Microbial Degradation of Wastewater

  • Chapter
  • First Online:
Recent Trends in Wastewater Treatment

Abstract

Water is essential for varied human activities, its quality and quantity are attracting increasing attention around the world because of tremendous population expansion, rising socio-economic growth trends. Industrial, municipal, domestic, and agricultural wastewater is discharged directly into surface water that has the potential to harm the natural aquatic environment and biotic life, posing serious health risks to humans. Recycling and reusing wastewater are a long-term solution to the rapid increase in water pollution and scarcity. As a result, bioremediation plays a key role in recycling hazardous wastes into a form that other organisms can use. There have been several chemical and physical approaches to wastewater treatment, but biological treatment processes are more effective in reducing the majority of harmful pollutants found in wastewater which is low cost and environmentally friendly of all the physicochemical treatment processes. In this process, native microorganisms such as bacteria, fungus, and algae remove heavy metals, pesticides, suspended solids, dissolved solids, nitrate, phosphate, heavy metals chemical oxygen demand (COD), and biological oxygen demand (BOD) from wastewater. This chapter emphasizes on the relevance of fungi, algae, and bacteria in wastewater pollutants bio-remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abatenh, E.; Gizaw, B.; Tsegaye, Z.; Wassie, M. Application of microorganisms in bioremediation-review. J. Environ. Chem. Toxicol. 2017a, 1, 1–9.

    Google Scholar 

  • Abatenh, E.; Gizaw, B.; Tsegaye, Z.; Wassie, M. The Role of Microorganisms in Bioremediation—A Review. Open J. Environ. Biol. 2017b, 2(1), 38–46. [CrossRef]

    Google Scholar 

  • Abbasi, T., Anuradha, J., and Abbasi, S. A. (2009). Nanotechnology and its potential in revolutionizing the pollution control scenario. J. Institution of Public HealthEngineers, India, 10, 5–12.

    Google Scholar 

  • Abdel-Raouf N, Al-Homaidan AA, Ibraheem IBM (2012) Microalgae and wastewater treatment. Saudi J BiolSci 19:257–275.

    Article  CAS  Google Scholar 

  • Abou-shanab, R. A. I., El-Dalatony, M., El-Sheekh, M. M., Ji, M.-K., Salam, E., Kabra, A., and Jeon, B.-H. (2014). Cultivation of a new microalga, Micractiniumreisseri, in municipal wastewater for nutrient removal, biomass, lipid, and fatty acid production. Biotechnology Bioprocess Engineering, 19(3), 510–518.

    Article  CAS  Google Scholar 

  • Adams GO, Fufeyin PT, Okoro SE, Ehinomen I (2015) Bioremediation, Biostimulation and Bioaugmention: A Review. International Journal of Environmental Bioremediation and Biodegradation 3: 28-39.

    Article  CAS  Google Scholar 

  • Agarwal S.K (1998) Environmental Biotechnology, (1st ed), APH Publishing Corporation, New Delhi, India, 267-289.

    Google Scholar 

  • Ahamad, A., Madhav, S., Singh, A. K., Kumar, A., & Singh, P. (2020). Types of water pollutants: conventional and emerging. In Sensors in Water Pollutants Monitoring: Role of Material (pp. 21-41). Springer, Singapore.

    Chapter  Google Scholar 

  • Ahluwalia, S. S., and Goyal, D. (2006). Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresource Technology, 98(12), 2243–2257. doi:https://doi.org/10.1016/j.biortech.2005.12.006 PMID:16427277

    Article  CAS  Google Scholar 

  • Ahmed, F.; Fakhruddin, A.N.M. A Review on environmental contamination of petroleum hydrocarbons and its biodegradation. Int. J. Environ. Sci. Nat. Resour. 2018, 11, 63–69. [CrossRef]

    Google Scholar 

  • Alegbeleye, O.O.; Opeolu, B.O.; Jackson, V.A. Polycyclic Aromatic Hydrocarbons: A Critical Review of Environmental Occurrence and Bioremediation. Environ. Manag. 2017, 60, 758–783.

    Article  Google Scholar 

  • Amin, M.T., Alazba, A.A. and Manzoor, U. (2014) ‘A review of removal of pollutants from water/wastewater using different types of nanomaterials’, Advances in Materials Science and Engineering, pp.1–24,

    Google Scholar 

  • Anuradha, J. (2013). Use of some aquatic and terrestrial weeds in the ‘green’ synthesis of gold nanoparticles (PhD thesis). Pondicherry (Central) University.

    Google Scholar 

  • Aragão M.S, D.B. Menezes, L.C. Ramos, H.S. Oliveira, R.N. Bharagava, L.F. Romanholo Ferreira, J.A. Teixeira, D.S. Ruzene, D.P. Silva, Mycoremediation of vinasse by surface response methodology and preliminary studies in air-lift bioreactors, Chemosphere 244 (2020)125432.

    Article  CAS  Google Scholar 

  • Arora, N.K. Bioremediation: A green approach for restoration of polluted ecosystems. Environ. Sustain. 2018, 1, 305–307.

    Article  Google Scholar 

  • Ashbolt N.J, “Microbial contamination of drinking water and disease outcomes in develo** regions,” Toxicology, vol. 198, no. 1–3, pp. 229–238, 2004.

    Article  CAS  Google Scholar 

  • Babel, S., and Kurniawan, T. A. (2003). Low-cost adsorbents for heavy metals uptake from contaminated water: A review. Journal of Hazardous Materials, 97(1-3), 219–243. doi:https://doi.org/10.1016/S0304-3894(02)00263-7 PMID:12573840

    Article  CAS  Google Scholar 

  • Bajguz, A. (2011). Suppression of Chlorella vulgaris growth by cadmium, lead, and copper stress and its restoration by endogenous brassinolide. Archives of Environmental Contamination and Toxicology, 60(3), 406–416.

    Article  CAS  Google Scholar 

  • Bardgett RD, Freeman C, Ostle NJ (2008) Microbial contributions to climate change through carbon cycle feed backs. ISME J 2:805–814

    Article  CAS  Google Scholar 

  • Beard SJ, Hughes MN, Poole RK (1995) Inhibition of the cytochrome bd-terminated NADH oxidase system in Escherichia coli K-12 by divalent metal cations. FEMS Microbiol Lett 131:205–210

    Article  CAS  Google Scholar 

  • Bhakta, J. N., Munekage, Y., Ohnishi, K., Jana, B. B. and Balcazar, J. L., 2014. Isolation and characterization of cadmium-and arsenic-absorbing bacteria for bioremediation. Water, Air, & Soil Pollution, 225(10), pp.1-10.

    Google Scholar 

  • Blázquez G, Hernáinz F, Calero M, Martin-Lara MA, Tenorio G (2008) The effect of pH on the biosorption of Cr(III) and Cr(VI) with olive stone. Chem Eng J 148:473–479

    Article  CAS  Google Scholar 

  • Boopathy R (2000) Factors limiting bioremediation technologies. Biores Technol 74:63–67

    CAS  Google Scholar 

  • Castro HF, Classen AT, Austin EE, Norby RJ, Schadt CW (2010) Soil microbial community responses to multiple experimental climate change drivers. Appl Environ Microb 76(4):999–1007

    Article  CAS  Google Scholar 

  • Chen, S. and Wilson, D.B., 1997. Genetic engineering of bacteria and their potential for Hg2+ bioremediation. Biodegradation, 8(2), pp.97-103.

    Google Scholar 

  • Chojnacka, K., Andrzej, N., 2004. An Evaluation of Spirulina sp. growth in photoautotrophic, heterotrophic and mixotrophic cultures. Enzyme Microb. Techno 34, 461-465.

    Article  CAS  Google Scholar 

  • Chojnacka, K., Facundo, J.M.R., 2004. Kinetic and stoichiometric relationships of the energy and carbon metabolism in the culture of microalgae. Biotechnology 4, 21-34.

    Google Scholar 

  • Coelho, M. L., Rezende, C. H., Coelho, M. L., de Sousa, A. R. P., Melo, F. O. D., and Coelho, M. M.N. (2015). Bioremediation of polluted waters using microorganisms. In N. Shiomi (Ed.), Advances in Bioremediation of Wastewater and Polluted Soil (pp. 1–22).

    Google Scholar 

  • Dangi, A.K.; Sharma, B.; Hill, R.T.; Shukla, P. Bioremediation through microbes: Systems biology and metabolic engineering approach. Crit. Rev. Biotechnol. 2019, 39, 79–98.

    Article  CAS  Google Scholar 

  • Das, N., and Chandran, P. (2011). Microbial Degradation of Petroleum Hydrocarbon Contaminants: An Overview. Biotechnology Research International. doi:https://doi.org/10.4061/2011/941810

  • Deflora S, Vigano L, Dagoslini F, Camorirano A, Bagnasco M, Bennicelli C, Melodia F and Arillo A (1993). Multiple genotoxicity Biomarkers in fish exposed in situ to polluted river water. Mutat. Res. 319: 167-177.

    Article  CAS  Google Scholar 

  • Delille D, Duval A, Pelletier E (2008) Highly efficient pilot biopiles for on-site fertilization treatment of diesel oil-contaminated sub-Antarctic soil. Cold reg sci technol 54: 7-18.

    Article  Google Scholar 

  • Doyle, R. J., Matthews, T. H., and Streips, U. N. (1980). Chemical basis for selectivity of metal ions by the Bacillus subtilis cell wall. Journal of Bacteriology, 143, 471–480. PMID:6772632

    Article  CAS  Google Scholar 

  • El-Sheekh, M. M., Farghl, A. A., Galal, H. R., and Bayoumi, H. S. (2016). Bioremediation of Different Types of Polluted Water Using Microalgae. Rendconti Lincei-Scienze Fisiche e Naturali, 27(2), 401–410.

    Article  Google Scholar 

  • Emami S, Pourbabaee AA, Alikhani HA (2012) Bioremediation Principles and Techniques on Petroleum Hydrocarbon Contaminated Soil. Technical Journal of Engineering and Applied Sciences 2: 320-323.

    Google Scholar 

  • Eshelby K, “Dying for a drink,” British Medical Journal, vol. 334, no. 7594, pp. 610–612, 2007.

    Article  Google Scholar 

  • Ferreira, P., Alves, P., Coimbra, P. and Gil, M.H. (2015) ‘Improving polymeric surfaces for biomedical applications: a review’, Journal of Coatings Technology and Research, Vol. 12, pp. 463–475.

    Google Scholar 

  • Frey, S.D., Drijber, R., Smith, H. and Melillo, J., 2008. Microbial biomass, functional capacity, and community structure after 12 years of soil warming. Soil Biology and Biochemistry, 40(11), pp.2904-2907.

    Google Scholar 

  • Frey SD, Lee J, Melillo JM, Six J (2013) The temperature response of soil microbial efficiency and its feedback to climate. Nat Clim Chang 3:395–398

    Article  CAS  Google Scholar 

  • Gaikwad, R.W., Manjiry, D.G., Bhagat, S.L., 2016. Carbon dioxide capture, tolerance and sequestration using microalgae- a review. IJPCBS 345-349.

    Google Scholar 

  • Garbisu C, Alkorta I (2003) Basic concepts on heavy metal soil bioremediation. Euro J Mineral Process Environ Prot 3(1):58–66

    Google Scholar 

  • Ghosh A, Paul D, Sharma K, Pandey P, Prakash D, Singh R, Goyal A, Kaur H and Jain P.K (2005) Microbial diversity: Potential applications in bioremediation In: Microbial Diversity: Current perspectives and potential applications. (eds.) Satyanarayna T and Johri B.N.I.K International Pvt. Ltd., New Delhi. 505-520.

    Google Scholar 

  • Giguere, A, Campbell P. G. C, Hare L, McDonald D. G and Rasmussen J. B (2004) Influence of lake chemistry and fish age on cadmium, copper and zinc concentrations in various organs of indigenous yellow perch (Perca flavescens). Can. J of Fish. andAqu. Sci., 61:1702– 1716.

    Article  CAS  Google Scholar 

  • Guimarães JT et al (2018) Quantification and characterization of effluents from the seafood processing industry aiming at water reuse: a pilot study. J Water Process Eng 26:138–145.

    Article  Google Scholar 

  • Gupta, D., Satpati, S., Dixit, A., & Ranjan, R. (2019). Fabrication of biobeads expressing heavy metal-binding protein for removal of heavy metal from wastewater. Applied microbiology and biotechnology, 103(13), 5411-5420.

    Article  CAS  Google Scholar 

  • Han X, Gu J (2010) Sorption and transformation of toxic metals by microorganisms. In: Mitchell R, Gu J (eds) Environmental microbiology. Wiley Blackwell Pub, Hoboken

    Google Scholar 

  • Hess A, Zarda B, Hahn D, Hanner A, Stax D (1997) In situ analysis of denitrifying toluene and m xylene degrading bacteria in a diesel fuel contaminated laboratory aquifer column. J. App. Enviro. Micro., 63: 2136-2141.

    Article  CAS  Google Scholar 

  • Hutton G, L. Haller, and J. Bartram, Economic and Health Effects of Increasing Coverage of Low Cost Household Drinking Water Supply and Sanitation Interventions, World Health Organization, 2007.

    Google Scholar 

  • Ingham CJ, Sprenkels A, Bomer J, Molenaar D, Van Den Berg A, van HylckamaVlieg JE, de Vos WM (2007) The micro Petri dish, a million-well growth chip for the culture and high- throughput screening of microorganisms. Proc Natl Acad Sci USA

    Book  Google Scholar 

  • Jayashree, R., Nithya, S. E., Rajesh, P. P., and Krishnaraju, M. (2012). Biodegradation capability of bacterial species isolated from oil contaminated soil. Journal of Academia Industrial Research, 1(3), 140–143.

    Google Scholar 

  • Jayaswal, K.; Sahu, V.; Gurjar, B.R. Water Pollution, Human Health and Remediation. In Pollutants from Energy Sources; Springer Nature: Singapore, 2018; pp. 11–27.

    Google Scholar 

  • Jeswani, H., and Mukherji, S. (2012). Degradation of phenolics, nitrogen-heterocyclics and polynuclear aromatic hydrocarbons in a rotating biological contactor. Bioresource Technology, 111, 12–20. doi:https://doi.org/10.1016/j.biortech.2012.01.157 PMID:22382298

  • Jeyaratnam J (1990). Acute Pesticide Poisoning: ‘A Major Problem’, World Health Statistics Quarterly, 43: 139–44.

    CAS  Google Scholar 

  • Johnson D.M, D. R. Hokanson, Q. Zhang, K. D. Czupinski, and J. Tang, “Feasibility of water purification technology in rural areas of develo** countries,” Journal of Environmental Management, vol. 88, no. 3, pp. 416–427, 2008.

    Article  CAS  Google Scholar 

  • José H, et al (2015) Water and wastewater management and biomass to energy conversion in a meat processing plant in Brazil: a case study. In: Water treatment in developed and develo** nations. doi: https://doi.org/10.1201/b18650-8.

    Google Scholar 

  • Kaushal SS, Groffman PM, Likens GE, Belt KT, Stack WP, et al. 2005. Increased salinization of fresh water in the northeastern United States. Proc. Natl. Acad. Sci. USA 102:13517–20

    Article  CAS  Google Scholar 

  • Khan I, M. Aftab, S. Shakir, M. Ali, S. Qayyum, M.U. Rehman, K.S. Haleem, I. Touseef, Mycoremediation of heavy metal (Cd and Cr)–polluted soil through indigenous metallotolerant fungal isolates, Environ. Monit. Assess. 191 (2019).

    Google Scholar 

  • Kong, Q.; Li, L.; Martinez, B.; Chen, P.; Ruan, R. Culture of Microalgae Chlamydomonas reinhardtii in Wastewater for Biomass Feedstock Production. Appl. Biochem. Biotechnol. 2010, 160, 9–18.

    Article  CAS  Google Scholar 

  • Kumar A, Bisht B S, Joshi V D, Dhewa T (2011) Review on Bioremediation of Polluted Environment: A Management Tool. international journal of environmental sciences 1: 1079-1093.

    Google Scholar 

  • Kumar, V.; Shahi, S.K.; Singh, S. Bioremediation: An Eco-sustainable Approach for Restoration of Contaminated Sites. In Microbial Bioprospecting for Sustainable Development; Springer Nature: Singapore, 2018; pp. 115–136.

    Google Scholar 

  • Lee TH, Byun IG, Kim YO, Hwang IS, Park TJ (2006) Monitoring biodegradation of diesel fuel in bioventing processes using in situ respiration rate. Water Science and Technology 53: 263-272.

    Article  CAS  Google Scholar 

  • Leonard P, S. Hearty, J. Brennan et al., “Advances in biosensors for detection of pathogens in food and water,” Enzyme and Microbial Technology, vol. 32, no. 1, pp. 3–13, 2003.

    Article  CAS  Google Scholar 

  • Li CH, Wong YS, Tam NF (2010) Anaerobic biodegradation of polycyclic aromatic hydrocarbons with amendment of iron (III) in mangrove sediment slurry. Bio resource Technology 101: 8083−8092.

    Article  CAS  Google Scholar 

  • Li, M.; Cheng, X.; Guo, H. Heavy metal removal by biomineralization of urease producing bacteria isolated from soil. Int. Biodeterior. Biodegrad. 2013, 76, 81–85.

    Article  CAS  Google Scholar 

  • Lovely DR (2003) Cleaning up with genomics applying molecular biology to bioremediation. Nat Rev Microbiol 1:35–44

    Article  CAS  Google Scholar 

  • Lovely, D. R. (2002). Dissimulatory metal reduction: From early life to bioremediation. ASM News, 68(5), 231–237.

    Google Scholar 

  • Madhav, S., Ahamad, A., Singh, A.K., Kushawaha, J., Chauhan, J.S., Sharma, S. and Singh, P., 2020. Water pollutants: sources and impact on the environment and human health. In Sensors in Water Pollutants Monitoring: Role of Material (pp. 43-62). Springer, Singapore.

    Chapter  Google Scholar 

  • Madhavi GN, Mohini DD (2012) Review paper on – Parameters affecting bioremediation. International journal of life science and pharma research 2: 77-80.

    Google Scholar 

  • Maheshwari R, Singh U, Singh P, Singh N, Lal J and Rani B (2014) To decontaminate wastewater employing bioremediation technologies. J Adv Sci Res. 5:7-15.

    CAS  Google Scholar 

  • Maphosa F, Smidt H, De Vos WM, Roling WFM (2010) Microbial community and metabolite dynamics of an anoxic dechlorinating bioreactor. Environ SciTechnol 44:4884–4890

    Article  CAS  Google Scholar 

  • Mara D.D, “Water, sanitation and hygiene for the health of develo** nations,” Public Health, vol. 117, no. 6, pp. 452–456, 2003.

    Article  CAS  Google Scholar 

  • Mars AE, Kasberg T, Kaschabek SR, van-Agteren MH, Janssen DB, Reineke W (1997) Microbial degradation of chloroaromatics: use of the meta-cleavage pathway for mineralization of chlorobenzene. J Bacteriol 179:4530–4537

    Article  CAS  Google Scholar 

  • McCormick S.D, O’Dea M.F, Moeckel A.M, Lerner D.T and Bjornsson B.T (2005). Endocrine disruption of parr-smolt transformation and seawater tolerance of Atlantic Salmon by 4-nolyphenol and 17ß estradiol. Gen and Compar. Endocri., 142:280– 288.

    Article  CAS  Google Scholar 

  • Montgomery M.A and M. Elimelech, “Water and sanitation in develo** countries: Including health in the equation,” Environmental Science and Technology, vol. 41, no. 1, pp. 17–24, 2007.

    Article  Google Scholar 

  • Moore M, P. Gould, and B. S. Keary, “Global urbanization and impact on health,” International Journal of Hygiene and Environmental Health, vol. 206, no. 4-5, pp. 269–278, 2003.

    Article  Google Scholar 

  • Mukherji, S., and Jeswani, H. (2011). Treatment of biomass gasifier wastewater in a rotating biological contactor. Conference proceedings, IWA Biofilm Conference, Processes in Biofilms, 215-216.

    Google Scholar 

  • Mulbry, W., Kondrad, S., Pizarro, C., Kebede-Westhead, E., 2008. Treatment of dairy manure effluent using freshwater algae: algal productivity and recovery of manure nutrients using pilot-scale algal turf scrubbers. Bioresour. Technol. 99, 8137-8142.

    Article  CAS  Google Scholar 

  • Mulligana CN, Yong RN (2004) Natural attenuation of contaminated soils. Environment International 30: 587 – 601.

    Article  CAS  Google Scholar 

  • Muraleedharan, T. R. and Venkobachar, C., 1990. Mechanism of biosorption of copper (II) by Ganoderma lucidum. Biotechnology and bioengineering, 35(3), pp.320-325.

    Google Scholar 

  • Murty, M.N. and Surender Kumar (2002), ‘Measuring Cost of Environmentally Sustainable Industrial Development in India: A Distance Function Approach’, Environment and Development Economics, Vol. 7, pp. 467–86.

    Article  Google Scholar 

  • Nie M, Pendall E, Bell C, Gasch CK, Raut S, Tamang S, Wallenstein MD (2013) Positive climate feedbacks of soil microbial communities in a semi-arid grassland. Ecol Lett 16(2):234–241

    Article  Google Scholar 

  • Niu GL, Zhang JJ, Zhao S, Liu H, Boon N, et al. (2009) Bioaugmentation of a 4- chloronitrobenzene contaminated soil with Pseudomonas putida ZWL73. Environmental Pollution 57: 763-771.

    Article  CAS  Google Scholar 

  • Nweke CO, Alisi CS, Okolo JC, Nwanyanwu CE (2007) Toxicity of zinc heterotrophic bacteria from a tropical river sediment. Appl Ecol Environ Res 5(1):123–132

    Article  Google Scholar 

  • Olguin, E.J., 2003. Phycoremediation: key issues for cost-effective nutrient removal processes. Biotechnol. Adv. 22, 81-91.

    Article  CAS  Google Scholar 

  • Pandey, G. and Jain, R.K., 2002. Bacterial chemotaxis toward environmental pollutants: role in bioremediation. Applied and Environmental Microbiology, 68(12), pp.5789-5795.

    Google Scholar 

  • Parikh, J. (2004), ‘Environmentally Sustainable Development in India’, available at http://scid.stanford.edu/events/India2004/JParikh.pdf last accessed on 22 August 2008

  • Pattus, F., and Abdallah, M. (2000). Siderophores and iron-transport in microorganisms. Review Journal of Chinese Chemical Society, 47(1), 1–20. doi:https://doi.org/10.1002/jccs.200000001

    Article  CAS  Google Scholar 

  • Perpetuo, E. A., Souza, C. B., and Nascimento, C. A. O. (2011). Engineering bacteria for bioremediation. In A. Carpi (Ed.), Progress in Molecular and Environmental Bioengineering. From Analysis and Modeling to Technology Applications (pp. 605–632).

    Google Scholar 

  • Pieper DH, Reineke W (2000a) Engineering bacteria for bioremediation. Curr Opin Biotech 11:262–270

    CAS  Google Scholar 

  • Pieper, D. H., and Reineke, W. (2000b). Engineering bacteria for bioremediation. Current Opinion in Biotechnology, 11(3), 262–270. doi:https://doi.org/10.1016/S0958-1669(00)00094-X PMID:10851148

  • Post VEA. 2005. Fresh and saline groundwater interaction in coastal aquifers: Is our technology ready for the problems ahead? Hydrogeol. J. 13:120–23

    Article  CAS  Google Scholar 

  • Pradeep, T. (2007). Nano: The Essentials. New Delhi: Tata-McGraw Hill.

    Google Scholar 

  • Puzon GJ, Roberts AG, Kramer DM, Xun L (2005) Formation of soluble organo-chromium (III) complexes after chromate reduction in the presence of cellular organics. Environ Sci Technol 39:2811–2817

    Article  CAS  Google Scholar 

  • Rahman, M. A., Soumya, K. K., Tripathi, A., Sundaram, S., Singh, S., and Gupta, A. (2011). Evaluation and sensitivity of cyanobacteria, Nostoc muscorum and Synechococcus PCC 7942 for heavy metals stress - a step toward biosensor. Toxicological and Environmental Chemistry, 93(10), 1982–1990

    Article  CAS  Google Scholar 

  • Rajendran P, Muthukrishnan J, Gunasekaran P (2002) Current perspective in nickel bioremediation strategies. Indian J Microbiol 42:1–9

    Google Scholar 

  • Rehana, Z, Malik A and Ahmad M (1995). Mutagenic activity of the Ganges water with special reference to pesticide pollution in the River between Kachla to Kannauj (UP). India. Mutat. Res., 343: 137-144.

    Google Scholar 

  • Reungsang, A.; Sittijunda, S.; Sreela-or, C. Methane production from acidic effluent discharged after the hydrogen fermentation of sugarcane juice using batch fermentation and UASB reactor. Renew. Energy 2016, 86, 1224–1231

    Article  CAS  Google Scholar 

  • Robles-Gonzalez IV, Fava F, Poggi-Varaldo HM (2008) A review on slurry bioreactors for bioremediation of soils and sediments. Microb Cell Factor 7(5):1–16

    Google Scholar 

  • Rochelle P.A, Fry J.C and Day M.J (1989) Factors affecting conjugal transfer of plasmids encoding mercury resistance from pure cultures and mixed natural suspensions of epilithelic bacteria. J. Gen. Microbiol. B5: 409-424.

    Google Scholar 

  • Rv, X.M.R. Microorganisms Metabolism during Bioremediation of Oil Contaminated Soils. J. Bioremediat. Biodegrad. 2016, 7, 1–6.

    Google Scholar 

  • S. Rezania, S. M. Taib, M. F. Md Din, F. A. Dahalan, and H. Kamyab, “Comprehensive review on phytotechnology: heavy metals removal by diverse aquatic plants species from wastewater,” Journal of Hazardous Materials, vol. 318, pp. 587–599, 2016.

    Article  CAS  Google Scholar 

  • Saad L. 2009. Water pollution Americans’ top green concern. http://www.gallup.com/poll/117079/waterpollution-americans-top-green-concern.aspx

  • Sag Y, Ozer D, Kustal T (1995) A comparative study of the biosorption of lead (II) ions to Zoogloea ramigera and Rhizopus arrhizus. Process Biochem 30:169–174

    Article  CAS  Google Scholar 

  • Samuel Agarry, Ganiyu K. Latinwo (2015) Biodegradation of diesel oil in soil and its enhancement by application of Bioventing and amendment with brewery waste effluents as Biostimulation-Bioaugmentation agents. Journal of Ecological Engineering 16: 82–91.

    Article  Google Scholar 

  • Saval, S (2003). Bioremediation: Clean-up biotechnologies for soils and aquifers, In: Environmental Biotechnology and Cleaner Bioprocesses. (eds.) Olguin, E. J, Sanchez, G. and Hermandez, E. Taylor and Francis Limited, Philadelphia, 155-166.

    Google Scholar 

  • Shamsuddoha, A. S. M., Bulbul, A., and Huq, S. M. I. (2006). Accumulation of arsenic in green algae and its subsequent transfer to the soil-plant system. Bangladesh Journal of Medical Microbiology, 22(2),148–151.

    Google Scholar 

  • Shannon, M.J. and Unterman, R (1993) Evaluating bioremediation: distinguishing fact from fiction. Annu Rev of Microbiol. 47: 715-738.

    Article  CAS  Google Scholar 

  • Singh, A. and Ward, O. P. (2004) Biotechnology and bioremediation—an overview. Biodegradation and bioremediation, pp.1–17.

    Google Scholar 

  • Singh M, P.K. Srivastava, P.C. Verma, R.N. Kharwar, N. Singh, R.D. Tripathi, Soil fungi for mycoremediation of arsenic pollution in agriculture soils, J. Appl. Microbiol. 119 (2015) 1278–1290.

    Article  CAS  Google Scholar 

  • Singh, P., Singh, V.K., Singh, R., Borthakur, A., Madhav, S., Ahamad, A., Kumar, A., Pal, D.B., Tiwary, D. and Mishra, P.K., 2020. Bioremediation: a sustainable approach for management of environmental contaminants. In Abatement of environmental pollutants (pp. 1-23). Elsevier.

    Book  Google Scholar 

  • Singh, M.; Pant, G.; Hossain, K.; Bhatia, A.K. Green remediation. Tool for safe and sustainable environment: A review. Appl. Water Sci. 2017, 7, 2629–2635. [CrossRef]

    Google Scholar 

  • Singhal, V (2003). Indian agriculture 2003, published by Indian economic data research Centre, New Delhi, 85-93.

    Google Scholar 

  • Smith VH, Graham DW, Cleland DD (1998) Application of resource-ratio theory to hydrocarbon biodegradation. Environ. Sci. and Technol. 32: 3386-3395.

    Google Scholar 

  • Sowerby, A., Emmett, B., Beier, C., Tietema, A., Peñuelas, J., Estiarte, M., Van Meeteren, M.J., Hughes, S. and Freeman, C., 2005. Microbial community changes in heathland soil communities along a geographical gradient: interaction with climate change manipulations. Soil Biology and Biochemistry, 37(10), pp.1805-1813.

    Google Scholar 

  • Tekere, M., Jacob-Lopes, E. and Zepka, L.Q., 2019. Microbial bioremediation and different bioreactors designs applied. In Biotechnology and Bioengineering (pp. 1-19). Rijeka, Croatia: IntechOpen.

    Google Scholar 

  • Theron J and T. E. Cloete, “Emerging waterborne infections: contributing factors, agents, and detection tools,” Critical Reviews in Microbiology, vol. 28, no. 1, pp. 1–26, 2002.

    Article  CAS  Google Scholar 

  • Viswanathan, P.N., 1985. Environmental toxicology in India. Biol. Mem, 11, pp.88-97.

    Google Scholar 

  • Vonshak, A., Cheung, S.M., Chen, F., 2000. Mixotrophic growth modifies the response of Spirulina (Arthrospira) platensis (Cyanobacteria) cells to light. J. Phycol. 36, 675-679.

    Article  CAS  Google Scholar 

  • Wang, C., Yu, X., Lv, H., Yang, J., 2013. Nitrogen and phosphorus removal from municipal wastewater by the green alga chlorella sp. J. Environ. Biol. 34, 421-425.

    Google Scholar 

  • Watanabe K (2001) Microorganisms relevant to bioremediation. Curr Opin Biotech 12:237–241

    CAS  Google Scholar 

  • WHO (2013) World Health Organization and UNICEF, Progress on Sanitation and Drinking-Water, World Health Organization, Geneva, Switzerland, 2013.

    Google Scholar 

  • Wu, J., and Yu, H. Q. (2007). Biosorption of 2,4-dichlorophenol by immobilized white-rot fungus Phanerochaete chrysosporiyum from aqueous solutions. Bioresource Technology, 98(2), 253–259. doi:https://doi.org/10.1016/j.biortech.2006.01.018 PMID:16517157

  • Xue, J.; Yu, Y.; Bai, Y.; Wang, L.; Wu, Y. Marine Oil-Degrading Microorganisms and Biodegradation Process of Petroleum Hydrocarbon in Marine Environments: A Review. Curr. Microbiol. 2015, 71, 220–228.

    Article  CAS  Google Scholar 

  • Zhu, X.; Chen, B.; Zhu, L.; **ng, B. Effects and mechanisms of biochar-microbe interactions in soil improvement and pollution remediation: A review. Environ. Pollut. 2017, 227, 98–115.

    Article  CAS  Google Scholar 

  • Zubairu, A.; Luka, Y.; Highina, B.K. Bioremediation-A solution to environmental pollution-A review. Am. J. Eng. Res. 2018, 7, 101–109.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Raghav, N., Nigam, R., Mathur, S., Singh, D., Ranjan, R. (2022). Microbial Degradation of Wastewater. In: Madhav, S., Singh, P., Mishra, V., Ahmed, S., Mishra, P.K. (eds) Recent Trends in Wastewater Treatment . Springer, Cham. https://doi.org/10.1007/978-3-030-99858-5_7

Download citation

Publish with us

Policies and ethics

Navigation