Novel 3D Hierarchical Porous Carbon/Metal Oxides or Carbide Composites

  • Chapter
  • First Online:
Nanostructured Materials for Supercapacitors

Part of the book series: Advances in Material Research and Technology ((AMRT))

  • 905 Accesses

Abstract

The performance of supercapacitors is highly related to the microstructures of electrode materials, such as components, morphology, configurations, etc. In recent years, a kind of three-dimensional (3D) hierarchical porous carbon-based composite has been attracted intensive interest due to its advantages, such as highly porous architecture, high surface area, good electrical conductivity, and high mechanical strength. 3D porous structure facilitates the electrolyte access to the interior of the electrode, and supplies electric ways for the anchored active materials, thereby improving the electric double-layer capacitance and pseudocapacitance. Additionally, the hierarchical porosity with a combination of the macro/meso/micropores be conducive to reducing internal resistance, improving ion diffusion/transport, ion storage, so as to achieve higher rate capabilities. In this chapter, we are concerned with some novel structures of the 3D hierarchical porous carbon/metal oxides or carbide composites together with their preparation methods, properties, and applications. Also, the dare of the 3D hierarchical porous carbon/metal oxides or carbide composites is also proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7, 845–854 (2008)

    Article  CAS  Google Scholar 

  2. Q. Wang, F. Liu, Z. **, X. Qiao, H. Huang, X. Chu, D. **ong, H. Zhang, Y. Liu, W. Yang, Hierarchically divacancy defect building dual-activated porous carbon fibers for high-performance energy-storage devices. Adv. Funct. Mater. 30, 2002580 (2020)

    Article  CAS  Google Scholar 

  3. Z. Yu, L. Tetard, L. Zhai, J. Thomas, Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions, energ. Environ. Sci. 8, 702–730 (2015)

    CAS  Google Scholar 

  4. S. Kumar, G. Saeed, L. Zhu, K.N. Hui, N.H. Kim, J.H. Lee, 0D to 3D carbon-based networks combined with pseudocapacitive electrode material for high energy density supercapacitor: A review. Chem. Eng. J. 403, 126352 (2021)

    Article  CAS  Google Scholar 

  5. L. Sun, Y. Yao, Y. Zhou, L. Li, H. Zhou, M. Guo, S. Liu, C. Feng, Z. Qi, B. Gao, Solvent-free synthesis of N/S-codoped hierarchically porous carbon materials from protic ionic liquids for temperature-resistant, flexible supercapacitors. ACS Sustain. Chem. Eng. 6, 13494–13503 (2018)

    Article  CAS  Google Scholar 

  6. M. Sarno, Chapter 22—Nanotechnology in energy storage: the supercapacitors, in Studies in Surface Science and Catalysis, ed. by A. Basile, G. Centi, M. De Falco, G. Iaquaniello (Elsevier, 2020)

    Google Scholar 

  7. S. Sahoo, C.S. Rout, Facile electrochemical synthesis of porous manganese-cobalt-sulfide based ternary transition metal sulfide nanosheets architectures for high performance energy storage applications. Electrochim. Acta 220, 57–66 (2016)

    Article  CAS  Google Scholar 

  8. M.F. El-Kady, Y. Shao, R.B. Kaner, Graphene for batteries, supercapacitors and beyond. Nat. Rev. Mater. 1, 1–14 (2016)

    Article  CAS  Google Scholar 

  9. L. Sun, Y. Zhou, L. Li, H. Zhou, X. Liu, Q. Zhang, B. Gao, Z. Meng, D. Zhou, Y. Ma, Facile and green synthesis of 3D honeycomb-like N/S-codoped hierarchically porous carbon materials from bio-protic salt for flexible, temperature-resistant supercapacitors. Appl. Surf. Sci. 467–468, 382–390 (2019)

    Article  CAS  Google Scholar 

  10. K. **ao, L.X. Ding, G. Liu, H. Chen, S. Wang, H. Wang, Freestanding, hydrophilic nitrogen-doped carbon foams for highly compressible all solid-state supercapacitors. Adv. Mater. 28, 5997–6002 (2016)

    Article  CAS  Google Scholar 

  11. S. Long, Y. Feng, F. He, J. Zhao, T. Bai, H. Lin, W. Cai, C. Mao, Y. Chen, L. Gan, J. Liu, M. Ye, X. Zeng, M. Long, Biomass-derived, multifunctional and wave-layered carbon aerogels toward wearable pressure sensors, supercapacitors and triboelectric nanogenerators. Nano Energy 85, 105973 (2021)

    Article  CAS  Google Scholar 

  12. T.P. Mofokeng, Z.N. Tetana, K.I. Ozoemena, Defective 3D nitrogen-doped carbon nanotube-carbon fibre networks for high-performance supercapacitor: transformative role of nitrogen-do** from surface-confined to diffusive kinetics. Carbon 169, 312–326 (2020)

    Article  CAS  Google Scholar 

  13. L. Fan, L. Yang, X. Ni, J. Han, R. Guo, C. Zhang, Nitrogen-enriched meso-macroporous carbon fiber network as a binder-free flexible electrode for supercapacitors. Carbon 107, 629–637 (2016)

    Article  CAS  Google Scholar 

  14. J.P. Paraknowitsch, A. Thomas, Do** carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications. Energ. Environ. Sci. 6, 2839 (2013)

    Article  CAS  Google Scholar 

  15. D. Zhu, J. Jiang, D. Sun, X. Qian, Y. Wang, L. Li, Z. Wang, X. Chai, L. Gan, M. Liu, A general strategy to synthesize high-level N-doped porous carbons via Schiff-base chemistry for supercapacitors. J. Mater. Chem. A 6, 12334–12343 (2018)

    Article  CAS  Google Scholar 

  16. X. Ma, G. Ning, Y. Kan, Y. Ma, C. Qi, B. Chen, Y. Li, X. Lan, J. Gao, Synthesis of S-doped mesoporous carbon fibres with ultrahigh S concentration and their application as high performance electrodes in supercapacitors. Electrochim. Acta 150, 108–113 (2014)

    Article  CAS  Google Scholar 

  17. L. Sun, H. Zhou, L. Li, Y. Yao, H. Qu, C. Zhang, S. Liu, Y. Zhou, Double soft-template synthesis of nitrogen/sulfur-codoped hierarchically porous carbon materials derived from protic ionic liquid for supercapacitor. ACS Appl. Mater. Interfaces 9, 26088–26095 (2017)

    Article  CAS  Google Scholar 

  18. L. Li, Y. Zhou, H. Zhou, H. Qu, C. Zhang, M. Guo, X. Liu, Q. Zhang, B. Gao, N/P codoped porous carbon/one-dimensional hollow tubular carbon heterojunction from biomass inherent structure for supercapacitors. ACS Sustain. Chem. Eng. 7, 1337–1346 (2018)

    Article  CAS  Google Scholar 

  19. L. Shen, J. Wang, G. Xu, H. Li, H. Dou, X. Zhang, NiCo2S4 nanosheets grown on nitrogen-doped carbon foams as an advanced electrode for supercapacitors. Adv. Energy Mater. 5, 1400977 (2015)

    Article  CAS  Google Scholar 

  20. Y. Yue, N. Liu, Y. Ma, S. Wang, W. Liu, C. Luo, H. Zhang, F. Cheng, J. Rao, X. Hu, J. Su, Y. Gao, Highly Self-healable 3D microsupercapacitor with MXene-graphene composite aerogel. ACS Nano 12, 4224–4232 (2018)

    Article  CAS  Google Scholar 

  21. S. Yang, X. Song, P. Zhang, L. Gao, Crumpled nitrogen-doped graphene-ultrafine Mn3O4 nanohybrids and their application in supercapacitors. J. Mater. Chem. A 1, 14162 (2013)

    Article  CAS  Google Scholar 

  22. L. Ma, G. Sun, J. Ran, S. Lv, X. Shen, H. Tong, One-pot template-free strategy toward 3D hierarchical porous nitrogen-doped carbon framework in situ armored homogeneous NiO nanoparticles for high-performance asymmetric supercapacitors. ACS Appl. Mater. Interfaces 10, 22278–22290 (2018)

    Article  CAS  Google Scholar 

  23. R. **e, H. Huang, X. Qi, G. Wei, Significant enhancement of the electrochemical performance of hierarchical Co3O4 electrodes for supercapacitors via architecture design and training activation. J. Energy Storage 35, 102258 (2021)

    Article  Google Scholar 

  24. L. Sun, G. Song, Y. Sun, Q. Fu, C. Pan, One-step construction of 3D N/P-codoped hierarchically porous carbon framework in-situ armored Mn3O4 nanoparticles for high-performance flexible supercapacitors. Electrochim. Acta 333, 135496 (2020)

    Article  CAS  Google Scholar 

  25. G. Zhao, C. Chen, D. Yu, L. Sun, C. Yang, H. Zhang, Y. Sun, F. Besenbacher, M. Yu, One-step production of O-N-S co-doped three-dimensional hierarchical porous carbons for high-performance supercapacitors. Nano Energy 47, 547–555 (2018)

    Article  CAS  Google Scholar 

  26. H. Jia, Z. Wang, C. Li, X. Si, X. Zheng, Y. Cai, J. Lin, H. Liang, J. Qi, J. Cao, J. Feng, W. Fei, Designing oxygen bonding between reduced graphene oxide and multishelled Mn3O4 hollow spheres for enhanced performance of supercapacitors. J. Mater. Chem. A 7, 6686–6694 (2019)

    Article  CAS  Google Scholar 

  27. D. Hulicova-Jurcakova, A.M. Puziy, O.I. Poddubnaya, F. Suarez-Garcia, J.M.D. Tascon, G.Q. Lu, Highly stable performance of supercapacitors from phosphorus-enriched carbons. J. Am. Chem. Soc. 131, 5026–5027 (2009)

    Article  CAS  Google Scholar 

  28. H.-P. Feng, L. Tang, G.-M. Zeng, J. Tang, Y.-C. Deng, M. Yan, Y.-N. Liu, Y.-Y. Zhou, X.-Y. Ren, S. Chen, Carbon-based core-shell nanostructured materials for electrochemical energy storage. J. Mater. Chem. A 6, 7310–7337 (2018)

    Article  CAS  Google Scholar 

  29. L. Sun, Q. Fu, C. Pan, Mn3O4 embedded 3D multi-heteroatom codoped carbon sheets/carbon foams composites for high-performance flexible supercapacitors. J. Alloys Comp. 849, 156666 (2020)

    Article  CAS  Google Scholar 

  30. Y. Wang, N. **ao, Z. Wang, Y. Tang, H. Li, M. Yu, C. Liu, Y. Zhou, J. Qiu, Ultrastable and high-capacity carbon nanofiber anodes derived from pitch/polyacrylonitrile for flexible sodium-ion batteries. Carbon 135, 187–194 (2018)

    Article  CAS  Google Scholar 

  31. X. Wang, F. Wan, L. Zhang, Z. Zhao, Z. Niu, J. Chen, Large-area reduced graphene oxide composite films for flexible asymmetric sandwich and microsized supercapacitors. Adv. Funct. Mater. 28, 1707247 (2018)

    Article  CAS  Google Scholar 

  32. W. Li, X. Xu, C. Liu, M.C. Tekell, J. Ning, J. Guo, J. Zhang, D. Fan, Ultralight and binder-free all-solid-state flexible supercapacitors for powering wearable strain sensors. Adv. Funct. Mater. 27, 1702738 (2017)

    Article  CAS  Google Scholar 

  33. F. Lai, J. Feng, R. Yan, G.-C. Wang, M. Antonietti, M. Oschatz, Breaking the limits of ionic liquid-based supercapacitors: mesoporous carbon electrodes functionalized with manganese oxide nanosplotches for dense, stable, and wide-temperature energy storage. Adv. Funct. Mater. 28, 1801298 (2018)

    Article  CAS  Google Scholar 

  34. F. Bu, M.M. Zagho, Y. Ibrahim, B. Ma, A. Elzatahry, D. Zhao, Porous MXenes: Synthesis, structures, and applications. Nano Today 30, 100803 (2020)

    Article  CAS  Google Scholar 

  35. X. Zhang, X. Liu, S. Dong, J. Yang, Y. Liu, Template-free synthesized 3D macroporous MXene with superior performance for supercapacitors. Appl. Mater. Today 16, 315–321 (2019)

    Article  CAS  Google Scholar 

  36. L. Sun, G. Song, Y. Sun, Q. Fu, C. Pan, MXene/N-doped carbon foam with three-dimensional hollow neuron-like architecture for freestanding, highly compressible all solid-state supercapacitors. ACS Appl. Mater. Interfaces 12, 44777–44788 (2020)

    Article  CAS  Google Scholar 

  37. X. Lu, M. Yu, G. Wang, Y. Tong, Y. Li, Flexible solid-state supercapacitors: design, fabrication and applications. Energ. Environ. Sci. 7, 2160 (2014)

    Article  Google Scholar 

  38. L. Shen, X. Zhou, X. Zhang, Y. Zhang, Y. Liu, W. Wang, W. Si, X. Dong, Carbon-intercalated Ti3C2Tx MXene for high-performance electrochemical energy storage. J. Mater. Chem. A 6, 23513–23520 (2018)

    Article  CAS  Google Scholar 

  39. A.E. Allah, J. Wang, Y.V. Kaneti, T. Li, A.A. Farghali, M.H. Khedr, A.K. Nanjundan, B. Ding, H. Dou, X. Zhang, B. Yoshio, Y. Yamauchi, Auto-programmed heteroarchitecturing: Self-assembling ordered mesoporous carbon between two-dimensional Ti3C2Tx MXene layers. Nano Energy 65, 103991 (2019)

    Article  CAS  Google Scholar 

  40. L. Sun, Q. Fu, C. Pan, Hierarchical porous “skin/skeleton"-like MXene/biomass derived carbon fibers heterostructure for self-supporting, flexible all solid-state supercapacitors. J. Hazard. Mater. 410, 124565 (2021)

    Article  CAS  Google Scholar 

  41. K. Wang, B. Zheng, M. Mackinder, N. Baule, H. Qiao, H. **, T. Schuelke, Q.H. Fan, Graphene wrapped MXene via plasma exfoliation for all-solid-state flexible supercapacitors. Energy Storage Mater. 20, 299–306 (2019)

    Article  Google Scholar 

  42. Q. Yang, Z. Xu, B. Fang, T. Huang, S. Cai, H. Chen, Y. Liu, K. Gopalsamy, W. Gao, C. Gao, MXene/graphene hybrid fibers for high performance flexible supercapacitors. J. Mater. Chem. A 5, 22113–22119 (2017)

    Article  CAS  Google Scholar 

  43. A.M. Navarro-Suárez, K.L. Van Aken, T. Mathis, T. Makaryan, J. Yan, J. Carretero-González, T. Rojo, Y. Gogotsi, Development of asymmetric supercapacitors with titanium carbide-reduced graphene oxide couples as electrodes. Electrochim. Acta 259, 752–761 (2018)

    Article  CAS  Google Scholar 

  44. K. Krishnamoorthy, P. Pazhamalai, S. Sahoo, S.-J. Kim, Titanium carbide sheet based high performance wire type solid state supercapacitors. J. Mater. Chem. A 5, 5726–5736 (2017)

    Article  CAS  Google Scholar 

  45. W. Liu, Z. Wang, Y. Su, Q. Li, Z. Zhao, F. Geng, Molecularly Stacking manganese dioxide/titanium carbide sheets to produce highly flexible and conductive film electrodes with improved pseudocapacitive performances. Adv. Energy Mater. 7, 1602834 (2017)

    Article  CAS  Google Scholar 

  46. X. Wang, Q. Fu, J. Wen, X. Ma, C. Zhu, X. Zhang, D. Qi, 3D Ti3C2Tx aerogels with enhanced surface area for high performance supercapacitors. Nanoscale 10, 20828–20835 (2018)

    Article  CAS  Google Scholar 

  47. C. **ong, B. Li, X. Lin, H. Liu, Y. Xu, J. Mao, C. Duan, T. Li, Y. Ni, The recent progress on three-dimensional porous graphene-based hybrid structure for supercapacitor. Compos. B. Eng. 165, 10–46 (2019)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunxu Pan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sun, L., Pan, C. (2022). Novel 3D Hierarchical Porous Carbon/Metal Oxides or Carbide Composites. In: Thomas, S., Gueye, A.B., Gupta, R.K. (eds) Nanostructured Materials for Supercapacitors. Advances in Material Research and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-99302-3_14

Download citation

Publish with us

Policies and ethics

Navigation