Adaptation to Disturbance

  • Chapter
  • First Online:
Disturbance Ecology

Abstract

Plants began to colonize land more than 400 million years ago. Since then, they have been exposed to fire, wind, drought, frost, floods, herbivores, and other disturbances – sometimes simultaneously – and have developed a variety of strategies to reproduce despite their exposure to these disturbances. The length of the evolutionary period available for such adaptations has been long. Accordingly, the adaptations that have been developed are complex and diverse. On the other hand, recent studies have shown that plants can also adapt very quickly to new disturbance regimes. The adaptation potentials of organisms and biotic communities available in ecosystems represent an important basis for their future development in times of global change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Thailand)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 42.79
Price includes VAT (Thailand)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 49.99
Price excludes VAT (Thailand)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 74.99
Price excludes VAT (Thailand)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adler FR, Karban R (1994) Defended fortresses or moving targets? Another model of inducible defenses inspired by military metaphors. Am Nat 144:813–832

    Article  Google Scholar 

  • Agrawal AA (2002) Herbivory and maternal effects: mechanisms and consequences of transgenerational induced plant resistance. Ecology 83:3408–3415

    Article  Google Scholar 

  • Agrawal AA (2007) Macroevolution of plant defense strategies. Trends Ecol Evol 22:103–109

    Article  PubMed  Google Scholar 

  • Agrawal AA, Hastings AP, Johnson MTJ, Maron JL, Salminen J-P (2012) Insect herbivores drive real-time ecological and evolutionary change in plant populations. Science 338:113–116

    Article  CAS  PubMed  Google Scholar 

  • Amo L, Jansen JJ, Dam NM, Dicke M, Visser ME (2013) Birds exploit herbivore-induced plant volatiles to locate herbivorous prey. Ecol Lett 16:1348–1355

    Article  PubMed  Google Scholar 

  • Atkinson NJ, Urwin PE (2012) The interaction of plant biotic and abiotic stresses: from genes to the field. J Exp Bot 63:3523–3543

    Article  CAS  PubMed  Google Scholar 

  • Babikova Z, Gilbert L, Bruce TJ, Birkett M, Caulfield JC, Woodcock C, Pickett JA, Johnson D (2013) Underground signals carried through common mycelial networks warn neighbouring plants of aphid attack. Ecol Lett 16:835–843

    Article  PubMed  Google Scholar 

  • Ballaré CL (2011) Jasmonate-induced defenses: a tale of intelligence, collaborators and rascals. Trends Plant Sci 16:249–257

    Article  PubMed  Google Scholar 

  • Bellingham PJ, Sparrow AD (2000) Resprouting as a life history strategy in woody plant communities. Oikos 89:409–416

    Google Scholar 

  • Blodner C, Skroppa T, Johnsen O, Polle A (2005) Freezing tolerance in two Norway spruce (Picea abies L. karst.) progenies is physiologically correlated with drought tolerance. J Plant Physiol 162:549–558

    Article  PubMed  Google Scholar 

  • Blom CWPM (1999) Adaptations to flooding stress: from plant community to molecule. Plant Biol 1:261–273

    Article  CAS  Google Scholar 

  • Bond WJ, Keeley JE (2005) Fire as a global ‘herbivore’: the ecology and evolution of flammable ecosystems. Trends Ecol Evol 20:387–394

    Article  PubMed  Google Scholar 

  • Bond WJ, Midgley JJ (2001) Ecology of sprouting in woody plants: the persistence niche. Trends Ecol Evol 16:45–51

    Google Scholar 

  • Bruce TJ (2014) Interplay between insects and plants: dynamic and complex interactions that have coevolved over millions of years but act in milliseconds. J Exp Bot 66:455–465

    Article  PubMed  Google Scholar 

  • Bruessow F, Gouhier-Darimont C, Buchala A, Metraux JP, Reymond P (2010) Insect eggs suppress plant defence against chewing herbivores. Plant J 62:876–885

    Article  CAS  PubMed  Google Scholar 

  • Butler DW, Gleason SM, Davidson I, Onoda Y, Westoby M (2011) Safety and streamlining of woody shoots in wind: an empirical study across 39 species in tropical Australia. New Phytol 193:137–149

    Article  PubMed  Google Scholar 

  • Campbell SA (2015) Ecological mechanisms for the coevolution of mating systems and defence. New Phytol 205:1047–1053

    Article  PubMed  Google Scholar 

  • Carmona D, Fornoni J (2013) Herbivores can select for mixed defensive strategies in plants. New Phytol 197:576–585

    Article  PubMed  Google Scholar 

  • Catford JA, Jansson R (2014) Drowned, buried and carried away: effects of plant traits on the distribution of native and alien species in riparian ecosystems. New Phytol 204:19–36

    Article  PubMed  Google Scholar 

  • Causley CL, Fowler WM, Lamont BB, He T (2016) Fitness benefits of serotiny in fire-and drought-prone environments. Plant Ecol 217:773–779

    Article  Google Scholar 

  • Cavender-Bares J, Kitajima K, Bazzaz F (2004) Multiple trait associations in relation to habitat differentiation among 17 Floridian oak species. Ecol Monogr 74:635–662

    Article  Google Scholar 

  • Chiwocha SD, Dixon KW, Flematti GR, Ghisalberti EL, Merritt DJ, Nelson DC, Riseborough J-AM, Smith SM, Stevens JC (2009) Karrikins: a new family of plant growth regulators in smoke. Plant Sci 177:252–256

    Article  CAS  Google Scholar 

  • Chung SH, Rosa C, Scully ED, Peiffer M, Tooker JF, Hoover K, Luthe DS, Felton GW (2013) Herbivore exploits orally secreted bacteria to suppress plant defenses. Proc Natl Acad Sci USA 110:15728–15733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collins SL, Glenn SM (1988) Disturbance and community structure in North American prairies. In: During HJ, Werger MJA, Willems JH (eds) Diversity and pattern in plant communities. SPB Academic Publishing, The Hague, pp 131–143

    Google Scholar 

  • Connell JH (1971) On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. In: den Boer PJ, Gradwell GR (eds) Proceedings of the advanced study institute on ‘dynamics of numbers in populations’, Oosterbeek, the Netherlands, 7–18 September 1970. Centre for Agricultural Publication and Documentation, Wageningen, pp 298–312

    Google Scholar 

  • Coutand C, Pot G, Badel E (2014) Mechanosensing is involved in the regulation of autostress levels in tension wood. Trees 28:687–697

    Article  Google Scholar 

  • Crisp MD, Burrows GE, Cook LG, Thornhill AH, Bowman DM (2011) Flammable biomes dominated by eucalypts originated at the Cretaceous–Palaeogene boundary. Nat Commun 2:193

    Article  PubMed  Google Scholar 

  • Cubas J, Martín-Esquivel JL, Nogales M, Irl SD, Hernández-Hernández R, López-Darias M, Marrero-Gómez M, del Arco MJ, González-Mancebo JM (2017) Contrasting effects of invasive rabbits on endemic plants driving vegetation change in a subtropical alpine insular environment. Biol Invas 20:793–807

    Article  Google Scholar 

  • Dantas VDL, Pausas JG (2013) The lanky and the corky: fire-escape strategies in savanna woody species. J Ecol 101:1265–1272

    Article  Google Scholar 

  • Díaz S, Kattge J, Cornelissen JHC, Wright IJ, Lavorel S, Dray S, Reu B, Kleyer M, Wirth C, Colin Prentice I, Garnier E, Bönisch G, Westoby M, Poorter H, Reich PB, Moles AT, Dickie J, Gillison AN, Zanne AE, Chave J, Joseph Wright S, Sheremet’ev SN, Jactel H, Baraloto C, Cerabolini B, Pierce S, Shipley B, Kirkup D, Casanoves F, Joswig JS, Günther A, Falczuk V, Rüger N, Mahecha MD, Gorné LD (2016) The global spectrum of plant form and function. Nature 529:167–171

    Article  PubMed  Google Scholar 

  • Ellenberg H (1996) Vegetation Mitteleuropas mit den Alpen in ökologischer, dynamischer und historischer Sicht, 5th edn. Ulmer, Stuttgart, 1095 p

    Google Scholar 

  • Ellenberg H, Leuschner C (2010) Vegetation Mitteleuropas mit den Alpen in ökologischer, dynamischer und historischer Sicht, 6th edn. Eugen Ulmer, Stuttgart, 1334 p

    Google Scholar 

  • Engber EA, Varner JM III (2012) Patterns of flammability of the California oaks: the role of leaf traits. Can J For Res 42:1965–1975

    Article  Google Scholar 

  • Falster DS, Westoby M (2003) Plant height and evolutionary games. Trends Ecol Evol 18:337–343

    Article  Google Scholar 

  • Gardiner B, Schuck ART, Schelhaas M-J, Orazio C, Blennow K, Nicoll B (2013) Living with storm damage to forests. What science can tell us, 3. European Forest Institute Joensuu, 129 p

    Google Scholar 

  • Gardiner B, Berry P, Moulia B (2016) Wind impacts on plant growth, mechanics and damage. Plant Sci 245:94–118

    Article  CAS  PubMed  Google Scholar 

  • Glenz C, Schlaepfer R, Iorgulescu I, Kienast F (2006) Flooding tolerance of central European tree and shrub species. Forest Ecol Manag 235:1–13

    Article  Google Scholar 

  • Gratzer G, Rai P, Schieler K (2002) Structure and regeneration dynamics of Abies densa forests in Central Bhutan. Centralblatt für das gesamte Forstwesen 119:279–287

    Google Scholar 

  • Grime JP (1979) Plant strategies and vegetation processes. Wiley, Chichester, 222 p

    Google Scholar 

  • Gurnell A, Thompson K, Goodson J, Moggridge H (2008) Propagule deposition along river margins: linking hydrology and ecology. J Ecol 96:553–565

    Article  Google Scholar 

  • Hairston NG, Smith FE, Slobodkin LB (1960) Community structure, population control, and competition. Am Nat 94:421–425

    Article  Google Scholar 

  • Hamant O (2013) Widespread mechanosensing controls the structure behind the architecture in plants. Curr Opin Plant Biol 16:654–660

    Article  CAS  PubMed  Google Scholar 

  • He T, Pausas JG, Belcher CM, Schwilk DW, Lamont BB (2012) Fire-adapted traits of Pinus arose in the fiery cretaceous. New Phytol 194:751–759

    Article  PubMed  Google Scholar 

  • Heil M (2014) Herbivore-induced plant volatiles: targets, perception and unanswered questions. New Phytol 204:297–306

    Article  CAS  Google Scholar 

  • Herms DA, Mattson WJ (1992) The dilemma of plants: to grow or defend. Q Rev Biol 67:283–335

    Article  Google Scholar 

  • Hernández-Serrano A, Verdú M, González-Martínez SC, Pausas JG (2013) Fire structures pine serotiny at different scales. Am J Bot 100:2349–2356

    Article  PubMed  Google Scholar 

  • Hunter MD, Price PW (1992) Playing chutes and ladders: heterogeneity and the relative roles aof bottom-up and top-down forces in natural communities. Ecology 73:724–732

    Article  Google Scholar 

  • Janská A, Maršík P, Zelenková S, Ovesná J (2010) Cold stress and acclimation – what is important for metabolic adjustment? Plant Biol 12:395–405

    Article  PubMed  Google Scholar 

  • Janzen DH (1970) Herbivores and the number of tree species in tropical forests. Am Nat 104:501–528

    Article  Google Scholar 

  • Johansson ME, Nilsson C, Nilsson E (1996) Do rivers function as corridors for plant dispersal? J Veg Sci 7:593–598

    Article  Google Scholar 

  • Keeley JE, Pausas JG, Rundel PW, Bond WJ, Bradstock RA (2011) Fire as an evolutionary pressure sha** plant traits. Trends Plant Sci 16:406–411

    Article  CAS  PubMed  Google Scholar 

  • Kellenberger RT, Desurmont GA, Schlüter PM, Schiestl FP (2018) Trans-generational inheritance of herbivory-induced phenotypic changes in Brassica rapa. Sci Rep 8:3536

    Article  PubMed  PubMed Central  Google Scholar 

  • Kessler A (2015) The information landscape of plant constitutive and induced secondary metabolite production. Curr Opin Insect Sci 8:47–53

    Article  PubMed  Google Scholar 

  • Kotak S, Larkindale J, Lee U, von Koskull-Doring P, Vierling E, Scharf KD (2007) Complexity of the heat stress response in plants. Curr Opin Plant Biol 10:310–316

    Article  CAS  PubMed  Google Scholar 

  • Kreyling J, Jentsch A, Beierkuhnlein C (2011) Stochastic trajectories of succession initiated by extreme climatic events. Ecol Lett 14:758–764

    Article  CAS  PubMed  Google Scholar 

  • Kreyling J, Thiel D, Nagy L, Jentsch A, Huber G, Konnert M, Beierkuhnlein C (2012a) Late frost sensitivity of juvenile Fagus sylvatica L. differs between southern Germany and Bulgaria and depends on preceding air temperature. Eur J Forest Res 131:717–725

    Article  Google Scholar 

  • Kreyling J, Thiel D, Simmnacher K, Willner E, Jentsch A, Beierkuhnlein C (2012b) Geographic origin and past climatic experience influence the response to late spring frost in four common grass species in Central Europe. Ecography 35:268–275

    Article  Google Scholar 

  • Kreyling J, Wiesenberg GLB, Thiel D, Wohlfart C, Huber G, Walter J, Jentsch A, Konnert M, Beierkuhnlein C (2012c) Cold hardiness of Pinus nigra Arnold as influenced by geographic origin, warming, and extreme summer drought. Environ Exp Bot 78:99–108

    Article  Google Scholar 

  • Lachenbruch B, McCulloh KA (2014) Traits, properties, and performance: how woody plants combine hydraulic and mechanical functions in a cell, tissue, or whole plant. New Phytol 204:747–764

    Article  PubMed  Google Scholar 

  • Lambers H, Chapin FS III, Pons TL (2008) Plant physiological ecology, 2nd edn. Springer, New York, 604 p

    Book  Google Scholar 

  • Lamont BB, Pausas JG, He T, Witkowski ETF, Hanley ME (2020) Fire as a selective agent for both serotiny and nonserotiny over space and time. Crit Rev Plant Sci 39:140–172

    Article  CAS  Google Scholar 

  • Lawes MJ, Adie H, Russell-Smith J, Murphy B, Midgley JJ (2011) How do small savanna trees avoid stem mortality by fire? The roles of stem diameter, height and bark thickness. Ecosphere 2:1–13

    Article  Google Scholar 

  • Long RL, Gorecki MJ, Renton M, Scott JK, Colville L, Goggin DE, Commander LE, Westcott DA, Cherry H, Finch-Savage WE (2015) The ecophysiology of seed persistence: a mechanistic view of the journey to germination or demise. Biol Rev 90:31–59

    Article  PubMed  Google Scholar 

  • Lopez D, Eloy C, Michelin S, de Langre E (2014) Drag reduction, from bending to pruning. Eur J Entomol 108:48002

    Google Scholar 

  • Luna E, Bruce TJ, Roberts MR, Flors V, Ton J (2012) Next-generation systemic acquired resistance. Plant Physiol 158:844–853

    Article  CAS  PubMed  Google Scholar 

  • Main AR (1982) Rare species: precious or dross? In: Groves RH, Ride WDL (eds) Species at risk: research in Australia. Australian Academy of Science, Canberra, pp 163–174

    Chapter  Google Scholar 

  • Menge BA, Sutherland JP (1976) Species-diversity gradients – synthesis of roles of predation, competition, and temporal heterogeneity. Am Nat 110:351–369

    Article  Google Scholar 

  • Naeem S, Li SB (1997) Biodiversity enhances ecosystem reliability. Nature 390:507–509

    Article  CAS  Google Scholar 

  • Nelson DC, Flematti GR, Ghisalberti EL, Dixon KW, Smith SM (2012) Regulation of seed germination and seedling growth by chemical signals from burning vegetation. Annu Rev Plant Biol 63:107–130

    Article  CAS  PubMed  Google Scholar 

  • Nicoll BC, Ray D (1996) Adaptive growth of tree root systems in response to wind action and site conditions. Tree Physiol 16:891–898

    Article  PubMed  Google Scholar 

  • Nilsson C, Brown RL, Jansson R, Merritt DM (2010) The role of hydrochory in structuring riparian and wetland vegetation. Biol Rev 85:837–858

    PubMed  Google Scholar 

  • Parde VD, Sharma HC, Kachole MS (2012) Protease inhibitors in wild relatives of pigeonpea against the cotton bollworm/legume pod borer, Helicoverpa armigera. Am J Plant Sci 3:627–635

    Article  CAS  Google Scholar 

  • Pausas JG (2015) Evolutionary fire ecology: lessons learned from pines. Trends Plant Sci 20:318–324

    Article  CAS  PubMed  Google Scholar 

  • Pausas JC, Keeley JE (2017) Epicormic resprouting in fire-prone ecosystems. Trends Plant Sci 22:1008–1015

    Article  CAS  PubMed  Google Scholar 

  • Pausas JG, Schwilk D (2012) Fire and plant evolution. New Phytol 193:301–303

    Article  PubMed  Google Scholar 

  • Pausas JG, Bradstock RA, Keith DA, Keeley JE, Network GF (2004) Plant functional traits in relation to fire in crown-fire ecosystems. Ecology 85:1085–1100

    Article  Google Scholar 

  • Petermann JS, Fergus AJF, Turnbull LA, Schmid B (2008) Janzen-Connell effects are widespread and strong enough to maintain diversity in grasslands. Ecology 89:2399–2406

    Article  PubMed  Google Scholar 

  • Pilson D (2000) The evolution of plant response to herbivory: simultaneously considering resistance and tolerance in Brassica rapa. Evol Ecol 14:457

    Article  Google Scholar 

  • Reich PB (2014) The world-wide ‘fast–slow’ plant economics spectrum: a traits manifesto. J Ecol 102:275–301

    Article  Google Scholar 

  • Reich P, Wright I, Cavender-Bares J, Craine J, Oleksyn J, Westoby M, Walters M (2003) The evolution of plant functional variation: traits, spectra, and strategies. Int J Plant Sci 164:S143–S164

    Article  Google Scholar 

  • Riffell JA, Lei H, Abrell L, Hildebrand JG (2013) Neural basis of a pollinator’s buffet: olfactory specialization and learning in Manduca sexta. Science 339:200–204

    Article  CAS  PubMed  Google Scholar 

  • Scala A, Allmann S, Mirabella R, Haring MA, Schuurink RC (2013) Green leaf volatiles: a plant’s multifunctional weapon against herbivores and pathogens. Int J Mol Sci 14:17781–17811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schulze ED, Beck E, Müller-Hohenstein K (2002) Pflanzenökologie. Spektrum Akademischer Verlag, Heidelberg, 846 p

    Google Scholar 

  • Schuman MC, Barthel K, Baldwin IT (2012) Herbivory-induced volatiles function as defenses increasing fitness of the native plant Nicotiana attenuata in nature. eLIFE 1:e00007

    Article  PubMed  PubMed Central  Google Scholar 

  • Schwilk DW (2003) Flammability is a niche construction trait: canopy architecture affects fire intensity. Am Nat 162:725–733

    Article  PubMed  Google Scholar 

  • Schwilk DW, Ackerly DD (2001) Flammability and serotiny as strategies: correlated evolution in pines. Oikos 94:326–336

    Article  Google Scholar 

  • Talluto MV, Benkman CW (2013) Landscape-scale eco-evolutionary dynamics: selection by seed predators and fire determine a major reproductive strategy. Ecology 94:1307–1316

    Article  PubMed  Google Scholar 

  • Telewski FW (1995) Wind-induced physiological and developmental responses in trees. In: Coutts MP, Grace J (eds) Wind and trees. Cambridge University Press, Cambridge, pp 237–263

    Chapter  Google Scholar 

  • Telewski FW (2012) Is windswept tree growth negative thigmotropism? Plant Sci 184:20–28

    Article  CAS  PubMed  Google Scholar 

  • Thompson K, Bakker JP, Bekker RM (1997) The soil seed banks of North West Europe: methodology, density and longevity. Cambridge University Press, Cambridge, 276 p

    Google Scholar 

  • Tng D, Williamson G, Jordan G, Bowman D (2012) Giant eucalypts – globally unique fire-adapted rain-forest trees? New Phytol 196:1001–1014

    Article  CAS  PubMed  Google Scholar 

  • Turkington R (2009) Top-down and bottom-up forces in mammalian herbivore – vegetation systems: an essay review. Botany-Botanique 87:723–739

    Article  Google Scholar 

  • Vesk PA, Westoby M (2004) Sprouting ability across diverse disturbances and vegetation types worldwide. J Ecol 92:310–320

    Google Scholar 

  • Walker B (1995) Conserving biological diversity through ecosystem resilience. Cons Biol 9:747–752

    Article  Google Scholar 

  • Walker B, Kinzig A, Langridge J (1999) Plant attribute diversity, resilience, and ecosystem function: the nature and significance of dominant and minor species. Ecosystems 2:95–113

    Article  Google Scholar 

  • Walter J, Nagy L, Hein R, Rascher U, Beierkuhnlein C, Willner E, Jentsch A (2011) Do plants remember drought? Hints towards a drought-memory in grasses. Environ Exp Bot 71:34–40

    Article  Google Scholar 

  • Walter J, Jentsch A, Beierkuhnlein C, Kreyling J (2013) Ecological stress memory and cross stress tolerance in plants in the face of climate extremes. Environ Exp Bot 94:3–8

    Article  Google Scholar 

  • White PS, Jentsch A (2001) The search for generality in studies of disturbance and ecosystem dynamics. Prog Bot 62:399–449

    Article  Google Scholar 

  • Züst T, Heichinger C, Grossniklaus U, Harrington R, Kliebenstein DJ, Turnbull LA (2012) Natural enemies drive geographic variation in plant defenses. Science 338:116–119

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Georg Gratzer or Georg Gratzer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gratzer, G., Jentsch, A. (2022). Adaptation to Disturbance. In: Wohlgemuth, T., Jentsch, A., Seidl, R. (eds) Disturbance Ecology. Landscape Series, vol 32. Springer, Cham. https://doi.org/10.1007/978-3-030-98756-5_6

Download citation

Publish with us

Policies and ethics

Navigation