Part of the book series: Synthesis Lectures on Materials and Optics ((SLMO))

  • 69 Accesses

Abstract

Since the beginning of the 21st century, nanoscience and nanotechnology have advanced significantly. A variety of nanostructures and devices based on such nanostructures have been achieved. Beside the basic science research, the “nano” revolution is also reflected in many industries. For example, in the computer and electronics industry, the transistor size has approached the sub-ten nanometer regime, which is a significant push to the nanotechnology development. Similarly, the chemical industry utilized a variety of nanocatalysts to speed up chemical conversions (e.g., oil reforming, methanol synthesis) and to protect the environments (e.g., three-way auto converters for eliminating emissions).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. **, R., Zeng, C., Zhou, M., and Chen, Y. Atomically precise colloidal metal nanoclusters and nanoparticles: Fundamentals and opportunities. Chem. Rev., 116:10346–10413, 2016. DOI: https://doi.org/10.1021/acs.chemrev.5b00703. 1, 2, 3

    Article  Google Scholar 

  2. Faraday, M. The Bakerian lecture: Experimental relations of gold (and other metals) to light. Philos. Transactions on R. Soc., 147:145–181, London 1857. DOI: https://doi.org/10.1098/rstl.1857.0011. 1

  3. Mie, G. Beiträge zur optik trüber medien, speziell kolloidaler metallösungen. Ann. Phys., 330:377–445, 1908. DOI: https://doi.org/10.1002/andp.19083300302. 1

    Article  MATH  Google Scholar 

  4. Von Weimarn, P. The precipitation laws. Chem. Rev., 2:217–242, 1925. DOI: https://doi.org/10.1021/cr60006a002. 2

    Article  Google Scholar 

  5. Wilson, J. A. Theory of colloids. J. Am. Chem. Soc., 38:1982–1985, 1916. DOI: https://doi.org/10.1021/ja02267a009. 2

    Article  Google Scholar 

  6. Beans, H. T. and Eastlack, H. E. The electrical synthesis of colloids. J. Am. Chem. Soc., 37:2667–2683, 1915. DOI: https://doi.org/10.1021/ja02177a010. 2

    Article  Google Scholar 

  7. Derjaguin, B. A theory of interaction of particles in presence of electric double layers and the stability of lyophobe colloids and disperse systems. Acta Phys. Chim., 10:333–346, 1939. DOI: https://doi.org/10.1016/0079-6816(93)90010-s. 2

    Article  Google Scholar 

  8. Derjaguin, B. and Landau, L. D. Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Acta Phys. Chim., 14:633–662, 1941. DOI: https://doi.org/10.1016/0079-6816(93)90013-l. 2

    Article  Google Scholar 

  9. Verwey, E. J. W. and Overbeek, J. T. G. Theory of the Stability of Lyophobic Colloids, Elsevier, Amsterdam, 1948. DOI: https://doi.org/10.1021/j150453a001. 2

  10. Zsigmondy, R. Colloids and the Ultramicroscope, a Manual of Colloid Chemistry and Ultramicroscopy, John Wiley & Sons, New York, 1909. 2

    Google Scholar 

  11. Scherrer, P. Determination of the size and internal structure of colloidal particles using X-rays. Nachr. Ges. Wiss. Goettingen. Math.-Phys. Kl., pages 98–100, 1918. 2

    Google Scholar 

  12. Svedberg, T. and Pedersen, K. O. The Ultracentrifuge, Elsevier, Amsterdam, 1940. DOI: https://doi.org/10.1021/ac50119a001. 2

  13. Turkevich, J. and Hillier, J. Electron microscopy of colloidal systems. Anal. Chem., 21:475–485, 1949. DOI: https://doi.org/10.1021/ac60028a009. 2

    Article  Google Scholar 

  14. Turkevich, J., Stevenson, P. C., and Hillier, J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc., 11:55–75, 1951. DOI: https://doi.org/10.1039/df9511100055. 2

    Article  Google Scholar 

  15. Turkevich, J. Colloidal gold. Part I. Gold Bull., 18:86–91, 1985. DOI: https://doi.org/10.1007/bf03214690. 2

    Article  Google Scholar 

  16. Sadler, P. Biochemistry, Structure and Bonding, vol. 29, Springer, Berlin, 1976. 2

    Google Scholar 

  17. Fleischmann, M., Hendra, P. J., and McQuillan, A. J. Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett., 26:163–166, 1974. DOI: https://doi.org/10.1016/0009-2614(74)85388-1. 2

    Article  ADS  Google Scholar 

  18. Albrecht, M. G. and Creighton, J. A. Anomalously intense Raman spectra of pyridine at a silver electrode. J. Am. Chem. Soc., 99:5215–5217, 1977. DOI: https://doi.org/10.1021/ja00457a071. 2

    Article  Google Scholar 

  19. Jeanmaire, D. L. and Van Duyne, R. P. Surface Raman spectroelectrochemistry. J. Electroanal. Chem. Interfacial Electrochem., 84:1–20, 1977. DOI: https://doi.org/10.1016/s0022-0728(77)80224-6. 2

    Article  Google Scholar 

  20. Kreibig, U. and Vollmer, M. Optical Properties of Metal Clusters, Springer-Verlag, New York, 1995. DOI: https://doi.org/10.1007/978-3-662-09109-8. 2

  21. **, R., Cao, Y. W., Hao, E., Metraux, G. S., Schatz, G. C., and Mirkin, C. A. Controlling anisotropic nanoparticle growth through plasmon excitation. Nature, 425:487–490, 2003. DOI: https://doi.org/10.1038/nature02020. 3

    Article  ADS  Google Scholar 

  22. Gole, A. and Murphy, C. J. Seed-mediated synthesis of gold nanorods: Role of the size and nature of the seed. Chem. Mater., 16:3633–3640, 2004. DOI: https://doi.org/10.1021/cm0492336. 3

    Article  Google Scholar 

  23. Yang, X., Yang, M., Pang, B., Vara, M., and **a, Y. Gold nanomaterials at work in biomedicine. Chem. Rev., 115:10410–10488, 2015. DOI: https://doi.org/10.1021/acs.chemrev.5b00193. 3

    Article  Google Scholar 

  24. Langille, M. R., Zhang, J., Personick, M. L., Li, S., and Mirkin, C. A. Stepwise evolution of spherical seeds into 20-fold twinned icosahedra. Science, 337:954–957, 2012. DOI: https://doi.org/10.1126/science.1225653. 3

    Article  ADS  Google Scholar 

  25. **, R. Quantum sized, thiolate-protected gold nanoclusters. Nanoscale, 2:343–362, 2010. DOI: https://doi.org/10.1039/b9nr00160c. 4, 5

    Article  ADS  Google Scholar 

  26. Zhu, M., Aikens, C. M., Hollander, F. J., Schatz, G. C., and **, R. Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties. J. Am. Chem. Soc., 130:5883–5885, 2008. DOI: https://doi.org/10.1021/ja801173r. 4

    Article  Google Scholar 

  27. Yan, N., **a, N., Liao, L., Zhu, M., **, F., **, R., and Wu, W. Unraveling the long-pursued Au144 structure by X-ray crystallography. Science Advances, 4:eaat7259, 2018. DOI: https://doi.org/10.1126/sciadv.aat7259. 4

  28. Zeng, C., Chen, Y., Kirschbaum, K., Lambright, K. J., and **, R. Emergence of hierarchical structural complexities in nanoparticles and their assembly. Science, 354:1580–1584, 2016. DOI: https://doi.org/10.1126/science.aak9750. 4, 5

    Article  ADS  Google Scholar 

  29. Chakraborty, I. and Pradeep, T. Atomically precise clusters of noble metals: Emerging link between atoms and nanoparticles. Chem. Rev., 117:8208–8271, 2017. DOI: https://doi.org/10.1021/acs.chemrev.6b00769. 5

    Article  Google Scholar 

  30. Li, G. and **, R. Atomically precise gold nanoclusters as new model catalysts. Acc. Chem. Res., 46:1749–1758, 2013. DOI: https://doi.org/10.1021/ar300213z. 5

    Article  Google Scholar 

  31. Du, Y., Sheng, H., Astruc, D., and Zhu, M. Atomically precise noble metal nanoclusters as efficient catalysts: A bridge between structure and properties. Chem. Rev., 120:526–622, 2020. DOI: https://doi.org/10.1021/acs.chemrev.8b00726. 5

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Wu, Z., **, R. (2021). Introduction. In: Atomically Precise Metal Nanoclusters. Synthesis Lectures on Materials and Optics. Springer, Cham. https://doi.org/10.1007/978-3-031-02389-7_1

Download citation

Publish with us

Policies and ethics

Navigation