Atomic Force Microscopy: An Advanced Imaging Technique—From Molecules to Morphologies

  • Chapter
  • First Online:
Microscopic Techniques for the Non-Expert

Abstract

Atomic force microscopy (AFM) is an extensively used advanced characterization technique for a nanoscale range of materials. This chapter clearly describes the importance and advantages of AFM, its working principles, modes of measurement, and its applications in interdisciplinary fields such as chemistry, materials science, and biology.

The authors Jeevan Kumar Reddy Modigunta and Selvamani Vadivel both contribute equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Binning G, Rohrer H, Gerber C, Weibel E (1993) Surface studies by scanning tunneling microscopy. In: Neddermeyer H (ed) Scanning tunneling microscopy. Springer, Dordrecht, pp 31–35. https://doi.org/10.1007/978-94-011-1812-5_1

    Chapter  Google Scholar 

  2. Young R, Ward J, Scire F (1972) The Topografiner: an instrument for measuring surface microtopography. Rev Sci Instrum 43(7):999–1011. https://doi.org/10.1063/1.1685846

    Article  Google Scholar 

  3. Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56(9):930–933. https://doi.org/10.1103/PhysRevLett.56.930

    Article  CAS  PubMed  Google Scholar 

  4. Martin Y, Williams CC, Wickramasinghe HK (1987) Atomic force microscope–force map** and profiling on a sub 100-Å scale. J Appl Phys 61(10):4723–4729. https://doi.org/10.1063/1.338807

    Article  CAS  Google Scholar 

  5. Nguyen-Tri P, Ghassemi P, Carriere P, Nanda S, Assadi AA, Nguyen DD (2020) Recent applications of advanced atomic force microscopy in polymer science: a review. Polymers 12(5). https://doi.org/10.3390/polym12051142

  6. Dazzi A, Prater CB (2017) AFM-IR: technology and applications in nanoscale infrared spectroscopy and chemical imaging. Chem Rev 117(7):5146–5173. https://doi.org/10.1021/acs.chemrev.6b00448

    Article  CAS  PubMed  Google Scholar 

  7. Mousoulis C, Maleki T, Ziaie B, Neu CP (2013) Atomic force microscopy-coupled microcoils for cellular-scale nuclear magnetic resonance spectroscopy. Appl Phys Lett 102(14):143702–143702. https://doi.org/10.1063/1.4801318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lherbette M, dos Santos Á, Hari-Gupta Y, Fili N, Toseland CP, Schaap IAT (2017) Atomic force microscopy micro-rheology reveals large structural inhomogeneities in single cell-nuclei. Sci Rep 7(1):8116. https://doi.org/10.1038/s41598-017-08517-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hobson CM, Kern M, O’Brien ET, Stephens AD, Falvo MR, Superfine R (2020) Correlating nuclear morphology and external force with combined atomic force microscopy and light sheet imaging separates roles of chromatin and lamin A/C in nuclear mechanics. bioRxiv:2020.2002.2010.942581. https://doi.org/10.1101/2020.02.10.942581

  10. Dufrêne YF, Ando T, Garcia R, Alsteens D, Martinez-Martin D, Engel A, Gerber C, Müller DJ (2017) Imaging modes of atomic force microscopy for application in molecular and cell biology. Nat Nanotechnol 12(4):295–307. https://doi.org/10.1038/nnano.2017.45

    Article  CAS  PubMed  Google Scholar 

  11. Maghsoudy-Louyeh S, Kropf M, Tittmann BR (2018) Review of progress in atomic force microscopy. Open Neuroimaging J 12:86–104. https://doi.org/10.2174/1874440001812010086

    Article  Google Scholar 

  12. Kenkel S, Mittal S, Bhargava R (2020) Closed-loop atomic force microscopy-infrared spectroscopic imaging for nanoscale molecular characterization. Nat Commun 11(1):3225. https://doi.org/10.1038/s41467-020-17043-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shao Z, Mou J, Czajkowsky DM, Yang J, Yuan J-Y (1996) Biological atomic force microscopy: what is achieved and what is needed. Adv Phys 45(1):1–86. https://doi.org/10.1080/00018739600101467

    Article  CAS  Google Scholar 

  14. Horcas I, Fernández R, Gómez-Rodríguez JM, Colchero J, Gómez-Herrero J, Baro AM (2007) WSXM: a software for scanning probe microscopy and a tool for nanotechnology. Rev Sci Instrum 78(1):013705. https://doi.org/10.1063/1.2432410

    Article  CAS  PubMed  Google Scholar 

  15. Engel A, Müller DJ (2000) Observing single biomolecules at work with the atomic force microscope. Nat Struct Biol 7(9):715–718. https://doi.org/10.1038/78929

    Article  CAS  PubMed  Google Scholar 

  16. Vesenka J, Manne S, Giberson R, Marsh T, Henderson E (1993) Colloidal gold particles as an incompressible atomic force microscope imaging standard for assessing the compressibility of biomolecules. Biophys J 65(3):992–997. https://doi.org/10.1016/S0006-3495(93)81171-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Stylianou A, Kontomaris S-V, Grant C, Alexandratou E (2019) Atomic force microscopy on biological materials related to pathological conditions. Scanning 2019:8452851. https://doi.org/10.1155/2019/8452851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pyne A, Thompson R, Leung C, Roy D, Hoogenboom BW (2014) Single-molecule reconstruction of oligonucleotide secondary structure by atomic force microscopy. Small 10(16):3257–3261. https://doi.org/10.1002/smll.201400265

    Article  CAS  PubMed  Google Scholar 

  19. Gross L, Mohn F, Moll N, Liljeroth P, Meyer G (2009) The chemical structure of a molecule resolved by atomic force microscopy. Science 325(5944):1110. https://doi.org/10.1126/science.1176210

    Article  CAS  PubMed  Google Scholar 

  20. Schuler B, Meyer G, Peña D, Mullins OC, Gross L (2015) Unraveling the molecular structures of asphaltenes by atomic force microscopy. J Am Chem Soc 137(31):9870–9876. https://doi.org/10.1021/jacs.5b04056

    Article  CAS  PubMed  Google Scholar 

  21. Lang S-Y, Shi Y, Hu X-C, Yan H-J, Wen R, Wan L-J (2019) Recent progress in the application of in situ atomic force microscopy for rechargeable batteries. Curr Opin Electrochem 17:134–142. https://doi.org/10.1016/j.coelec.2019.05.004

    Article  CAS  Google Scholar 

  22. Carvalho FA, Connell S, Miltenberger-Miltenyi G, Pereira SV, Tavares A, Ariëns RAS, Santos NC (2010) Atomic force microscopy-based molecular recognition of a fibrinogen receptor on human erythrocytes. ACS Nano 4(8):4609–4620. https://doi.org/10.1021/nn1009648

    Article  CAS  PubMed  Google Scholar 

  23. Murali G, Rawal J, Modigunta JKR, Park YH, Lee J-H, Lee S-Y, Park S-J, In I (2021) A review on MXenes: new-generation 2D materials for supercapacitors. Sustainab Energy Fuels 5(22):5672–5693. https://doi.org/10.1039/D1SE00918D

  24. Dong R, Yan J, Ma H, Fang Y, Hao J (2011) Dimensional architecture of ferrocenyl-based oligomer honeycomb-patterned films: from monolayer to multilayer. Langmuir 27(14):9052–9056. https://doi.org/10.1021/la201264u

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Radiation Technology R&D program (NRF-2017M2A2A6A01019289), funded by the Ministry of Science, ICT and Future Planning. This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education (2018R1A6A1A03023788 and 2021R1I1A1A01055790). Additionally, this work was supported by the Korea Institute for Advancement of Technology (KIAT) grant funded by the Korean Government (MOTIE) (P00008500, The Competency Development Program for Industry Specialist). This work was supported by the Material Components Global Investment Linkage Technology Development Project (Global Open Technology Development Project) (20013593) of the KEIT, MOTIE (KOREA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeevan Kumar Reddy Modigunta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Modigunta, J.K.R., Vadivel, S., Murali, G., In, I., Sawangphruk, M. (2022). Atomic Force Microscopy: An Advanced Imaging Technique—From Molecules to Morphologies. In: Kamaraj, SK., Thirumurugan, A., Dhanabalan, S.S., Hevia, S.A. (eds) Microscopic Techniques for the Non-Expert. Springer, Cham. https://doi.org/10.1007/978-3-030-99542-3_5

Download citation

Publish with us

Policies and ethics

Navigation