. J.P. Kestner, X. Wang, L.S. Bishop, E. Barnes, S. Das Sarma, Noise-resistant control for a spin qubit array. Phys. Rev. Lett. 110, 140502 (2013). https://doi.org/10.1103/PhysRevLett.110.140502. https://link.aps.org/doi/10.1103/PhysRevLett.110.140502

  172. G.T. Hickman, X. Wang, J.P. Kestner, S. Das Sarma, Dynamically corrected gates for an exchange-only qubit. Phys. Rev. B 88, 161303 (2013). https://doi.org/10.1103/PhysRevB.88.161303. https://link.aps.org/doi/10.1103/PhysRevB.88.161303

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John M. Nichol .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nichol, J.M. (2022). Quantum-Dot Spin Chains. In: Bayat, A., Bose, S., Johannesson, H. (eds) Entanglement in Spin Chains. Quantum Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-03998-0_17

Download citation

Publish with us

Policies and ethics

Navigation