Artificial Intelligence for the Design of Symmetric Cryptographic Primitives

  • Chapter
  • First Online:
Security and Artificial Intelligence

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13049))

Abstract

This chapter provides a general overview of AI methods used to support the design of cryptographic primitives and protocols. After giving a brief introduction to the basic concepts underlying the field of cryptography, we review the most researched use cases concerning the use of AI techniques and models to design cryptographic primitives, focusing mainly on Boolean functions, S-boxes and pseudorandom number generators. We then point out two interesting directions for further research on the design of cryptographic primitives where AI methods could be applied in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Personal communication.

References

  1. Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography by cellular automata or how fast can complexity emerge in nature? In: Proceedings of ICS 2010, pp. 1–19 (2010)

    Google Scholar 

  2. Bäck, T.: Evolutionary Algorithms in Theory and Practice - Evolution Strategies, Evolutionary Programming, Genetic Algorithms. Oxford University Press, Oxford (1996)

    Book  Google Scholar 

  3. Bassham III, L.E., et al.: Sp 800–22 rev. 1a. a statistical test suite for random and pseudorandom number generators for cryptographic applications. National Institute of Standards & Technology (2010)

    Google Scholar 

  4. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: The Keccak reference, January 2011. http://keccak.noekeon.org/

  5. Burnett, L., Carter, G., Dawson, E., Millan, W.: Efficient methods for generating MARS-like S-boxes. In: Goos, G., Hartmanis, J., van Leeuwen, J., Schneier, B. (eds.) FSE 2000. LNCS, vol. 1978, pp. 300–313. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44706-7_21

    Chapter  Google Scholar 

  6. Carlet, C.: Boolean Functions for Cryptography and Coding Theory. Cambridge University Press, Cambridge (2021)

    MATH  Google Scholar 

  7. Castro, J.C.H., Viñuela, P.I., del Arco-Calderón, C.L.: Finding efficient nonlinear functions by means of genetic programming. In: Palade, V., Howlett, R.J., Jain, L. (eds.) KES 2003. LNCS (LNAI), vol. 2773, pp. 1192–1198. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45224-9_161

    Chapter  Google Scholar 

  8. Castro, J.C.H., Seznec, A., Isasi, P.: On the design of state-of-the-art pseudorandom number generators by means of genetic programming. In: IEEE Congress on Evolutionary Computation, pp. 1510–1516. IEEE (2004)

    Google Scholar 

  9. Castro, J.C.H., Viñuela, P.I.: New results on the genetic cryptanalysis of TEA and reduced-round versions of XTEA. New Gener. Comput. 23(3), 233–243 (2005)

    Article  Google Scholar 

  10. Chopard, B., Tomassini, M.: An Introduction to Metaheuristics for Optimization. Natural Computing Series. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-319-93073-2

  11. Clark, J.A., Jacob, J.L.: Two-stage optimisation in the design of boolean functions. In: Dawson, E.P., Clark, A., Boyd, C. (eds.) ACISP 2000. LNCS, vol. 1841, pp. 242–254. Springer, Heidelberg (2000). https://doi.org/10.1007/10718964_20

    Chapter  Google Scholar 

  12. Clark, J.A., Jacob, J.L., Maitra, S., Stanica, P.: Almost boolean functions: the design of boolean functions by spectral inversion. Comput. Intell. 20(3), 450–462 (2004)

    Article  MathSciNet  Google Scholar 

  13. Clark, J.A., Jacob, J.L., Stepney, S.: The design of s-boxes by simulated annealing. New Gener. Comput. 23(3), 219–231 (2005)

    Article  Google Scholar 

  14. Clark, J.A., Jacob, J.L., Stepney, S., Maitra, S., Millan, W.: Evolving boolean functions satisfying multiple criteria. In: Menezes, A., Sarkar, P. (eds.) INDOCRYPT 2002. LNCS, vol. 2551, pp. 246–259. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36231-2_20

    Chapter  Google Scholar 

  15. Daemen, J., Govaerts, R., Vandewalle, J.: Invertible shift-invariant transformations on binary arrays. Appl. Math. Comput. 62(2), 259–277 (1994)

    MathSciNet  MATH  Google Scholar 

  16. Daemen, J., Hoffert, S., Assche, G.V., Keer, R.V.: The design of Xoodoo and Xoofff. IACR Trans. Symmetric Cryptol. 2018(4), 1–38 (2018)

    Article  Google Scholar 

  17. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Natural Computing Series, 2nd edn. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-44874-8

    Book  MATH  Google Scholar 

  18. Formenti, E., Imai, K., Martin, B., Yunès, J.-B.: Advances on random sequence generation by uniform cellular automata. In: Calude, C.S., Freivalds, R., Kazuo, I. (eds.) Computing with New Resources. LNCS, vol. 8808, pp. 56–70. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13350-8_5

    Chapter  Google Scholar 

  19. Fuller, J., Millan, W., Dawson, E.: Multi-objective optimisation of bijective S-boxes. In: Proceedings of CEC 2004, pp. 1525–1532 (2004)

    Google Scholar 

  20. Ghoshal, A., Sadhukhan, R., Patranabis, S., Datta, N., Picek, S., Mukhopadhyay, D.: Lightweight and side-channel secure 4 \(\times \) 4 S-boxes from cellular automata rules. IACR Trans. Symmetric Cryptol. 2018(3), 311–334 (2018)

    Article  Google Scholar 

  21. Gohr, A.: Improving attacks on round-reduced speck32/64 using deep learning. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 150–179. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7_6

    Chapter  Google Scholar 

  22. Hrbacek, R., Dvorak, V.: Bent function synthesis by means of cartesian genetic programming. In: Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds.) PPSN 2014. LNCS, vol. 8672, pp. 414–423. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10762-2_41

    Chapter  Google Scholar 

  23. Ilachinski, A.: Cellular Automata: A Discrete Universe. World Scientific Publishing Co. Inc. (2001)

    Google Scholar 

  24. Ivanov, G., Nikolov, N., Nikova, S.: Reversed genetic algorithms for generation of bijective s-boxes with good cryptographic properties. Cryptogr. Commun. 8(2), 247–276 (2016). https://doi.org/10.1007/s12095-015-0170-5

    Article  MathSciNet  MATH  Google Scholar 

  25. Jakobovic, D., Picek, S., Martins, M.S.R., Wagner, M.: A characterisation of S-box fitness landscapes in cryptography. In: Auger, A., Stützle, T. (eds.) Proceedings of GECCO 2019, pp. 285–293. ACM (2019)

    Google Scholar 

  26. Kari, J.: Basic concepts of cellular automata. In: Rozenberg, G., Bäck, T., Kok, J.N. (eds.) Handbook of Natural Computing, pp. 3–24. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-540-92910-9_1

    Chapter  Google Scholar 

  27. Katz, J., Lindell, Y.: Introduction to Modern Cryptography, 2nd edn. CRC Press, Boca Raton (2014)

    Book  Google Scholar 

  28. Koza, J.R.: Evolving a computer program to generate random numbers using the genetic programming paradigm. In: ICGA, pp. 37–44. Morgan Kaufmann (1991)

    Google Scholar 

  29. Krawec, W., Picek, S., Jakobovic, D.: Evolutionary algorithms for the design of quantum protocols. In: Kaufmann, P., Castillo, P.A. (eds.) EvoApplications 2019. LNCS, vol. 11454, pp. 220–236. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-16692-2_15

    Chapter  Google Scholar 

  30. Lamenca-Martinez, C., Hernandez-Castro, J.C., Estevez-Tapiador, J.M., Ribagorda, A.: Lamar: a new pseudorandom number generator evolved by means of genetic programming. In: Runarsson, T.P., Beyer, H.-G., Burke, E., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 850–859. Springer, Heidelberg (2006). https://doi.org/10.1007/11844297_86

    Chapter  Google Scholar 

  31. Leporati, A., Mariot, L.: Cryptographic properties of bipermutive cellular automata rules. J. Cell. Autom. 9(5–6), 437–475 (2014)

    MathSciNet  MATH  Google Scholar 

  32. Manzoni, L., Mariot, L.: Cellular automata pseudo-random number generators and their resistance to asynchrony. In: Mauri, G., El Yacoubi, S., Dennunzio, A., Nishinari, K., Manzoni, L. (eds.) ACRI 2018. LNCS, vol. 11115, pp. 428–437. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99813-8_39

    Chapter  Google Scholar 

  33. Manzoni, L., Mariot, L., Tuba, E.: Balanced crossover operators in genetic algorithms. Swarm Evol. Comput. 54, 100646 (2020)

    Article  Google Scholar 

  34. Mariot, L., Jakobovic, D., Leporati, A., Picek, S.: Hyper-bent boolean functions and evolutionary algorithms. In: Sekanina, L., Hu, T., Lourenço, N., Richter, H., García-Sánchez, P. (eds.) EuroGP 2019. LNCS, vol. 11451, pp. 262–277. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-16670-0_17

    Chapter  Google Scholar 

  35. Mariot, L., Leporati, A.: Sharing secrets by computing preimages of bipermutive cellular automata. In: Wąs, J., Sirakoulis, G.C., Bandini, S. (eds.) ACRI 2014. LNCS, vol. 8751, pp. 417–426. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11520-7_43

    Chapter  MATH  Google Scholar 

  36. Mariot, L., Leporati, A.: A genetic algorithm for evolving plateaued cryptographic boolean functions. In: Dediu, A.-H., Magdalena, L., Martín-Vide, C. (eds.) TPNC 2015. LNCS, vol. 9477, pp. 33–45. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26841-5_3

    Chapter  MATH  Google Scholar 

  37. Mariot, L., Leporati, A.: Heuristic search by particle swarm optimization of boolean functions for cryptographic applications. In: Silva, S., Esparcia-Alcázar, A.I. (eds.) Companion Proceedings of GECCO 2015, pp. 1425–1426. ACM (2015)

    Google Scholar 

  38. Mariot, L., Picek, S., Jakobovic, D., Leporati, A.: Evolutionary search of binary orthogonal arrays. In: Auger, A., Fonseca, C.M., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds.) PPSN 2018. LNCS, vol. 11101, pp. 121–133. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99253-2_10

    Chapter  Google Scholar 

  39. Mariot, L., Picek, S., Leporati, A., Jakobovic, D.: Cellular automata based s-boxes. Cryptogr. Commun. 11(1), 41–62 (2019)

    Article  MathSciNet  Google Scholar 

  40. Marsaglia, G.: The marsaglia random number CDROM including the diehard battery of tests of randomness (2008). http://www.stat.fsu.edu/pub/diehard/

  41. Martin, B.: A Walsh exploration of elementary CA rules. J. Cell. Autom. 3(2), 145–156 (2008)

    MathSciNet  MATH  Google Scholar 

  42. Meier, W., Staffelbach, O.: Analysis of pseudo random sequences generated by cellular automata. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 186–199. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-46416-6_17

    Chapter  Google Scholar 

  43. Millan, W., Burnett, L., Carter, G., Clark, A., Dawson, E.: Evolutionary heuristics for finding cryptographically strong S-boxes. In: Varadharajan, V., Mu, Y. (eds.) ICICS 1999. LNCS, vol. 1726, pp. 263–274. Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-540-47942-0_22

    Chapter  Google Scholar 

  44. Millan, W., Clark, A., Dawson, E.: An effective genetic algorithm for finding highly nonlinear boolean functions. In: Han, Y., Okamoto, T., Qing, S. (eds.) ICICS 1997. LNCS, vol. 1334, pp. 149–158. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0028471

    Chapter  Google Scholar 

  45. Millan, W., Clark, A., Dawson, E.: Heuristic design of cryptographically strong balanced Boolean functions. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 489–499. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054148

    Chapter  Google Scholar 

  46. Picek, S., Carlet, C., Jakobovic, D., Miller, J.F., Batina, L.: Correlation immunity of boolean functions: an evolutionary algorithms perspective. In: Proceedings of GECCO 2015, pp. 1095–1102 (2015)

    Google Scholar 

  47. Picek, S., Cupic, M., Rotim, L.: A new cost function for evolution of S-boxes. Evol. Comput. 24(4), 695–718 (2016)

    Article  Google Scholar 

  48. Picek, S., Guilley, S., Carlet, C., Jakobovic, D., Miller, J.F.: Evolutionary approach for finding correlation immune boolean functions of order t with minimal hamming weight. In: Dediu, A.-H., Magdalena, L., Martín-Vide, C. (eds.) TPNC 2015. LNCS, vol. 9477, pp. 71–82. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26841-5_6

    Chapter  Google Scholar 

  49. Picek, S., Jakobovic, D.: Evolving algebraic constructions for designing bent boolean functions. In: Friedrich, T., Neumann, F., Sutton, A.M. (eds.) Proceedings of GECCO 2016, pp. 781–788. ACM (2016)

    Google Scholar 

  50. Picek, S., Jakobovic, D., Golub, M.: Evolving cryptographically sound boolean functions. In: Blum, C., Alba, E. (eds.) Companion Proceedings of GECCO 2013, pp. 191–192. ACM (2013)

    Google Scholar 

  51. Picek, S., Jakobovic, D., Miller, J.F., Batina, L., Cupic, M.: Cryptographic boolean functions: one output, many design criteria. Appl. Soft Comput. 40, 635–653 (2016)

    Article  Google Scholar 

  52. Picek, S., Knezevic, K., Jakobovic, D., Derek, A.: C\({}^{\text{3}}\)po: cipher construction with cartesian genetic programming. In: López-Ibáñez, M., Auger, A., Stützle, T. (eds.) Companion Proceedings of GECCO 2019, pp. 1625–1633. ACM (2019)

    Google Scholar 

  53. Picek, S., Knezevic, K., Mariot, L., Jakobovic, D., Leporati, A.: Evolving bent quaternary functions. In: 2018 IEEE Congress on Evolutionary Computation, CEC 2018, Rio de Janeiro, Brazil, 8–13 July 2018, pp. 1–8. IEEE (2018)

    Google Scholar 

  54. Picek, S., Marchiori, E., Batina, L., Jakobovic, D.: Combining evolutionary computation and algebraic constructions to find cryptography-relevant boolean functions. In: Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds.) PPSN 2014. LNCS, vol. 8672, pp. 822–831. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10762-2_81

    Chapter  Google Scholar 

  55. Picek, S., Mariot, L., Leporati, A., Jakobovic, D.: Evolving S-boxes based on cellular automata with genetic programming. In: Bosman, P.A.N. (ed.) Companion Proceedings of GECCO 2017, pp. 251–252. ACM (2017)

    Google Scholar 

  56. Picek, S., Mariot, L., Yang, B., Jakobovic, D., Mentens, N.: Design of S-boxes defined with cellular automata rules. In: Proceedings of CF 2017, pp. 409–414. ACM (2017)

    Google Scholar 

  57. Picek, S., Miller, J.F., Jakobovic, D., Batina, L.: Cartesian genetic programming approach for generating substitution boxes of different sizes. In: Companion Proceedings of GECCO 2015, pp. 1457–1458 (2015)

    Google Scholar 

  58. Picek, S., Sisejkovic, D., Rozic, V., Yang, B., Jakobovic, D., Mentens, N.: Evolving cryptographic pseudorandom number generators. In: Handl, J., Hart, E., Lewis, P.R., López-Ibáñez, M., Ochoa, G., Paechter, B. (eds.) PPSN 2016. LNCS, vol. 9921, pp. 613–622. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45823-6_57

    Chapter  Google Scholar 

  59. Picek, S., et al.: PRNGs for masking applications and their map** to evolvable hardware. In: Lemke-Rust, K., Tunstall, M. (eds.) CARDIS 2016. LNCS, vol. 10146, pp. 209–227. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54669-8_13

    Chapter  Google Scholar 

  60. Saber, Z., Uddin, M.F., Youssef, A.M.: On the existence of (9, 3, 5, 240) resilient functions. IEEE Trans. Inf. Theory 52(5), 2269–2270 (2006)

    Article  MathSciNet  Google Scholar 

  61. Seredynski, F., Bouvry, P., Zomaya, A.Y.: Cellular automata computations and secret key cryptography. Parallel Comput. 30(5–6), 753–766 (2004)

    Article  MathSciNet  Google Scholar 

  62. Shannon, C.E.: Communication theory of secrecy systems. Bell Syst. Tech. J. 28(4), 656–715 (1949)

    Article  MathSciNet  Google Scholar 

  63. Sipper, M., Tomassini, M.: Generating parallel random number generators by cellular programming. Int. J. Mod. Phys. C 7(02), 181–190 (1996)

    Article  Google Scholar 

  64. Stinson, D.R., Paterson, M.: Cryptography: Theory and Practice. CRC Press, Boca Raton (2018)

    Book  Google Scholar 

  65. Szaban, M., Seredynski, F.: Cryptographically strong S-boxes based on cellular automata. In: Umeo, H., Morishita, S., Nishinari, K., Komatsuzaki, T., Bandini, S. (eds.) ACRI 2008. LNCS, vol. 5191, pp. 478–485. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79992-4_62

    Chapter  MATH  Google Scholar 

  66. Tomassini, M., Perrenoud, M.: Cryptography with cellular automata. Appl. Soft Comput. 1(2), 151–160 (2001)

    Article  Google Scholar 

  67. Wolfram, S.: Cryptography with cellular automata. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 429–432. Springer, Heidelberg (1986). https://doi.org/10.1007/3-540-39799-X_32

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Mariot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mariot, L., Jakobovic, D., Bäck, T., Hernandez-Castro, J. (2022). Artificial Intelligence for the Design of Symmetric Cryptographic Primitives. In: Batina, L., Bäck, T., Buhan, I., Picek, S. (eds) Security and Artificial Intelligence. Lecture Notes in Computer Science, vol 13049. Springer, Cham. https://doi.org/10.1007/978-3-030-98795-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-98795-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-98794-7

  • Online ISBN: 978-3-030-98795-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation