The Mangosteen Genome

  • Chapter
  • First Online:
Underutilised Crop Genomes

Part of the book series: Compendium of Plant Genomes ((CPG))

  • 361 Accesses

Abstract

Mangosteen is one of the most popular tropical fruits in Southeast Asia. It is called ‘The Queen of Tropical Fruits’ as its thick sepals collectively resemble a crown. Mangosteen fruits contain white and juicy edible pulp with a sweet flavour and pleasant aroma. They are rich in beneficial phytochemicals such as xanthones, which make mangosteen a potential medicinal plant. Traditionally, mangosteen has been used to treat fever, diarrhoea, and wounds. In recent studies, researchers found that mangosteen has anti-cancer and anti-diabetic properties. However, mangosteen is still an underutilised crop due to its slow growth rate with a long juvenile period that usually takes eight to ten years to bear fruit. It is also an obligative apomict with asexual reproduction, hence producing clones of progenies with low genetic variations. Therefore, the breeding programme of mangosteen is challenging with a very low success rate. Furthermore, genetic information on mangosteen accessions in different countries is limited to unravel its lineage and parental history. Other constraints in mangosteen improvement include low viability of recalcitrant seeds and the lack of a rapid propagation method. Efforts have been made to understand this crop through functional genomic studies. Recent genomic studies of mangosteen, including genome sequencing, genome survey, genome size estimation, and cytogenetic analysis, are highlighted in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Thailand)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 106.99
Price includes VAT (Thailand)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 129.99
Price excludes VAT (Thailand)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 129.99
Price excludes VAT (Thailand)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdallah HM, El-Bassossy HM, Mohamed GA et al (2017) Mangostanaxanthones III and IV: advanced glycation end-product inhibitors from the pericarp of Garcinia mangostana. J Nat Med 71(1):216–226

    Article  CAS  PubMed  Google Scholar 

  • Abdullah NAP, Richards AJ, Wolff K (2012) Molecular evidence in identifying parents of Garcinia mangostana L. Pertanika J Trop Agric Sci 35(2):257–270

    Google Scholar 

  • Abu Bakar S, Sampathrajan S, Loke K et al (2016) DNA-seq analysis of Garcinia mangostana. Genomics Data 7:62–63

    Article  PubMed  Google Scholar 

  • Abu Bakar S, Kumar S, Loke K-K, Goh H-H, Normah MN (2017) DNA shotgun sequencing analysis of Garcinia mangostana L. variety Mesta. Genomics Data 12:118–119

    Article  PubMed  PubMed Central  Google Scholar 

  • Aizat WM, Jamil IN, Ahmad-Hashim FH et al (2019) Recent updates on metabolite composition and medicinal benefits of mangosteen plant. PeerJ 7:e6324

    Article  PubMed  PubMed Central  Google Scholar 

  • Ampofo SA, Waterman GP (1986) Xanthones from three Garcinia species. Phytochemistry 25(10):2351–2355

    Article  CAS  Google Scholar 

  • Anerao J, Desai N, Deodha M (2013) A comparative study of karyomorphology among three populations of Garcinia indica (Clusiaceae) (Thomas-Dupetite) Choisy. Pak J Biol Sci 16(11):530–535

    Article  PubMed  Google Scholar 

  • Ansori ANM, Fadholly A, Hayaza S et al (2020) A review on medicinal properties of Mangosteen (Garcinia mangostana L.). Res J Pharm Tech 13(2):974–982

    Google Scholar 

  • Bagwell CB, Baker D, Whetstone S et al (1989) A simple and rapid method for determining the linearity of a flow cytometer amplification system. Cytometry 10:689–694

    Article  CAS  PubMed  Google Scholar 

  • Bennett MD, Bhandol P, Leitch IJ (2000) Nuclear DNA amounts in Angiosperms and their modern uses—807 new estimates. Ann Bot 86(4):859–909

    Article  CAS  Google Scholar 

  • Bennett MD, Leitch IJ (2005) Plant genome size research: a field in focus. Ann Bot 95:1–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett MD, Leitch IJ (2011) Nuclear DNA amounts in angiosperms: targets, trends and tomorrow. Ann Bot 107(3):467–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett MD, Leitch IJ, Price HJ (2003) Comparisons with Caenorhabditis (~100 Mb) and Drosophila (~175 Mb) using flow cytometry show genome size in Arabidopsis to be ~157 Mb and thus ~25% larger than the Arabidopsis genome initiative estimate of ~125 Mb. Ann Bot 91:547–557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett MD, Price HJ, Johnston JS (2008) Anthocyanin inhibits propidium iodide DNA fluorescence in Euphorbia pulcherrima: Implication for genome size variation and flow cytometry. Ann Bot 101:777–790

    Article  PubMed  Google Scholar 

  • Bicknell RA, Koltunow AM (2004) Understanding apomixis: recent advances and remaining conundrums. Plant Cell 16:228–245

    Article  Google Scholar 

  • Birchler JA (2013) Aneuploidy in plants and flies: the origin of studies of genomic imbalance. Semin Cell Dev Biol 24(4):315–319

    Article  CAS  PubMed  Google Scholar 

  • Brukhin V (2017) Molecular and genetic regulation of Apomixis. Russ J Genet 53(9):943–964

    Article  CAS  Google Scholar 

  • Burkill IH (1935) Dictionary of economic products of the Malay Peninsula 1. Governments of the Straits Settlements and Federated Malay States, London

    Google Scholar 

  • Burkill IH (1966) A dictionary of the economic products of the Malay Peninsula. Ministry of Agriculture and Cooperative, Kuala Lumpur

    Google Scholar 

  • Cardoso DC, Carvalho CR, Cristiano MP et al (2012) Estimation of nuclear genome size of the genus Mycetophylax Emery, 1913: evidence of no whole-genome duplication in Neoattini. Comptes Rendus - Biologies 335(10–11):619–624

    Article  CAS  PubMed  Google Scholar 

  • Chester M, Gallagher JP, Symonds VV et al (2012) Extensive chromosomal variation in a recently formed natural allopolyploid species, Trapogon miscellus (Asteraceace). PNAS 109(4):1176–1181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Comai L (2005) The advantages and disadvantages of being polyploid. Nature 6:836–846

    CAS  Google Scholar 

  • Corner EJH (1952) Wayside trees of Malaya, 2nd ed, vol l, 318 pp. Govt. Printing Office

    Google Scholar 

  • Coronel RE (1983) Mangosteen. In: Promising fruits of the Philippines. College of Agriculture, Los Banos: UPLB, pp 307–322

    Google Scholar 

  • Coronel RE (1995) Status report on fruit species germplasm conservation and utilization in Southeast Asia. In: Arora RK (eds) Expert consultation on tropical fruit species of Asia. International Plant Genetic Resources Institute, Regional Office, New Delhi, pp 85–100

    Google Scholar 

  • Cox JEK (1976) Garcinia mangostana—Mangosteen. In: Garner RJ, Ahmed Chaudhari S (eds) The propagation of tropical fruit trees. Horticultural review No 4. Commonwealth Bureau of Horticulture and Plantation Crops, East Malling, pp 361–375

    Google Scholar 

  • Cruz FSDJ (2001) Status report on genetic resources of Mangosteen (Garcinia mangostana L.) in Southeast Asia. IPGRI Office for South Asia, Delhi

    Google Scholar 

  • De Storme N, Mason A (2014) Plant speciation through chromosome instability and ploidy change: cellular mechanisms, molecular factors and evolutionary relevance. Current Plant Biol 1:10–33

    Article  Google Scholar 

  • Department of Agriculture (DOA) (2018) Perangkaan Pertanian 2018. Jabatan Pertanian Malaysia

    Google Scholar 

  • Doležel J, Bartos J (2005) Plant DNA flow cytometry and estimation of nuclear genome size. Ann Bot 95(1):99–110

    Article  PubMed  PubMed Central  Google Scholar 

  • Doležel J, Bartoš J, Voglmayr H (2003) Nuclear DNA content and genome size of trout and human. Cytometry A 51:127–128

    Article  PubMed  Google Scholar 

  • Doležel J, Greilhuber J (2010) Nuclear genome size: are we getting closer? Cytometry A 77A(7):635–642

    Article  Google Scholar 

  • Doležel J, Greilhuber J, Suda J (2007) Estimation of nuclear DNA content in plants using flow cytometry. Nat Protoc 2(9):2233–2244

    Article  PubMed  Google Scholar 

  • Doležel J, Sgorbati S, Lucretti S (1992) Comparison of three DNA fluorochromes for flow cytometric estimation of nuclear DNA content in plant. Physiol Plant 85:625–631

    Article  Google Scholar 

  • Fairchild DG (1915) The Mangosteen. J Hered 6:338–347

    Article  Google Scholar 

  • Galang FG (1955) Fruit and nut growing in the Philippines. AlA Printing Press, Malabon

    Google Scholar 

  • Galdeano F, Urbani MH, Sartor ME et al (2016) Relative DNA content in diploid, polyploid, and multiploid species of Paspalum (Poaceae) with relation to reproductive mode and taxonomy. J Plant Res 129(4):697–710

    Article  PubMed  Google Scholar 

  • Ganem NJ, Storchova Z, Pellman D (2007) Tetraploidy, aneuploidy and cancer. Curr Opin Genet Dev 17(2):157–162

    Article  CAS  PubMed  Google Scholar 

  • Goh H-H, Abu Bakar S, Kamal Azlan ND, Zainal Z, Normah MN (2019) Transcriptional reprogramming during Garcinia-type recalcitrant seed germination of Garcinia mangostana. Sci Hortic 257:108727

    Article  CAS  Google Scholar 

  • Grant V (1971) Plant speciation. Columbia University Press, New York

    Google Scholar 

  • Gustafsson A (1946) Apomixis in higher plants. (3 parts). Lund Universitet Arsskrift. N F 42–43:1–370

    Google Scholar 

  • Ha CO (1978) Embryological and cytological aspects of the reproductive biology of some understorey rainforest trees. Dissertation, University of Malaya

    Google Scholar 

  • Hammer K (2001) Guttiferae (Clusiaceae). In: Hanelt P (ed) Mansfeld’s Encyclopedia of agricultural and horticultural crops, vol 3. Institute of Plant Genetics and Crop Plant Research, Berlin, Springer, pp 1345–1360

    Google Scholar 

  • Hemshekhar M, Sunitha K, Santhosh MS et al (2011) An overview on genus Garcinia: phytochemical and therapeutical aspects. Phytochem Rev 10:325–351

    Article  CAS  Google Scholar 

  • Hendrix B, Stewart JM (2005) Estimation of the nuclear DNA content of Gossypium species. Ann Bot 95:789–797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horn CL (1940) Stimulation of growth in juvenile mangosteen plants. J Agric Res 61:397–400

    Google Scholar 

  • Huettel B, Kreil DP, Matzke M et al (2008) Effects of aneuploidy on genome structure, expression, and interphase organization in Arabidopsis thaliana. PLoS Genet 4(10):1–13

    Article  Google Scholar 

  • Idris S, Rukayah A (1987) Description of the male mangosteen (Garcinia mangostana L.) discovered in Peninsular Malaysia. MARDI Res Bulletin 15(1):63–66

    Google Scholar 

  • Jabit ML, Khalid R, Abas F et al (2007) Cytotoxic xanthones from Garcinia penangiana Pierre. Z Naturforsch 62:786–792

    Article  CAS  Google Scholar 

  • Jabit ML, Wahyuni FS, Khalid R et al (2009) Cytotoxic and nitric oxide inhibitory activities of methanol extracts of Garcinia species. Pharm Biol 47(11):1019–1026

    Article  Google Scholar 

  • Jamila N, Khairuddean M, Yeong KK et al (2015) Cholinesterase inhibitory triterpenoids from the bark of Garcinia hombroniana. J Enzyme Inhib Med Chem 30:133–139

    Article  CAS  PubMed  Google Scholar 

  • Jamila N, Khan N, Khan AA et al (2017) In vivo carbon tetrachloride-induced hepatoprotective and in vitro cytotoxic activities of Garcinia hombroniana (seashore mangosteen). Afr J Tradit Complement Altern Med 14(2):374–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jantan I, Juriyati J, Warif NA (2001) Inhibitory effects of xanthones on platelet activating factor receptor binding in vitro. J Ethnopharmacol 75:287–290

    Article  CAS  PubMed  Google Scholar 

  • Jedrzejczyk I, Sliwinska E (2010) Leaves and seeds as materials for flow cytometric estimation of the genome size of 11 rosaceae woody species containing DNA-Staining inhibitors. J Bot 2010:1–9

    Article  Google Scholar 

  • Jo S, Kim H-W, Kim Y-K et al (2017) The complete plastome of tropical fruit Garcinia mangostana (Clusiaceae). Mitochondrial DNA Part B 2(2):722–724

    Article  PubMed  PubMed Central  Google Scholar 

  • John KJ, Kumar RS, Suresh CP (2008) Occurrence, distribution and economic potential of seashore mangosteen (Garcinia hombroniana Pierre) in India. Genetic Res Crop Evol 55:183–186

    Article  Google Scholar 

  • Johnston JS, Bennett MD, Rayburn AL (1999) Reference standards for determination of DNA content of plant nuclei. Am J Bot 86(5):609–613

    Article  CAS  PubMed  Google Scholar 

  • Jung H, Su B, Keller WJ et al (2006) Antioxidant Xanthones from the Pericarp of Garcinia mangostana (Mangosteen). J Agric Food Chem 54:2077–2082

    Article  CAS  PubMed  Google Scholar 

  • Kochummen KM (1997) Tree flora of Pasoh. Forest Research Institute Malaysia, Kepong

    Google Scholar 

  • Krishnawary N, Raman VS (1949) A note on the chromosome numbers of some economic plants of India. Curr Sci 18(10):376–378

    Google Scholar 

  • Kron P, Suda J, Husband BC (2007) Applications of flow cytometry to evolutionary and population biology. Annu Rev Ecol Evol Syst 38:847–876

    Article  Google Scholar 

  • Leitch AR, Leitch IJ (2012) Ecological and genetic factors linked to contrasting genome dynamics in seed plants. New Phytol 194(3):629–646

    Article  CAS  PubMed  Google Scholar 

  • Liang Y, Luo D, Gao X et al (2018) Inhibitory effects of garcinone E on fatty acid synthase. RSC Adv 8(15):8112–8117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim AL (1984) The embryology of Garcinia mangostana L. (Clusiaceae). Gardens’ Bulletin Singapore 37:93–103

    Google Scholar 

  • Lim TK (2012) Garcinia malaccensis. Edible medicinal and non-medicinal plants, pp 80–82

    Google Scholar 

  • Liu Z, Li G, Long C et al (2018) The antioxidant activity and genotoxicity of isogarcinol. Food Chem 253:5–12

    Article  CAS  PubMed  Google Scholar 

  • Loureiro J, Rodriguez E, Doležel J et al (2006) Flow cytometric and microscopic analysis of the effect of tannic acid on plant nuclei and estimation of DNA content. Ann Bot 98(3):515–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loureiro J, Rodriguez DJ et al (2007) Two new nuclear isolation buffers for plant DNA flow cytometry: a test with 37 Species. Ann Bot 100:875–888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marçais G, Kingsford C (2011) A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 27(6):764–770

    Article  PubMed  PubMed Central  Google Scholar 

  • MacMillan HF (1956) Tropical planting and gardening with special reference to Ceylon, 5th edn. MacMillan and Co., London

    Google Scholar 

  • Madon M, Phoon LQ, Clyde MM et al (2008) Application of flow cytometry for estimation of nuclear DNA content in Elaies. J Oil Palm Res 20:447–452

    CAS  Google Scholar 

  • Mahabusarakam W, Phongpaichit S, Wiriyachitra P (1983) Screening of anti-fungal activity of chemicals from Garcinia mangostana. Sonklanakarin J Sci Technol 5:341–342

    Google Scholar 

  • Maheshwari JK (1964) Taxonomic studies on Indian Guttiferae III. the Genus Garcinia Linn. S. I. Bulletin Botanical Surv India 6:107–135

    Google Scholar 

  • Malik SK, Chaudhary R, Abraham Z (2005) Seed morphology and germination characteristics in three Garcinia species. Seed Sci Technol 33:595–604

    Article  Google Scholar 

  • Mallón R, Rodríguez-Oubiña J, González ML (2009) In vitro propagation of the endangered plant Centaurea ultreiae: assessment of genetic stability by cytological studies, flow cytometry and RAPD analysis. Plant Cell, Tissue Organ Cult 101(1):31–39

    Article  Google Scholar 

  • Mansyah E, Anwarudinsyah MJ, Sadwiyanti L et al (1999) Genetics variability of mangosteen base on isozymes analysis and its relationship to phenotypic variability. Zuriat 10:1–10

    Google Scholar 

  • Mansyah E, Muas I, Jawal MAS (2010) Morphological variability of apomictic mangosteen (Garcinia mangostana L.) in Indonesia: morphological evidence of natural populations from Sumatra and Java. SABRAO J Breed Genetics 42:1–8

    Google Scholar 

  • Matra DD, Poerwanto R, Santosa E et al (2016) Analysis of allelic diversity and genetic relationships among cultivated mangosteen (Garcinia mangostana L.) in Java, Indonesia using microsatellite markers and morphological characters. Tropical Plant Biol 9:29–41

    Article  Google Scholar 

  • Matra DD, Poerwanto R, Sobir et al (2014) Determination of nuclear DNA content on mangosteen (Garcinia mangostana L.) by flow cytometry. In: Conference: 29th international horticultural congress 2014, Brisbane

    Google Scholar 

  • Midin MR, Loke KK, Madon M et al (2017) SMRT sequencing data for Garcinia mangostana L. variety Mesta. Genomics Data 12:134–135

    Google Scholar 

  • Midin MR, Nordin MS, Madon M et al (2018) Determination of the chromosome number and genome size of Garcinia mangostana L. via cytogenetics, flow cytometry and k-mer analyses. Caryologia 71:35–44

    Article  Google Scholar 

  • Midin MR, Samsul Kamal R, Tarmizi AH et al (2013) Analysis of oil palm clones, their suspension calli and regenerants via flow cytometry (FCM) and rDNA-fluorescence in situ hybridisation (rDNA-FISH). J Oil Palm Res 25(3):357–367

    Google Scholar 

  • Mohamed GA, Al-Abd AM, El-Halawany AM et al (2017) Newxanthones and cytotoxic constituents from Garcinia mangostana fruit hulls against human hepatocellular, breast, and colorectal cancer cell lines. J Ethnopharmacol 198:302–312

    Article  CAS  PubMed  Google Scholar 

  • Mori R, Nugroho AE, Hirasawa Y et al (2014) Opaciniols A-C, new terpenoids from Garcinia opaca. J Nat Med 68:186–191

    Article  CAS  PubMed  Google Scholar 

  • Muchtaridi M, Afiranti FS, Puspasari PW et al (2018) Cytotoxicity of Garcinia mangostana L. pericarp extract, fraction, and isolate on HeLa cervical cancer cells. J Pharm Sci Res 10:348–351

    CAS  Google Scholar 

  • Murthy HN, Dandin VS, Dalawai D et al (2018) Breeding of Garcinia spp. In: Al-Khayri JM et al (eds) Advances in plant breeding strategies: fruits

    Google Scholar 

  • Murugan, M., Madon, M., Goh, H-H.et al (2014) Cytogenetic characterization and bioinformatics analysis of mangosteen (Garcinia mangostana L.) genome. In: Abstracts of the plant genomics congress Asia, Shangri La Hotel, Kuala Lumpur, 24–25 February 2014

    Google Scholar 

  • Nabandith V, Suzui M, Morioka T et al (2004) Inhibitory effects of crude α-mangostin, a xanthone derivative, on two different categories of colon preneoplastic lesions induced by 1,2-dimethylhydrazine in the rat. Asian Pac J Cancer Prev 5:433–438

    PubMed  Google Scholar 

  • Nakasone HY, Paull RE (1998) Mangosteen. In: Nakasone HY, Paull RE (eds) Tropical fruits, pp 359–369

    Google Scholar 

  • Naumova TN (1992) Apomixis in angiosperms: nucellar and integumentary embryony. CRC Press, Boca Raton

    Google Scholar 

  • Naumova TN, Van der Laak J, Osadtchiy J et al (2001) Reproductive development in apomictic populations of Arabis holboellii (Brassicaceae). Sex Plant Reprod 14:195–200

    Article  CAS  PubMed  Google Scholar 

  • Nazre M (2010) Historical review and notes on the correct scientific name for seashore mangosteen. Genetic Res Crop Evolution 57:1249–1259

    Article  Google Scholar 

  • Nazre M (2014) New evidence on the origin of mangosteen (Garcinia mangostana L.) based on morphology and ITS sequence. Genetic Resources Crop and Evolution 61:1147–1158

    Article  Google Scholar 

  • Nazre M, Latiff A, Clyde MM (2007) Phylogeny relationship of locally cultivated Garcinia species with some wild relatives. Malaysian Appl Biol J 36:31–40

    Google Scholar 

  • Noirot M, Barre P, Duperray C et al (2003) Effects of caffeine and chlorogenic acid on propidium iodide accessibility to DNA: consequences on genome size evaluation in coffee tree. Ann Bot 92(2):259–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Normah MN, Rosnah H, Nor-Azza AB (1992) Multiple shoots and callus formation from seeds of mangosteen (Garcinia mangostana L.) cultured in vitro. Acta Hortic 292:87–92

    Article  Google Scholar 

  • Obae SG, West TP (2010) Nuclear DNA content of Hydrastis canadensis L. and genome size stability of in vitro regenerated plantlets. Plant Cell Tissue Organ Cult 102:259–263

    Article  CAS  Google Scholar 

  • Obolskiy D, Pischel I, Siriwatanametanon N et al (2009) Garcinia mangostana L.: a phytochemical and pharmacological review. Phytother Res 23:1047–1065

    Article  CAS  PubMed  Google Scholar 

  • Ochatt SJ, Patat-Ochatt EM, Moessner A (2011) Ploidy level determination within the context of in vitro breeding. Plant Cell Tissue Organ Cult 104:329–341

    Article  Google Scholar 

  • Ochse JJ, Soule MJ, Dijkman MJ (1961) Tropical and subtropical agriculture. MacMillan Co, New York

    Book  Google Scholar 

  • Ohizumi Y (1999) Search for antagonists of luztannin and serotonin from the Thai medicinal plant Garcinia mangostana and their pharmacological studies. Bioenvironment 2:215

    Google Scholar 

  • Osman M, Milan AR (2006) Mangosteen: Garcinia mangostana L. University of Southampton, Southampton, UK, Southampton Centre for Underutilised Crops

    Google Scholar 

  • Pedraza-Chaverri J, Cárdenas-Rodríguez N, Orozco-Ibarra M et al (2008) Medicinal properties of mangosteen (Garcinia mangostana). Food Chem Toxicol 46(10):3227–3239

    Article  CAS  PubMed  Google Scholar 

  • Pellicer J, Leitch IJ (2013) The application of flow cytometry for estimating genome size and ploidy level in plants. In: Molecular plant taxonomy: methods and protocols. methods in molecular biology, vol 1115. Springer Science+Business Media, New York

    Google Scholar 

  • Poerwanto R (2002) Nurse stock plant - a new technique to enhance mangosteen (Garcinia mangostana) growth. Acta Hort 575:751–756

    Article  Google Scholar 

  • Poerwanto R, Hidayat R, Diana E. et al (1995). An attempt to enhance the growth of mangosteen rootstock. Pros. Simp. Hort. Nas., 105–112

    Google Scholar 

  • Price H (2000) Sunflower (Helianthus annuus) leaves contain compounds that reduce nuclear propidium iodide fluorescence. Ann Bot 86(5):929–934

    Article  CAS  Google Scholar 

  • Quarin CL, Espinoza F, Martinez EJ et al (2001) A rise of ploidy level induces the expression of apomixis in Paspalum notatum. Sex Plant Reprod 13:243–249

    Article  Google Scholar 

  • Ramage CM, Sando L, Peace CP et al (2004) Genetic diversity revealed in the apomictic fruit species Garcinia mangostana L. (mangosteen). Eupthyica 136:1–10

    CAS  Google Scholar 

  • Ramlan MF, Mahmud TMM, Hasan BM et al (1992) Studies on photosynthesis on young mangosteen plants grown under several growth conditions. Acta Hort 321:482–489

    Article  Google Scholar 

  • Ray PK (2002) Mangosteen. In: Breeding tropical and subtropical fruits. Narosa Publishing House, New Delhi, pp 304

    Google Scholar 

  • Raziah ML, Idris S, Milan AR et al (2007) On farm diversity of Malaysia fruit species and their determining factor. Econ Technol Manage Rev 2:23–43

    Google Scholar 

  • Richards AJ (1990a) Studies in Garcinia, dioecious tropical fruit trees: agamospermy. Bot J Linn Soc 103:233–250

    Article  Google Scholar 

  • Richards AJ (1990b) Studies in Garcinia, dioecious tropical fruit trees: the origin of the mangosteen (G. mangostana L.). Bot J Linn Soc 103:301–308

    Article  Google Scholar 

  • Richards AJ (1997) Why is gametophytic apomixis almost restricted to polyploids? The gametophyte-expressed model. Apomixis News 9:3–4

    Google Scholar 

  • Ridley NH (1967) The flora of the Malay Peninsula. Ashford: L. Reeve & Co

    Google Scholar 

  • Rival A, Beule T, Barre P et al (1997) Comparative flow cytometric estimation of nuclear DNA content in oil palm (Elaeis guineensis Jacq) tissue cultures and seed derived plants. Plant Cell Rep 16:884–887

    Article  CAS  PubMed  Google Scholar 

  • Roberto C (2005) Low chromosome number angiosperms. Caryologia 58(4):403–409

    Article  Google Scholar 

  • Robson NKB, Adams P (1968) Chromosome numbers in hypericum and related genera. Brittonia 20:95

    Article  Google Scholar 

  • Rozhan AD, Noorlidawati AH, Jamaluddin K et al (2011) Challenges and prospect of mangosteen industry in Malaysia. Econ Technol Manage Rev 6:19–31

    Google Scholar 

  • Rukachaisirikul VP, Pailee A, Hiranrat P et al (2003) Anti-HIV-1n protostane triterpenes and digeranylbenzophenone from trunk, bark and stems of Garcinia speciosa. Planta Med 69(12):1141–1146

    Article  CAS  PubMed  Google Scholar 

  • Sarasmiryati A. (2008) Analisis sitogenetika tanaman manggis (Garcinia mangostana L.) Jogorogo. Dissertation, Master Degree, Universitas Sebelas Maret

    Google Scholar 

  • Šarhanová P, Timothy FS, Sochor M et al (2017) Hybridisation drives evolution of apomicts in Rubus subgenus Rubus: evidence from microsatellite markers. Ann Bot 120(2):317–328

    Article  PubMed  PubMed Central  Google Scholar 

  • Sobir RP, Poerwanto R, Santosa E et al (2011). Genetic variability in apomictic mangosteen (Garcinia mangostana) and its close relatives (Garcinia spp.) based on ISSR markers. Biodiversitas 12(2):59–63

    Google Scholar 

  • Sprecher A (1919) Etude sur la semence et la germination de Garcinia mangostana L. Revue Générale De Botanique 31(513–531):609–633

    Google Scholar 

  • Srisawat T, Pattanapanyasat K, Srikul S et al (2005) Flow cytometric analysis of oil palm: a preliminary analysis for cultivars and genomic DNA alteration. Songklanakarin J Sci Technol 27:645–652

    Google Scholar 

  • Sulassih, Sobir RP, Santosa E (2013) Phylogenetic analysis of mangosteen (Garcinia mangostana L.) and its relatives based on morphological and inter simple sequence repeat (ISSR) markers. SABRAO J Breed Genetics 45(3):478–490

    Google Scholar 

  • Thombre MV (1964) Studies in Garcinia indica Choisy. Sci Cult 30(453):454

    Google Scholar 

  • Tixier P (1953) Donnees cytologiques sur quelques Guttiferales du Viet-Nam. Revue Cytologigue Et De Biologique Vegetale 14:1–12

    Google Scholar 

  • Tixier P (1960) Donnees cytologiques surquelques Guttiferales recoltees auLaos. Revue Cytologigue Et De Biologique Vegetale 22:65–70

    Google Scholar 

  • Udani JK, Singh BB, Barrett ML et al (2009) Evaluation of mangosteen juice blend on biomarkers of inflammation in obese subjects: a pilot, dose finding study. Nutr J 8(1):1–7

    Article  Google Scholar 

  • Valente GT, Nakajima RT, Fantinatti BEA et al (2017) B chromosomes: from cytogenetics to systems biology. Chromosoma 126(1):73–81

    Article  CAS  PubMed  Google Scholar 

  • Verheij EWM (1991) Garcinia mangostana L. In: Verheij EWM (ed) Plant resources of South East Asia, edible fruit and nuts. Bogor a Selection. PUDOC, Wageningen

    Google Scholar 

  • Vindelov L, Christensen I, Nissen N (1983) Standardization of high resolution flow cytometric DNA analysis by the simultaneous use of chicken and trout red blood cells as internal reference standards. Cytometry 3:328–331

    Article  CAS  PubMed  Google Scholar 

  • Vrána J, Cápal P, Bednářová M et al (2014) Flow cytometry in plant research: a success story. In: Nick P, Opatrny Z (eds) Applied plant cell biology, plant cell monograph 22. Springer, Berlin, pp 395–429

    Chapter  Google Scholar 

  • Wang W, Liao Y, Huang X et al (2018) A novel xanthone dimer derivative with antibacterial activity isolated from the bark of Garcinia mangostana. Nat Prod Res 32(15):1769–1774

    Article  CAS  PubMed  Google Scholar 

  • Wee CC, Nor Muhammad NA, Subbiah VK et al (2022a) Plastomes of Garcinia mangostana L. and comparative analysis with other Garcinia species. bioRxiv 2022.02.22.481552 https://doi.org/10.1101/2022.02.22.481552

  • Wee CC, Nor Muhammad NA, Subbiah VK et al (2022b) Mitochondrial genome of Garcinia mangostana L. variety Mesta. bioRxiv 2022.02.23.481586 https://doi.org/10.1101/2022.02.23.481586

  • Whitmore TC (1973) Tree flora of Malaya: a manual for foresters, vol 2. Longman, Kuala Lumpur

    Google Scholar 

  • Wieble J, Chacko EK, Downtown WJS (1992) Mangosteen (Garcinia mangostana L.)—a potential crop for tropical northern Australia. Acta Hort 321:132–137

    Article  Google Scholar 

  • Wu Y, Sun Y, Sun S et al (2018) Aneuploidization under segmental allotetraploidy in rice and its phenotypic manifestation. Theor Appl Genet 131:1273–1285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • **e Z, Sintara M, Chang T et al (2015) Daily consumption of a mangosteen-based drink improves in vivo antioxidant and anti-inflammatory biomarkers in healthy adults: a randomized, double-blind, placebo-controlled clinical trial. Food Sci Nutr 3(4):342–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yaacob O, Tindall HD (1995) Mangosteen cultivation. FAO plant production and protection, Paper No. 129

    Google Scholar 

  • Yapwattanaphun C, Subhadrabandhu S, Honsho C et al (2004) Phylogenetic relationship of mangosteen (Garcinia mangostana) and several wild relatives (Garcinia spp.) revealed by ITS sequence data. J Am Soc Hortic Sci 129:368–373

    Article  CAS  Google Scholar 

  • Yapwattanaphun C, Subhadrabandhu S, Sugiura A et al (2002) Utilisation of some Garcinia species in Thailand. Acta Hort 575(2):563–570

    Article  Google Scholar 

  • Ying Y-M, Yu K-M, Lin T-S et al (2017) Antiproliferative prenylated xanthones from the pericarps of Garcinia mangostana. Chem Nat Compd 53(3):555–556

    Article  CAS  Google Scholar 

  • Yokoya K, Roberts AV, Mottley J et al (2000) Nuclear DNA amounts roses. Ann Bot 85(4):557–561

    Article  CAS  Google Scholar 

  • Zhang H, Bian Y, Gou X et al (2013) Persistent whole-chromosome aneuploidy is generally associated with nascent allohexaploid wheat. PNAS 110(9):3447–3452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuzana S (2012) The causes and consequences of aneuploidy in eukaryotic cells, Aneuploidy in health and disease. In: Storchova Z (ed) ISBN: 978-953-51-0608-1, InTech. https://doi.org/10.5772/45781

Download references

Acknowledgements

The authors would like to thank all members of their research groups, colleagues, and collaborators for useful discussions. A special dedication of this chapter to Professor Emeritus Dr. Normah Mohd Noor, the founding director of the Institute of Systems Biology, Universiti Kebangsaan Malaysia who is instrumental in the tissue culture studies of mangosteen. The research on mangosteen from our group was funded by the UKM Research University Grants (DIP-2020-005 and AP-2012-018). 

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hoe-Han Goh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Midin, M., Goh, HH. (2022). The Mangosteen Genome. In: Chapman, M.A. (eds) Underutilised Crop Genomes . Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-031-00848-1_7

Download citation

Publish with us

Policies and ethics

Navigation