Adjoint-Based Sensitivity Analysis in High-Temperature Fluid Flows with Paticipating Media

  • Conference paper
  • First Online:
Modeling, Simulation and Optimization in the Health- and Energy-Sector

Part of the book series: SEMA SIMAI Springer Series ((ICIAM2019SSSS,volume 14))

  • 204 Accesses

Abstract

We present a novel approach to compute adjoint sensitivities in heat transfer problems involving fluid flows and radiation. The method overcomes the traditional adjoint requirement of an exact Jacobian computation across disciplines, and provides efficient means to compute very accurate gradients for optimal design applications. We implement a one-equation P1 radiation model into the open-source multiphysics suite SU2 and couple it to its incompressible Navier-Stokes solver with energy equation. To demonstrate the proposed methodology, we compute the coupled adjoint-based sensitivities and verify their accuracy using finite differences. We demonstrate the applicability of the adjoint method in efficiently computing coupled sensitivities in problems involving absorbing fluid flows and radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://su2code.github.io/.

References

  1. ANSYS\({}^{\text{\textregistered} }\) Fluent\({}^{\text{\textregistered} }\), revision 19.3.0 (2019)

    Google Scholar 

  2. Abu-Zurayk, M.: An aeroelastic coupled adjoint approach for multi-point designs in viscous flows. Ph.D. thesis, RWTH Aachen University (2016)

    Google Scholar 

  3. Adelman, H.M., Haftka, R.T.: Sensitivity analysis of discrete structural systems. AIAA J. 24(5), 823–832 (1986). https://doi.org/10.2514/3.48671

    Article  Google Scholar 

  4. Agboka, K., Béchet, F., Siedow, N., Lochegnies, D.: Influence of radiative heat transfer model on the computation of residual stresses in glass tempering process. Int. J. Appl. Glass Sci. 9(2), 235–251 (2017). https://doi.org/10.1111/ijag.12335

    Article  Google Scholar 

  5. Albring, T.A., Sagebaum, M., Gauger, N.R.: Development of a consistent discrete adjoint solver in an evolving aerodynamic design framework. In: 16th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. American Institute of Aeronautics and Astronautics (2015). https://doi.org/10.2514/6.2015-3240

  6. Albring, T.A., Sagebaum, M., Gauger, N.R.: Efficient aerodynamic design using the discrete adjoint method in SU2. In: 17th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. American Institute of Aeronautics and Astronautics (2016). https://doi.org/10.2514/6.2016-3518

  7. Amaya, J., Cabrit, O., Poitou, D., Cuenot, B., Hafi, M.E.: Unsteady coupling of Navier–Stokes and radiative heat transfer solvers applied to an anisothermal multicomponent turbulent channel flow. J. Quant. Spectrosc. Radiat. Transfer 111(2), 295–301 (2010). https://doi.org/10.1016/j.jqsrt.2009.06.014

    Article  Google Scholar 

  8. Anand, N., Vitale, S., Pini, M., Otero, G.J., Pecnik, R.: Design methodology for supersonic radial vanes operating in nonideal flow conditions. J. Eng. Gas Turbines Power 141(2), 022601 (2018). https://doi.org/10.1115/1.4040182

  9. Andreas Griewank, A.W.: Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation. Cambridge University Press (2008)

    Google Scholar 

  10. Arora, J.S.: Introduction to Optimum Design. Academic Press (2011)

    Google Scholar 

  11. Asllanaj, F., Jeandel, G., Roche, J.: Numerical solution of radiative transfer equation coupled with nonlinear heat conduction equation. Int. J. Numer. Methods Heat Fluid Flow 11(5), 449–473 (2001). https://doi.org/10.1108/eum0000000005528

    Article  MathSciNet  MATH  Google Scholar 

  12. Baek, S.W., Kim, M.Y., Kim, J.S.: Nonorthogonal finite-volume solutions of radiative heat transfer in a three-dimensional enclosure. Numer. Heat Transfer Part B: Fundam. 34(4), 419–437 (1998). https://doi.org/10.1080/10407799808915066

    Article  Google Scholar 

  13. Barcelos, M., Maute, K.: Aeroelastic design optimization for laminar and turbulent flows. Comput. Methods Appl. Mech. Eng. 197(19–20), 1813–1832 (2008). https://doi.org/10.1016/j.cma.2007.03.009

    Article  MATH  Google Scholar 

  14. Benassi, M., Cotta, R., Siewert, C.: The PN method for radiative transfer problems with reflective boundary conditions. J. Quant. Spectrosc. Radiat. Transfer 30(6), 547–553 (1983). https://doi.org/10.1016/0022-4073(83)90010-9

    Article  Google Scholar 

  15. Benassi, M., Garcia, R.D.M., Karp, A.H., Siewert, C.E.: A high-order spherical harmonics solution to the standard problem in radiative transfer. Astrophys. J. 280, 853 (1984). https://doi.org/10.1086/162059

    Article  Google Scholar 

  16. Brezillon, J., Gauger, N.: 2D and 3D aerodynamic shape optimisation using the adjoint approach. Aerosp. Sci. Technol. 8(8), 715–727 (2004). https://doi.org/10.1016/j.ast.2004.07.006

    Article  MATH  Google Scholar 

  17. Brunner, T.A.: Forms of approximate radiation transport. Tech. rep. (2002). https://doi.org/10.2172/800993

  18. Buhl, T., Pedersen, C., Sigmund, O.: Stiffness design of geometrically nonlinear structures using topology optimization. Struct. Multidiscip. Optim. 19(2), 93–104 (2000). https://doi.org/10.1007/s001580050089

    Article  Google Scholar 

  19. Chai, J.C., Lee, H.S., Patankar, S.V.: Finite volume method for radiation heat transfer. J. Thermophys. Heat Transfer 8(3), 419–425 (1994). https://doi.org/10.2514/3.559

    Article  Google Scholar 

  20. Cheng, P.: Two-dimensional radiating gas flow by a moment method. AIAA J. 2(9), 1662–1664 (1964). https://doi.org/10.2514/3.2645

    Article  MathSciNet  MATH  Google Scholar 

  21. Choudhary, M.K., Venuturumilli, R., Hyre, M.R.: Mathematical modeling of flow and heat transfer phenomena in glass melting, delivery, and forming processes. Int. J. Appl. Glass Sci. 1(2), 188–214 (2010). https://doi.org/10.1111/j.2041-1294.2010.00018.x

    Article  Google Scholar 

  22. Colin, Y., Deniau, H., Boussuge, J.F.: A robust low speed preconditioning formulation for viscous flow computations. Comput. Fluids 47(1), 1–15 (2011). https://doi.org/10.1016/j.compfluid.2011.01.015

    Article  MathSciNet  MATH  Google Scholar 

  23. Crnjac, P., Škerget, L., Ravnik, J., Hriberšek, M.: Implementation of the Rosseland and the p1 radiation models in the system of Navier–Stokes equations with the boundary element method. Int. J. Comput. Methods Exp. Meas. 5, 348–358 (2017). https://doi.org/10.2495/CMEM-V5-N3-348-358

    Article  Google Scholar 

  24. Dubroca, B., Klar, A.: Half-moment closure for radiative transfer equations. J. Comput. Phys. 180(2), 584–596 (2002). https://doi.org/10.1006/jcph.2002.7106

    Article  MATH  Google Scholar 

  25. Economon, T., Palacios, F., Copeland, S., Lukaczyk, T., Alonso, J.: SU2: an open-source suite for multiphysics simulation and design. AIAA J. 54(3), 828–846 (2016). https://doi.org/10.2514/1.J053813

    Article  Google Scholar 

  26. Economon, T.D.: Simulation and adjoint-based design for variable density incompressible flows with heat transfer. In: 2018 Multidisciplinary Analysis and Optimization Conference. American Institute of Aeronautics and Astronautics (2018). https://doi.org/10.2514/6.2018-3111

  27. Fateman, R.J.: Automatic differentiation of algorithms: theory, implementation, and application (Andreas Griewank and George F. Corliss, eds.). SIAM Rev. 35(4), 659–660 (1993). https://doi.org/10.1137/1035156

  28. Frank, M.: Approximate models for radiative transfer. Bulletin of the Institute of Mathematics. Academia Sinica. New Series 2 (2007)

    Google Scholar 

  29. Frank, M., Dubroca, B., Klar, A.: Partial moment entropy approximation to radiative heat transfer. J. Comput. Phys. 218(1), 1–18 (2006). https://doi.org/10.1016/j.jcp.2006.01.038

    Article  MathSciNet  MATH  Google Scholar 

  30. Geuzaine, C., Remacle, J.F.: Gmsh: a 3-d finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Methods Eng. 79(11), 1309–1331 (2009). https://doi.org/10.1002/nme.2579

    Article  MathSciNet  MATH  Google Scholar 

  31. Giles, M.B., Pierce, N.A.: An introduction to the adjoint approach to design. Flow Turbul. Combust. 65(3/4), 393–415 (2000). https://doi.org/10.1023/a:1011430410075

    Article  MATH  Google Scholar 

  32. Griewank, A., Walther, A.: Evaluating Derivatives. Society for Industrial and Applied Mathematics (2008). https://doi.org/10.1137/1.9780898717761

  33. Gunzburger, M.D.: Perspectives in Flow Control and Optimization. Cambridge University Press (1987)

    Google Scholar 

  34. Haider, S., Pang, K., Ivarsson, A., Schramm, J.: Combustion and radiation modeling of laminar premixed flames using openfoam: a numerical investigation of radiative heat transfer in the radiade project. In: Papers, CIMAC Congress 2013. Conseil International des Machines a Combustion (2013)

    Google Scholar 

  35. Hascoët, L., Pascual, V.: The Tapenade Automatic Differentiation tool: principles, model, and specification. Research Report 7957, INRIA (2012)

    Google Scholar 

  36. Hogan, R.J.: Fast reverse-mode automatic differentiation using expression templates in C++. ACM Trans. Math. Softw. 40(4), 1–16 (2014). https://doi.org/10.1145/2560359

    Article  MathSciNet  MATH  Google Scholar 

  37. Jameson, A.: Aerodynamic design via control theory. J. Sci. Comput. 3(3), 233–260 (1988). https://doi.org/10.1007/bf01061285

    Article  MATH  Google Scholar 

  38. Jenkins, N., Maute, K.: An immersed boundary approach for shape and topology optimization of stationary fluid-structure interaction problems. Struct. Multidiscip. Optim. 54(5), 1191–1208 (2016). https://doi.org/10.1007/s00158-016-1467-5

    Article  MathSciNet  Google Scholar 

  39. Jensen, K., Ripoll, J., Wray, A., Joseph, D., Elhafi, M.: On various modeling approaches to radiative heat transfer in pool fires. Combust. Flame 148(4), 263–279 (2007). https://doi.org/10.1016/j.combustflame.2006.09.008

    Article  Google Scholar 

  40. Joseph, D., Hafi, M.E., Fournier, R., Cuenot, B.: Comparison of three spatial differencing schemes in discrete ordinates method using three-dimensional unstructured meshes. Int. J. Thermal Sci. 44(9), 851–864 (2005). https://doi.org/10.1016/j.ijthermalsci.2005.02.010

    Article  Google Scholar 

  41. Kanno, Y., Harada, T., Hanawa, T.: Kinetic scheme for solving the m1 model of radiative transfer. Publ. Astron. Soc. Jpn. 65(4), 72 (2013). https://doi.org/10.1093/pasj/65.4.72

    Article  Google Scholar 

  42. Kenway, G.K.W., Kennedy, G.J., Martins, J.R.R.A.: Scalable parallel approach for high-fidelity steady-state aeroelastic analysis and adjoint derivative computations. AIAA J. 52(5), 935–951 (2014). https://doi.org/10.2514/1.j052255

    Article  Google Scholar 

  43. Koch, R., Krebs, W., Wittig, S., Viskanta, R.: Discrete ordinates quadrature schemes for multidimensional radiative transfer. J. Quant. Spectrosc. Radiat. Transfer 53(4), 353–372 (1995). https://doi.org/10.1016/0022-4073(95)90012-8

    Article  Google Scholar 

  44. Korivi, V.M., Taylor, A., Newman, P., Hou, G., Jones, H.: An incremental strategy for calculating consistent discrete CFD sensitivity derivatives. Technical report, National Aeronautics and Space Administration, Langley Research Center (1992)

    Google Scholar 

  45. Kusano, I., Baldomir, A., Jurado, J.A., Hernández, S.: Reliability based design optimization of long-span bridges considering flutter. J. Wind Eng. Ind. Aerodyn. 135, 149–162 (2014). https://doi.org/10.1016/j.jweia.2014.10.006

    Article  Google Scholar 

  46. Kim, M.Y., Baek, S.W., Park, J.H.: Unstructured finite-volume method for radiative heat transfer in a complex two-dimensional geometry with obstacles. Numer. Heat Transfer, Part B: Fundam. 39(6), 617–635 (2001). https://doi.org/10.1080/10407790152034854

  47. Martins, J., Alonso, J., Reuther, J.: A coupled-adjoint sensitivity analysis method for high-fidelity aero-structural design. Optim. Eng. 6(1), 33–62 (2005). https://doi.org/10.1023/B:OPTE.0000048536.47956.62

    Article  MATH  Google Scholar 

  48. Martins, J.R.R.A., Hwang, J.T.: Review and unification of methods for computing derivatives of multidisciplinary computational models. AIAA J. 51(11), 2582–2599 (2013). https://doi.org/10.2514/1.j052184

    Article  Google Scholar 

  49. Maute, K., Nikbay, M., Farhat, C.: Sensitivity analysis and design optimization of three-dimensional non-linear aeroelastic systems by the adjoint method. Int. J. Numer. Methods Eng. 56(6), 911–933 (2003). https://doi.org/10.1002/nme.599

    Article  MATH  Google Scholar 

  50. Mishra, A., Mavriplis, D., Sitaraman, J.: Time-dependent aeroelastic adjoint-based aerodynamic shape optimization of helicopter rotors in forward flight. AIAA J. 54(12), 3813–3827 (2016). https://doi.org/10.2514/1.j054962

    Article  Google Scholar 

  51. Modest, M.F., Yang, J.: Elliptic PDE formulation and boundary conditions of the spherical harmonics method of arbitrary order for general three-dimensional geometries. J. Quant. Spectrosc. Radiat. Transfer 109(9), 1641–1666 (2008). https://doi.org/10.1016/j.jqsrt.2007.12.018

    Article  Google Scholar 

  52. Molina, E., Spode, C., da Silva, R.G.A., Manosalvas-Kjono, D.E., Nimmagadda, S., Economon, T.D., Alonso, J.J., Righi, M.: Hybrid RANS/LES calculations in SU2. In: 23rd AIAA Computational Fluid Dynamics Conference. American Institute of Aeronautics and Astronautics (2017). https://doi.org/10.2514/6.2017-4284

  53. Montoya, M.C., Hernández, S., Nieto, F.: Shape optimization of streamlined decks of cable-stayed bridges considering aeroelastic and structural constraints. J. Wind Eng. Ind. Aerodyn. 177, 429–455 (2018). https://doi.org/10.1016/j.jweia.2017.12.018

    Article  Google Scholar 

  54. Murthy, J.Y., Mathur, S.R.: Finite volume method for radiative heat transfer using unstructured meshes. J. Thermophys. Heat Transfer 12(3), 313–321 (1998). https://doi.org/10.2514/2.6363

    Article  Google Scholar 

  55. Naumann, U.: The Art of Differentiating Computer Programs (Software, Environments and Tools). Society for Industrial and Applied Mathematics (2012)

    Google Scholar 

  56. Palacios, F., Colonno, M., Aranake, A., Campos, A., Copeland, S., Economon, T., Lonkar, A., Lukaczyk, T., Taylor, T., Alonso, J.: Stanford University Unstructured (SU2): an open-source integrated computational environment for multi-physics simulation and design. In: AIAA 51st Aerospace Sciences Meeting, 7–10 Jan. Grapevine, TX (2013)

    Google Scholar 

  57. Palacios, F., Economon, T., Aranake, A., Copeland, S., Lonkar, A., Lukaczyk, T., Manosalvas, D., Naik, K.: Santiago Padrón, A., Tracey, B., Variyar, A., Alonso, J.: Stanford university unstructured (SU2): open-source analysis and design technology for turbulent flows. In: AIAA 52nd Aerospace Sciences Meeting. SciTech, 13–17 Jan. National Harbor, MD (2014)

    Google Scholar 

  58. Palacios, F., Economon, T.D., Wendorff, A.D., Alonso, J.J.: Large-scale aircraft design using su2. In: 53rd AIAA Aerospace Sciences Meeting (2015)

    Google Scholar 

  59. Park, J., Kwon, K., Choi, H.: Numerical solutions of flow past a circular cylinder at Reynolds numbers up to 160. KSME Int. J. 12(6), 1200–1205 (1998). https://doi.org/10.1007/bf02942594

    Article  Google Scholar 

  60. Pascual, V., Hascoët, L.: TAPENADE for C. In: Advances in Automatic Differentiation, Lecture Notes in Computational Science and Engineering, pp. 199–210. Springer (2008). Selected papers from AD2008 Bonn, August 2008

    Google Scholar 

  61. Pini, M., Persico, G., Pasquale, D., Rebay, S.: Adjoint method for shape optimization in real-gas flow applications. J. Eng. Gas Turbines Power 137(3), 032604 (2014). https://doi.org/10.1115/1.4028495

  62. Pini, M., Vitale, S., Colonna, P., Gori, G., Guardone, A., Economon, T., Alonso, J., Palacios, F.: SU2: the open-source software for non-ideal compressible flows. J. Phys. Conf. Ser. 821, 012013 (2017). https://doi.org/10.1088/1742-6596/821/1/012013

  63. Pinnau, R., Siedow, N.: Optimization and inverse problems in radiative heat transfer. In: Constrained Optimization and Optimal Control for Partial Differential Equations, pp. 597–609. Springer Basel (2011). https://doi.org/10.1007/978-3-0348-0133-1_31

  64. Pinnau, R., Tse, O.: Optimal control of a simplified natural convection-radiation model. Commun. Math. Sci. 11(3), 679–707 (2013). https://doi.org/10.4310/cms.2013.v11.n3.a2

    Article  MathSciNet  MATH  Google Scholar 

  65. Pironneau, O.: On optimum design in fluid mechanics. J. Fluid Mech. 64(01), 97 (1974). https://doi.org/10.1017/s0022112074002023

    Article  MathSciNet  MATH  Google Scholar 

  66. Prieler, R., Demuth, M., Spoljaric, D., Hochenauer, C.: Numerical investigation of the steady flamelet approach under different combustion environments. Fuel 140, 731–743 (2015). https://doi.org/10.1016/j.fuel.2014.10.006

    Article  Google Scholar 

  67. Raulli, M., Maute, K.: Optimization of fully coupled electrostatic-fluid-structure interaction problems. Comput. Struct. 83(2–3), 221–233 (2005). https://doi.org/10.1016/j.compstruc.2004.08.003

    Article  Google Scholar 

  68. Reuther, J., Alonso, J., Rimlinger, M., Jameson, A.: Aerodynamic shape optimization of supersonic aircraft configurations via an adjoint formulation on distributed memory parallel computers. Comput. Fluids 28(4–5), 675–700 (1999). https://doi.org/10.1016/s0045-7930(98)00050-4

    Article  MATH  Google Scholar 

  69. Ripoll, J.F., Dubroca, B., Audit, E.: A factored operator method for solving coupled radiation-hydrodynamics models. Transp. Theory Stat. Phys. 31(4–6), 531–557 (2002). https://doi.org/10.1081/tt-120015513

    Article  MathSciNet  MATH  Google Scholar 

  70. Sagebaum, M., Albring, T., Gauger, N.R.: High-Performance Derivative Computations using CoDiPack. ar** in the reverse mode of algorithmic differentiation. Optim. Methods Softw. 33(4–6), 1207–1231 (2018). https://doi.org/10.1080/10556788.2018.1471140

    Article  MathSciNet  MATH  Google Scholar 

  71. Sagebaum, M., Gauger, N.R., Naumann, U., Lotz, J., Leppkes, K.: Algorithmic differentiation of a complex C++ code with underlying libraries. Procedia Comput. Sci. 18, 208–217 (2013). https://doi.org/10.1016/j.procs.2013.05.184

    Article  Google Scholar 

  72. Sanchez, R.: A coupled adjoint method for optimal design in fluid-structure interaction problems with large displacements. Ph.D. thesis, Imperial College London (2018)

    Google Scholar 

  73. Sanchez, R., Albring, T., Palacios, R., Gauger, N.R., Economon, T.D., Alonso, J.J.: Coupled adjoint-based sensitivities in large-displacement fluid-structure interaction using algorithmic differentiation. Int. J. Numer. Methods Eng. 113(7), 1081–1107 (2017). https://doi.org/10.1002/nme.5700

    Article  MathSciNet  Google Scholar 

  74. Sanchez, R., Kline, H.L., Thomas, D., Variyar, A., Righi, M., Economon, T.D., Alonso, J.J., Palacios, R., Dimitriadis, G., Terrapon, V.: Assessment of the fluid-structure interaction capabilities for aeronautical applications of the open-source solver SU2. In: Proceedings of the VII European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS Congress 2016). Institute of Structural Analysis and Antiseismic Research School of Civil Engineering National Technical University of Athens (NTUA) Greece (2016). https://doi.org/10.7712/100016.1903.6597

  75. Sanchez, R., Palacios, R., Economon, T.D., Alonso, J.J., Albring, T., Gauger, N.R.: Optimal actuation of dielectric membrane wings using high-fidelity fluid-structure modelling. In: 58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. American Institute of Aeronautics and Astronautics (2017). https://doi.org/10.2514/6.2017-0857

  76. Sanchez, R., Palacios, R., Economon, T.D., Kline, H.L., Alonso, J.J., Palacios, F.: Towards a fluid-structure interaction solver for problems with large deformations within the open-source SU2 suite. In: 57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. American Institute of Aeronautics and Astronautics (2016). https://doi.org/10.2514/6.2016-0205

  77. Sazhin, S.S., Sazhina, E.M., Faltsi-Saravelou, O., Wild, P.: The p-1 model for thermal radiation transfer: advantages and limitations. Fuel 75(3), 289–294 (1996)

    Article  Google Scholar 

  78. Sen, S., Mittal, S., Biswas, G.: Steady separated flow past a circular cylinder at low Reynolds numbers. J. Fluid Mech. 620, 89–119 (2009). https://doi.org/10.1017/S0022112008004904

    Article  MATH  Google Scholar 

  79. Sockol, P.M.: Multigrid solution of the Navier–Stokes equations at low speeds with large temperature variations. J. Comput. Phys. 192(2), 570–592 (2003). https://doi.org/10.1016/j.jcp.2003.07.033

    Article  MATH  Google Scholar 

  80. Ströhle, J., H. Knaus, H., U. Schnell, U., Hein, K.: A radiation model for the numerical simulation of coal-fired furnaces using body-fitted grids. Combust. Sci. Technol. 153(1), 127–139 (2000). https://doi.org/10.1080/00102200008947255

  81. Veldhuizen, T.: Expression templates. C++ Report 7(5), 26–31 (1995)

    Google Scholar 

  82. Vitale, S., Gori, G., Pini, M., Guardone, A., Economon, T.D., Palacios, F., Alonso, J.J., Colonna, P.: Extension of the SU2 open source CFD code to the simulation of turbulent flows of fuids modelled with complex thermophysical laws. In: 22nd AIAA Computational Fluid Dynamics Conference. American Institute of Aeronautics and Astronautics (2015). https://doi.org/10.2514/6.2015-2760

  83. Walther, A.: Computing sparse hessians with automatic differentiation. ACM Trans. Math. Softw. 34(1), 1–15 (2008). https://doi.org/10.1145/1322436.1322439

    Article  MathSciNet  MATH  Google Scholar 

  84. Weiss, J., Maruszewski, J., Smith, W., Smith, W., Weiss, J., Maruszewski, J.: Implicit solution of the Navier-Stokes equations on unstructured meshes. In: 13th Computational Fluid Dynamics Conference. American Institute of Aeronautics and Astronautics (1997). https://doi.org/10.2514/6.1997-2103

  85. Weiss, J.M., Smith, W.A.: Preconditioning applied to variable and constant density flows. AIAA J. 33(11), 2050–2057 (1995). https://doi.org/10.2514/3.12946

    Article  MATH  Google Scholar 

  86. **a, L., Fritzen, F., Breitkopf, P.: Evolutionary topology optimization of elastoplastic structures. Struct. Multidiscip. Optim. 55(2), 569–581 (2016). https://doi.org/10.1007/s00158-016-1523-1

    Article  MathSciNet  Google Scholar 

  87. Yang, R., Chuang, C.: Optimal topology design using linear programming. Comput. Struct. 52(2), 265–275 (1994). https://doi.org/10.1016/0045-7949(94)90279-8

    Article  MATH  Google Scholar 

  88. Zhou, B., Albring, T.A., Gauger, N.R., Ilario, C., Economon, T.D., Alonso, J.J.: Reduction of airframe noise components using a discrete adjoint approach. In: 18th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. American Institute of Aeronautics and Astronautics (2017). https://doi.org/10.2514/6.2017-3658

  89. Zhou, B.Y., Albring, T.A., Gauger, N.R., Economon, T.D., Palacios, F., Alonso, J.J.: A discrete adjoint framework for unsteady aerodynamic and aeroacoustic optimization. In: 16th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. American Institute of Aeronautics and Astronautics (2015). https://doi.org/10.2514/6.2015-3355

Download references

Acknowledgements

This work has been funded by the Bundesministerium für Bildung und Forschung of the German Government under the project “Energieeffiziente Hochtemperaturprozesse durch Formoptimierung”, grant number 05M18UKA. This economic support is greatly appreciated by the authors. The code that has been developed during this work is freely available at the main SU2 repository https://github.com/su2code/SU2. The authors would also like to acknowledge the technical support from the open-source community of SU2, and particularly from Dr. Thomas Economon for his help in setting the test cases presented.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emre Özkaya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sanchez, R., Özkaya, E., Gauger, N.R. (2022). Adjoint-Based Sensitivity Analysis in High-Temperature Fluid Flows with Paticipating Media. In: Pinnau, R., Gauger, N.R., Klar, A. (eds) Modeling, Simulation and Optimization in the Health- and Energy-Sector. SEMA SIMAI Springer Series(), vol 14. Springer, Cham. https://doi.org/10.1007/978-3-030-99983-4_7

Download citation

Publish with us

Policies and ethics

Navigation