Towards a Structuralist Elimination of Properties

  • Chapter
  • First Online:
Quantum Mechanics and Fundamentality

Part of the book series: Synthese Library ((SYLI,volume 460))

  • 498 Accesses

Abstract

Scientific realists investigate the ontology of the world and explain the observed phenomena by using our best fundamental physical theories. These theories describe the behavior of fundamental objects in terms of their fundamental properties, which determine their behavior. This paper is the natural companion of another paper in which I propose an alternative to this traditional account of metaphysics, according to which fundamental objects have no other fundamental property than the one needed to specify their nature. In that paper I argue that my view fares better than the traditional metaphysics both in the classical and in the quantum domain. In this paper I compare my view to structuralism. After discussing that my proposal shares many motivations with structuralism, I argue in which ways I think mine is superior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 149.79
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 149.79
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Allori (forthcoming).

  2. 2.

    Lewis (1986).

  3. 3.

    See Albert and Ney (2013), and then most notably Albert (1996, 2015), Lewis (2004, 2005, 2006, 2013), Ney (2012, 2013, 2015, 2017, 2021), North (2013).

  4. 4.

    In one approach, macroscopic objects can be functionally defined in terms of their role (Albert, 2015). In another approach three-dimensional objects exists as derivative when considering symmetry properties as fundamental facts about the world (Ney, 2021).

  5. 5.

    Dürr et al. (1992), Allori et al. (2008), Allori (2013a, b, 2015a, b, 2019a, b) and references therein.

  6. 6.

    Some have argued it is a property of matter (Monton, 2002; Lewis, 2013; Solé, 2013; Esfeld et al., 2014; Suàrez, 2015). Another approach is to take the wavefunction as a law (see Goldstein & Zanghì, 2013; Allori, 2018a, b, and references therein for a discussion), which seems particularly fitting to the Humean account of laws (Esfeld, 2014; Callender, 2015; Miller, 2014; Bhogal & Perry, 2017). For antirealism about the wavefunction see Healey (2012).

  7. 7.

    This view has been defended in Allori (2021b). Another structuralist perspective has also been defended by Lewis (2020), who writes: “the wave function describes the structure instantiated by whatever fundamental entities there may be in ordinary three-dimensional space: particles, fields, flashes, mass density, or something else entirely. A structure is not in itself an object, but rather a way that objects relate to each other.”

  8. 8.

    Allori (forthcoming).

  9. 9.

    For example, in case of a gravitational field, there is one effective law for the ‘electron,’ \( Eff\ {law}_1=\frac{H_1}{r^2} \) , where H 1 = Gm e M, one for the ‘proton,’ \( Eff\ {law}_2=\frac{H_2}{r^2} \) , where H 2 = Gm p M, and one for the ‘neutron,’ \( Eff\ {law}_3=\frac{H_3}{r^2} \) , where H 3 = Gm n M (where G is the gravitational constant, m e, m p, and m n are respectively the mass of the electron, proton and neutron as traditionally intended, while M is the reference mass, and r is the distance between the reference particle and the one under examination). See Allori (forthcoming) for more details.

  10. 10.

    Allori (2018a, b). See also Allori (2015c, 2019b, 2021a) for an argument that electromagnetic fields cannot be thought as fundamental objects otherwise they either would transform at odds with their nature, or we should stop thinking of classical electrodynamics as time-reversal invariant..

  11. 11.

    Dürr et al. (1992).

  12. 12.

    See Esfeld (2014) for a similar argument for his super Humeanism. See also Hall (2015).

  13. 13.

    For more details of this view, its objections and motivations, see Allori (forthcoming).

  14. 14.

    Worrall (1989).

  15. 15.

    Therefore, whenever I write ‘structuralism’ in the rest of the paper, I mean ‘ontic structuralism.’

  16. 16.

    See Ladyman (1998), French and Ladyman (2003), Ladyman and Ross (2007), French (2010, 2014) and references therein.

  17. 17.

    This view is defended most notably defended by Esfeld (2004) and refined in Esfeld and Lam (2008, 2010, 2012).

  18. 18.

    This view is inspired by Heil (2003) and Strawson (2008), who argue that the intrinsic properties of an object are the ways that object can be. See also Armstrong (1989).

  19. 19.

    Esfeld and Lam (2010).

  20. 20.

    French (2014) and references therein. See Saunders (2006), French and Krause (2006), Muller and Saunders (2008), Ladyman and Bigaj (2010) for further discussion.

  21. 21.

    Permutation invariance in many-particle quantum mechanics (Muller, 2009), gauge diffeomorphism invariance in general theory of relativity (Rickles, 2006, Esfeld & Lam, 2008).

  22. 22.

    See Bain (2006, 2009) in the context of the general theory of relativity; however, see Cao (2003), Pooley (2006).

  23. 23.

    For instance, a singlet state of two entangled spin ½ sub-systems is in a definite spin state, namely 0, but neither of the sub-systems has a definite spin state on its own. As such, it is argued that these sub-systems are best understood as relata of the fundamental entanglement relation they stand in, in this case: ‘has opposite spin to.’ For more on this argument, see Esfeld (2004).

  24. 24.

    See Teller (1986) for this argument. For discussion, see for instance Maudlin (2007), Ladyman and Ross (2007), Esfeld (2009), French (2014).

  25. 25.

    Ladyman (1998), French and Ladyman (2003), Esfeld (2004).

  26. 26.

    French (2014), and Esfeld (2014).

  27. 27.

    See for instance Busch (2003), Cao (2003), Chakravartty (2003), Morganti (2004), Psillos (2006).

  28. 28.

    Esfeld and Lam (2008).

  29. 29.

    Esfeld (2004).

  30. 30.

    Chakravartty (2007).

  31. 31.

    Ainsworth (2010).

  32. 32.

    See Castellani (1998) and references therein; see also Muller (2009). See Esfeld and Lam (2010) for criticisms.

  33. 33.

    Psillos (2006).

  34. 34.

    Russell (1912), Ladyman (2008).

  35. 35.

    Esfeld (2009), Esfeld and Sachse (2011), chapter 2.

  36. 36.

    Chakravartty (2004).

  37. 37.

    Allori (2019b).

  38. 38.

    Esfeld and Lam (2010).

References

  • Ainsworth, P. M. (2010). What is ontic structural realism? Studies in History and Philosophy of Modern Physics, 41, 50–57.

    Article  Google Scholar 

  • Albert, D. Z. (1996). Elementary quantum metaphysics. In J. Cushing, A. Fine, & S. Goldstein (Eds.), Bohmian mechanics and quantum theory: An appraisal (pp. 277–284). Kluwer.

    Chapter  Google Scholar 

  • Albert, D. Z. (2015). After physics. Harvard University Press.

    Book  Google Scholar 

  • Albert, D. Z., & Ney, A. (Eds.). (2013). The wave-function: Essays in the metaphysics of quantum mechanics. Oxford University Press.

    Google Scholar 

  • Allori, V. (2013a). On the metaphysics of quantum mechanics. In S. Lebihan (Ed.), Precis de la Philosophie de la Physique. Vuibert.

    Google Scholar 

  • Allori, V. (2013b). Primitive ontology and the structure of fundamental physical theories. In D. Albert & A. Ney (Eds.), The wave-function: Essays in the metaphysics of quantum mechanics (pp. 58–75). Oxford University Press.

    Chapter  Google Scholar 

  • Allori, V. (2015a). Primitive ontology in a nutshell. International Journal of Quantum Foundations, 1(3), 107–122.

    Google Scholar 

  • Allori, V. (2015b). Quantum mechanics and paradigm shifts. Topoi, 32(2), 313–323.

    Article  Google Scholar 

  • Allori, V. (2015c). Maxwell’s paradox: Classical electrodynamics and its time reversal invariance. Analytica, 1, 1–19.

    Google Scholar 

  • Allori, V. (2018a). A new argument for the nomological interpretation of the wave function: The galilean group and the classical limit of nonrelativistic quantum mechanics. International Studies in the Philosophy of Science, 31(2), 177–188.

    Article  Google Scholar 

  • Allori, V. (2018b). Primitive ontology and scientific realism. Or: The pessimistic meta-induction and the nature of the wave function. Lato Sensu: Revue de la Société de Philosophie des Sciences, 5(1), 69–76.

    Article  Google Scholar 

  • Allori, V. (2019a). Scientific realism without the wave-function: An example of naturalized quantum metaphysics. In J. Saatsi & S. French (Eds.), Scientific realism and the quantum. Oxford University Press.

    Google Scholar 

  • Allori, V. (2019b). Quantum mechanics, time and ontology. Studies in History and Philosophy of Modern Physics, 66, 145–154.

    Article  Google Scholar 

  • Allori, V. (2021a). Primitive Beable is not Local Ontology: On the Relation between Primitive Ontology and Local Beables. Crítica5, 3(159), xxx.

    Google Scholar 

  • Allori, V. (2021b). Wave-functionalism. Synthese (2021). https://doi.org/10.1007/s11229-021-03332-z

  • Allori, V. (forthcoming). Fundamental objects without fundamental properties: A thin-object-orientated metaphysics grounded on structure. In D. Aerts, J. Arenhart, C. De Ronde, & G. Sergioli (Eds.), Probing the meaning and structure of quantum mechanics. World Scientific.

    Google Scholar 

  • Allori, V., Goldstein, S., Tumulka, R., & Zanghi, N. (2008). On the common structure of Bohmian mechanics and the Ghirardi-Rimini-Weber theory. The British Journal for the Philosophy of Science, 59(3), 353–389.

    Article  Google Scholar 

  • Armstrong, D. M. (1989). Universals. An opinionated introduction. Westview Press.

    Google Scholar 

  • Bain, J. (2006). Spacetime structuralism. In D. Dieks (Ed.), The ontology of spacetime (pp. 37–66). Elsevier.

    Chapter  Google Scholar 

  • Bain, J. (2009). Motivating structural realist interpretations of spacetime. Manuscript.

    Google Scholar 

  • Bhogal, H., & Perry, Z. (2017). What the Humean should say about entanglement. Noûs, 1, 74–94.

    Article  Google Scholar 

  • Busch, J. (2003). What structures could not be. International Studies in the Philosophy of Science, 17, 211–223.

    Article  Google Scholar 

  • Callender, C. (2015). One world, one beable. Synthese, 192, 3153–3177.

    Article  Google Scholar 

  • Cao, T. Y. (2003). Can we dissolve physical entities into mathematical structure? Synthese, 136, 57–71.

    Article  Google Scholar 

  • Castellani, E. (1998). Galilean particles: An example of constitution of objects. In E. Castellani (Ed.), Interpreting bodies: Classical and quantum objects in modern physics (pp. 181–194). Princeton.

    Google Scholar 

  • Chakravartty, A. (2003). The structuralist conception of objects. Philosophy of Science, 70, 867–878.

    Article  Google Scholar 

  • Chakravartty, A. (2004). Structuralism as a form of scientific realism. International Studies in Philosophy of Science, 18, 151–171.

    Article  Google Scholar 

  • Chakravartty, A. (2007). A metaphysics for scientific realism. Cambridge University Press.

    Book  Google Scholar 

  • Dürr, D., Goldstein, S., & Zanghí, N. (1992). Quantum equilibrium and the origin of absolute uncertainty. Journal of Statistical Physics, 67, 843–907.

    Article  Google Scholar 

  • Esfeld, M. A. (2004). Quantum entanglement and a metaphysics of relations. Studies in History and Philosophy of Modern Physics, 35, 601–617.

    Article  Google Scholar 

  • Esfeld, M. A. (2009). The Modal nature of structures in ontic structural realism. International Studies in the Philosophy of Science, 23, 179–194.

    Article  Google Scholar 

  • Esfeld, M. A. (2014). Quantum humeanism, or: Physicalism without properties. The Philosophical Quarterly, 64, 453–470.

    Article  Google Scholar 

  • Esfeld, M. A., & Lam, V. (2008). Moderate structural realism about space-time. Synthese, 160, 27–46.

    Article  Google Scholar 

  • Esfeld, M. A., & Lam, V. (2010). Ontic structural realism as a metaphysics of objects. In A. Bokulich & P. Bokulich (Eds.), Scientific Structuralism. Springer.

    Google Scholar 

  • Esfeld, M. A., & Lam, V. (2012). The structural metaphysics of quantum theory and general relativity. Journal for General Philosophy of Science, 43(2), 243–258.

    Article  Google Scholar 

  • Esfeld, M. A., & Sachse, C. (2011). Conservative reductionism. Routledge.

    Book  Google Scholar 

  • Esfeld, M. A., Lazarovici, D., Huber, M., & Dürr, D. (2014). The ontology of Bohmian mechanics. The British Journal for the Philosophy of Science, 65, 773–796.

    Article  Google Scholar 

  • French, S. (2010). The interdependence of objects, structure, and dependence. Synthese, 175, 89–109.

    Article  Google Scholar 

  • French, S. (2013). Whither wave function realism? In D. Albert & A. Ney (Eds.), The wave-function: Essays in the metaphysics of quantum mechanics (pp. 76–90). Oxford University Press.

    Chapter  Google Scholar 

  • French, S. (2014). The structure of the world: Metaphysics and representation. Oxford University Press.

    Book  Google Scholar 

  • French, S., & Krause, D. (2006). Identity in physics: A historical, philosophical and formal analysis. Oxford University Press.

    Book  Google Scholar 

  • French, S., & Ladyman, J. (2003). Remodelling structural realism: Quantum physics and the metaphysics of structure. Synthese, 136, 31–56.

    Article  Google Scholar 

  • Goldstein, S., & Zanghì, N. (2013). Reality and the role of the wave-function in quantum theory. In D. Albert & A. Ney (Eds.), The wave-function: Essays in the metaphysics of quantum mechanics (pp. 91–109). Oxford University Press.

    Chapter  Google Scholar 

  • Hall, N. (2015). Humean reductionism about laws of nature. In B. Loewer & J. Schaffer (Eds.), A companion to David Lewis (pp. 262–277). Wiley.

    Chapter  Google Scholar 

  • Healey, R. (2012). Quantum theory: A pragmatist approach. British Journal for the Philosophy of Science, 63(4), 729–771.

    Article  Google Scholar 

  • Heil, J. (2003). From an ontological point of view. Oxford University Press.

    Book  Google Scholar 

  • Ladyman, J. (1998). What is structural realism? Studies in History and Philosophy of Science, 29, 409–424.

    Article  Google Scholar 

  • Ladyman, J. (2008). Structural realism and the relationship between the special sciences and physics. Philosophy of Science, 75, 744–755.

    Article  Google Scholar 

  • Ladyman, J., & Bigaj, T. F. (2010). The principle of the identity of Indiscernibles and quantum mechanics. Philosophy of Science, 77, 117–136.

    Article  Google Scholar 

  • Ladyman, J., & Ross, D. (2007). Everything must go: Metaphysics naturalized. Oxford University Press.

    Book  Google Scholar 

  • Lewis, D. (1986). Philosophical Papers (Vol. II). Oxford University Press.

    Google Scholar 

  • Lewis, P. J. (2004). Life in configuration space. The British Journal for the Philosophy of Science, 55, 713–729.

    Article  Google Scholar 

  • Lewis, P. J. (2005). Interpreting spontaneous collapse theories. Studies in History and Philosophy of Modern Physics, 36, 165–180.

    Article  Google Scholar 

  • Lewis, P. J. (2006). GRW: A case study in quantum ontology. Philosophy Compass, 1, 224–244.

    Article  Google Scholar 

  • Lewis, P. J. (2013). Dimension and Illusion. In D. Albert & A. Ney (Eds.), The Wave-function: Essays in the Metaphysics of Quantum Mechanics (pp. 110–125). Oxford University Press.

    Chapter  Google Scholar 

  • Lewis, P. J. (2020). On closing the circle. In V. Allori, A. Bassi, D. Dürr, N. Zanghì, & N. (Eds.), Do wave functions jump? Perspectives on the work of GianCarlo Ghirardi (pp. 121–132). Springer.

    Google Scholar 

  • Maudlin, T. (2007). The metaphysics within physics. Oxford University Press.

    Book  Google Scholar 

  • Miller, E. (2014). Quantum entanglement, Bohmian mechanics, and Humean supervenience. Australasian Journal of Philosophy, 92, 567–583.

    Article  Google Scholar 

  • Monton, B. (2002). Wave function ontology. Synthese, 130, 265–277.

    Article  Google Scholar 

  • Morganti, M. (2004). On the Preferability of epistemic structural realism. Synthese, 142, 81–107.

    Article  Google Scholar 

  • Muller, F. A. (2009). Withering away, weakly. Synthese, 180(2), 223–233.

    Article  Google Scholar 

  • Muller, F. A., & Saunders, S. (2008). Discerning fermions. British Journal for the Philosophy of Science, 59, 499–548.

    Article  Google Scholar 

  • Ney, A. (2012). The status of our ordinary three-dimensions in a quantum universe. Noûs, 46, 525–560.

    Article  Google Scholar 

  • Ney, A. (2013). Ontological reduction and the wave-function ontology. In D. Albert & A. Ney (Eds.), The wave-function (pp. 168–183). Oxford University Press.

    Chapter  Google Scholar 

  • Ney, A. (2015). Fundamental physical ontologies and the constraint of empirical coherence. Synthese, 192(10), 3105–3124.

    Article  Google Scholar 

  • Ney, A. (2017). Finding the world in the wave-function: Some strategies for solving the macro-object problem. Synthese, 1–23.

    Google Scholar 

  • Ney, A. (2021). Finding the world in the wave function. Oxford University Press.

    Book  Google Scholar 

  • North, J. (2013). The structure of the quantum world. In D. Z. Albert & A. Ney (Eds.), The wave-function: Essays in the metaphysics of quantum mechanics (pp. 184–202). Oxford University Press.

    Chapter  Google Scholar 

  • Pooley, O. (2006). Points, particles, and structural realism. In D. Rickles, S. French, & J. Saatsi (Eds.), The structural foundations of quantum gravity (pp. 83–120). Oxford University Press.

    Chapter  Google Scholar 

  • Psillos, S. (2006). The structure, the whole structure and nothing but the structure. Philosophy of Science, 73, 560–570.

    Article  Google Scholar 

  • Rickles, D. (2006). Time and structure in canonical gravity. In D. Rickles, S. French, & J. Saatsi (Eds.), The structural foundations of quantum gravity (pp. 152–195). Oxford University Press.

    Chapter  Google Scholar 

  • Russell, B. (1912). On the notion of cause. Proceedings of the Aristotelian Society, 13, 1–26.

    Article  Google Scholar 

  • Saunders, S. (2006). Are quantum particles objects? Analysis, 66, 52–63.

    Article  Google Scholar 

  • Solé, A. (2013). Bohmian mechanics without wave function ontology. Studies in History and Philosophy of Modern Physics, 44, 365–378.

    Article  Google Scholar 

  • Strawson, G. (2008). The identity of the categorical and the dispositional. Analysis, 68, 271–282.

    Article  Google Scholar 

  • Suarez, M. (2015). Bohmian dispositions. Synthese, 192(10), 3203–3228.

    Article  Google Scholar 

  • Teller, P. (1986). Relational holism and quantum mechanics. British Journal for the Philosophy of Science, 37, 71–81.

    Article  Google Scholar 

  • Worrall, J. (1989). Structural realism: The best of both worlds? Dialectica, 43, 99–124.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valia Allori .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Allori, V. (2022). Towards a Structuralist Elimination of Properties. In: Allori, V. (eds) Quantum Mechanics and Fundamentality . Synthese Library, vol 460. Springer, Cham. https://doi.org/10.1007/978-3-030-99642-0_10

Download citation

Publish with us

Policies and ethics

Navigation