Modular ADMM-Based Strategies for Optimized Compression, Restoration, and Distributed Representations of Visual Data

  • Reference work entry
  • First Online:
Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging

Abstract

Iterative techniques are a well-established tool in modern imaging sciences, allowing to address complex optimization problems via sequences of simpler computational processes. This approach has been significantly expanded in recent years by iterative designs where explicit solutions of optimization subproblems were replaced by black-box applications of ready-to-use modules for denoising or compression. These modular designs are conceptually simple, yet often achieve impressive results. In this chapter, we overview the concept of modular optimization for imaging problems by focusing on structures induced by the alternating direction method of multipliers (ADMM) technique and their applications to intricate restoration and compression problems. We start by emphasizing general guidelines independent of the module type used and only then derive ADMM-based structures relying on denoising and compression methods. The wide perspective on the topic should motivate extensions of the types of problems addressed and the kinds of black boxes utilized by the modular optimization. As an example for a promising research avenue, we present our recent framework employing black-box modules for distributed representations of visual data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 899.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Afonso, M.V., Bioucas-Dias, J.M., Figueiredo, M.A.: Fast image recovery using variable splitting and constrained optimization. IEEE Trans. Image Process. 19(9), 2345–2356 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Ahmad, R., Bouman, C.A., Buzzard, G.T., Chan, S., Reehorst, E.T., Schniter, P.: Plug and play methods for magnetic resonance imaging. ar**v preprint ar**v:1903.08616 (2019)

    Google Scholar 

  • Bahat, Y., Efrat, N., Irani, M.: Non-uniform blind deblurring by reblurring. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3286–3294 (2017)

    Google Scholar 

  • Ballé, J., Laparra, V., Simoncelli, E.P.: End-to-end optimized image compression. In: Proceedings of ICLR (2017)

    Google Scholar 

  • F. Bellard, BPG 0.9.6. [Online]. Available: http://bellard.org/bpg/

  • Beygi, S., Jalali, S., Maleki, A., Mitra, U.: Compressed sensing of compressible signals. In: IEEE International Symposium on Information Theory (ISIT), pp. 2158–2162 (2017a)

    Google Scholar 

  • Beygi, S., Jalali, S., Maleki, A., Mitra, U.: An efficient algorithm for compression-based compressed sensing. ar**v preprint ar**v:1704.01992 (2017b)

    Google Scholar 

  • Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011)

    Article  MATH  Google Scholar 

  • Brifman, A., Romano, Y., Elad, M.: Turning a denoiser into a super-resolver using plug and play priors. In: 2016 IEEE International Conference on Image Processing (ICIP), pp. 1404–1408. IEEE (2016)

    Google Scholar 

  • Brifman, A., Romano, Y., Elad, M.: Unified single-image and video super-resolution via denoising algorithms. IEEE Trans. Image Process. 28(12), 6063–6076 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Bruckstein, A.M., Holt, R.J., Netravali, A.N.: Holographic representations of images. IEEE Trans. Image Process. 7(11), 1583–1597 (1998)

    Article  Google Scholar 

  • Bruckstein, A.M., Holt, R.J., Netravali, A.N.: On holographic transform compression of images. Int. J. Imag. Syst. Technol. 11(5), 292–314 (2000)

    Article  Google Scholar 

  • Bruckstein, A.M., Ezerman, M.F., Fahreza, A.A., Ling, S.: Holographic sensing. ar**v preprint ar**v:1807.10899 (2018)

    Google Scholar 

  • Burger, M., Dirks, H., Schonlieb, C.-B.: A variational model for joint motion estimation and image reconstruction. SIAM J. Imag. Sci. 11(1), 94–128 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Buzzard, G.T., Chan, S.H., Sreehari, S., Bouman, C.A.: Plug-and-play unplugged: optimization-free reconstruction using consensus equilibrium. SIAM J. Imag. Sci. 11(3), 2001–2020 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Chan, S.H.: Performance analysis of plug-and-play ADMM: a graph signal processing perspective. IEEE Trans. Comput. Imag. 5(2), 274–286 (2019)

    Article  MathSciNet  Google Scholar 

  • Chan, S.H., Wang, X., Elgendy, O.A.: Plug-and-play ADMM for image restoration: fixed-point convergence and applications. IEEE Trans. Comput. Imag. 3(1), 84–98 (2017)

    Article  MathSciNet  Google Scholar 

  • Chatterjee, P., Milanfar, P.: Is denoising dead? IEEE Trans. Image Process. 19(4), 895–911 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Chou, P.A., Lookabaugh, T., Gray, R.M.: Optimal pruning with applications to tree-structured source coding and modeling. IEEE Trans. Inf. Theory 35(2), 299–315 (1989)

    Article  MathSciNet  Google Scholar 

  • Corona, V., Aviles-Rivero, A.I., Debroux, N., Graves, M., Le Guyader, C., Schönlieb, C.-B., Williams, G.: Multi-tasking to correct: motion-compensated mri via joint reconstruction and registration. In: International Conference on Scale Space and Variational Methods in Computer Vision, pp. 263–274. Springer (2019a)

    Google Scholar 

  • Corona, V., Benning, M., Ehrhardt, M.J., Gladden, L.F., Mair, R., Reci, A., Sederman, A.J., Reichelt, S., Schönlieb, C.-B.: Enhancing joint reconstruction and segmentation with non-convex bregman iteration. Inverse Probl. 35(5), 055001 (2019b)

    Article  MathSciNet  MATH  Google Scholar 

  • Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process. 16(8), 2080–2095 (2007)

    Article  MathSciNet  Google Scholar 

  • Dar, Y., Bruckstein, A.M.: Benefiting from duplicates of compressed data: shift-based holographic compression of images. J. Math. Imag. Vis. 1–14 63, 380–393 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  • Dar, Y., Bruckstein, A.M., Elad, M.: Image restoration via successive compression. In: Picture Coding Symposium (PCS), pp. 1–5 (2016a)

    Google Scholar 

  • Dar, Y., Bruckstein, A.M., Elad, M., Giryes, R.: Postprocessing of compressed images via sequential denoising. IEEE Trans. Image Process. 25(7), 3044–3058 (2016b)

    Article  MathSciNet  MATH  Google Scholar 

  • Dar, Y., Elad, M., Bruckstein, A.M.: Compression for multiple reconstructions. In: IEEE International Conference on Image Processing (ICIP), pp. 440–444 (2018a)

    Google Scholar 

  • Dar, Y., Elad, M., Bruckstein, A.M.: Optimized pre-compensating compression. IEEE Trans. Image Process. 27(10), 4798–4809 (2018b)

    Article  MathSciNet  MATH  Google Scholar 

  • Dar, Y., Elad, M., Bruckstein, A.M.: Restoration by compression. IEEE Trans. Sig. Process. 66(22), 5833–5847 (2018c)

    Article  MathSciNet  MATH  Google Scholar 

  • Dar, Y., Elad, M., Bruckstein, A.M.: System-aware compression. In: IEEE International Symposium on Information Theory (ISIT), pp. 2226–2230 (2018d)

    Google Scholar 

  • Hong, T., Romano, Y., Elad, M.: Acceleration of red via vector extrapolation. J. Vis. Commun. Image Represent. 63, 102575 (2019)

    Article  Google Scholar 

  • Kamilov, U.S., Mansour, H., Wohlberg, B.: A plug-and-play priors approach for solving nonlinear imaging inverse problems. IEEE Sig. Process. Lett. 24(12), 1872–1876 (2017)

    Article  Google Scholar 

  • Kwan, C., Choi, J., Chan, S., Zhou, J., Budavari, B.: A super-resolution and fusion approach to enhancing hyperspectral images. Remote Sens. 10(9), 1416 (2018)

    Article  Google Scholar 

  • Lai, W.-S., Huang, J.-B., Hu, Z., Ahuja, N., Yang, M.-H.: A comparative study for single image blind deblurring. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1701–1709 (2016)

    Google Scholar 

  • Laparra, V., Berardino, A., Ballé, J., Simoncelli, E.P.: Perceptually optimized image rendering. J. Opt. Soc. Am. A 34, 1511 (2017)

    Article  Google Scholar 

  • Liu, J., Moulin, P.: Complexity-regularized image denoising. IEEE Trans. Image Process. 10(6), 841–851 (2001)

    Article  MATH  Google Scholar 

  • Moulin, P., Liu, J.: Statistical imaging and complexity regularization. IEEE Trans. Inf. Theory 46(5), 1762–1777 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Natarajan, B.K.: Filtering random noise from deterministic signals via data compression. IEEE Trans. Sig. Process. 43(11), 2595–2605 (1995)

    Article  Google Scholar 

  • Ono, S.: Primal-dual plug-and-play image restoration. IEEE Sig. Process. Lett. 24(8), 1108–1112 (2017)

    Article  Google Scholar 

  • Ortega, A., Ramchandran, K.: Rate-distortion methods for image and video compression. IEEE Sig. Process. Mag. 15(6), 23–50 (1998)

    Article  Google Scholar 

  • Rissanen, J.: MDL denoising. IEEE Trans. Inf. Theory 46(7), 2537–2543 (2000)

    Article  MATH  Google Scholar 

  • Romano, Y., Elad, M., Milanfar, P.: The little engine that could: regularization by denoising (RED). SIAM J. Imag. Sci. 10(4), 1804–1844 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Rond, A., Giryes, R., Elad, M.: Poisson inverse problems by the plug-and-play scheme. J. Vis. Commun. Image Represent. 41, 96–108 (2016)

    Article  Google Scholar 

  • Rott Shaham, T., Michaeli, T.: Deformation aware image compression. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2453–2462 (2018)

    Google Scholar 

  • Shoham, Y., Gersho, A.: Efficient bit allocation for an arbitrary set of quantizers. IEEE Trans. Acoust. Speech Sig. Process. 36(9), 1445–1453 (1988)

    Article  MATH  Google Scholar 

  • Shukla, R., Dragotti, P.L., Do, M.N., Vetterli, M.: Rate-distortion optimized tree-structured compression algorithms for piecewise polynomial images. IEEE Trans. Image Process. 14(3), 343–359 (2005)

    Article  MathSciNet  Google Scholar 

  • Sreehari, S., Venkatakrishnan, S., Wohlberg, B., Buzzard, G.T., Drummy, L.F., Simmons, J.P., Bouman, C.A.: Plug-and-play priors for bright field electron tomography and sparse interpolation. IEEE Trans. Comput. Imag. 2(4), 408–423 (2016)

    MathSciNet  Google Scholar 

  • Sullivan, G.J., Wiegand, T.: Rate-distortion optimization for video compression. IEEE Sig. Process. Mag. 15(6), 74–90 (1998)

    Article  Google Scholar 

  • Sullivan, G.J., Ohm, J., Han, W.-J., Wiegand, T.: Overview of the high efficiency video coding (HEVC) standard. IEEE Trans. Circuits Syst. Video Technol. 22(12), 1649–1668 (2012)

    Article  Google Scholar 

  • Sun, Y., Wohlberg, B., Kamilov, U.S.: An online plug-and-play algorithm for regularized image reconstruction. IEEE Trans. Comput. Imag.5, 395–408 (2019a)

    Article  MathSciNet  Google Scholar 

  • Sun, Y., Xu, S., Li, Y., Tian, L., Wohlberg, B., Kamilov, U.S.: Regularized fourier ptychography using an online plug-and-play algorithm. In: ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 7665–7669. IEEE (2019b)

    Google Scholar 

  • Tirer, T., Giryes, R.: Image restoration by iterative denoising and backward projections. IEEE Trans. Image Process. 28(3), 1220–1234 (2018a)

    Article  MathSciNet  MATH  Google Scholar 

  • Tirer, T., Giryes, R.: An iterative denoising and backwards projections method and its advantages for blind deblurring. In: 2018 25th IEEE International Conference on Image Processing (ICIP), pp. 973–977. IEEE (2018b)

    Google Scholar 

  • Tirer, T., Giryes, R.: Back-projection based fidelity term for ill-posed linear inverse problems. ar**v preprint ar**v:1906.06794 (2019)

    Google Scholar 

  • Venkatakrishnan, S.V., Bouman, C.A., Wohlberg, B.: Plug-and-play priors for model based reconstruction. In: IEEE GlobalSIP (2013)

    Google Scholar 

  • Yazaki, Y., Tanaka, Y., Chan, S.H.: Interpolation and denoising of graph signals using plug-and-play ADMM. In: ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5431–5435. IEEE (2019)

    Google Scholar 

  • Zoran, D., Weiss, Y.: From learning models of natural image patches to whole image restoration. In: IEEE International Conference on Computer Vision (ICCV), pp. 479–486 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yehuda Dar or Alfred M. Bruckstein .

Editor information

Editors and Affiliations

Appendix: Operational Rate-Distortion Optimizations in Block-Based Architectures

Appendix: Operational Rate-Distortion Optimizations in Block-Based Architectures

The computational challenge of operational rate-distortion optimizations (see section “Preliminaries: Lossy Compression via Operational Rate-Distortion Optimization”) is often addressed via the squared-error metric

$$\displaystyle \begin{aligned} D\left( \mathbf{x}, \mathbf{v} \right) = \left\|{ \mathbf{x} - \mathbf{v} } \right\|{}_2^2,\end{aligned} $$
(47)

leading to practical forms of the Lagrangian rate-distortion optimization (25). These useful structures also process the signal x based on its segmentation into a set of nonoverlap** blocks \( \left \lbrace {\mathbf {x}}_i \right \rbrace _{i\in \mathcal {I}}\); here, each of them is a column vector of Nb samples, and \( \mathcal {I} \) is the set of indices corresponding to the nonoverlap** blocks of the signal. Correspondingly, the decompressed signal v is decomposed into a set of nonoverlap** blocks \( \left \lbrace {\mathbf {v}}_i \right \rbrace _{i\in \mathcal {I}}\). This lets us casting (47) into

$$\displaystyle \begin{aligned} D\left( \mathbf{x}, \mathbf{v} \right) = \sum_{ i\in\mathcal{I} } \left\|{ {\mathbf{x}}_i - {\mathbf{v}}_i } \right\|{}_2^2 , \end{aligned} $$
(48)

exhibiting that, for squared-error measures, the total distortion can be computed as the sum of distortions associated with its nonoverlap** blocks. While this property is satisfied for any segmentation of the signal into nonoverlap** blocks, we will exemplify it here for blocks of equal sizes that allow using one block-level compression procedure for all the blocks.

Mirroring the definitions described in section “Preliminaries: Lossy Compression via Operational Rate-Distortion Optimization” for full-signal compression architectures, the block-level process corresponds to a function \( C_b: \mathbb {R}^{N_b} \rightarrow \mathcal {B}_b \), map** the Nb-dimensional signal-block domain to a discrete set \( \mathcal {B}_b \) of binary compressed representations of blocks. The associated block decompression process is denoted by the function \( F_b: \mathcal {B}_b \rightarrow \mathcal {S}_b \), map** the binary compressed representations in \( \mathcal {B}_b \) to their decompressed signal blocks from the discrete set \( \mathcal {S}_b \subset \mathbb {R}^{N_b} \). The bit-cost evaluation function \( R_b\left ( {\mathbf {v}}_i \right ) \) is defined to quantify the number of bits needed for the compressed representation matching the decompressed signal block \( {\mathbf {v}}_i \in \mathbb {R}^{N_b} \). Then, the compression of the nonoverlap** signal blocks \( \left \lbrace {\mathbf {x}}_i \right \rbrace _{i\in \mathcal {I}}\) producing the decompressed blocks \( \left \lbrace {\mathbf {v}}_i \right \rbrace _{i\in \mathcal {I}}\) requires a total bit budget satisfying

$$\displaystyle \begin{aligned} R\left( \mathbf{v} \right) = \sum_{ i\in\mathcal{I} } R_b\left( {\mathbf{v}}_i \right). \end{aligned} $$
(49)

Plugging the block-based compression design into the Lagrangian form (25) gives

(50)

that reduces to a set of block-level rate-distortion Lagrangian optimizations, i.e.,

(51)

Note that the block-level optimizations in (51) are independent and refer to the same Lagrangian multiplier λ. Commonly, compression designs are based on processing of low-dimensional blocks, allowing to practically address the block-level optimizations in (51). For example, one can evaluate the Lagrangian cost for all the elements in \( \mathcal {S}_b \) (since this set is sufficiently small).

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Dar, Y., Bruckstein, A.M. (2023). Modular ADMM-Based Strategies for Optimized Compression, Restoration, and Distributed Representations of Visual Data. In: Chen, K., Schönlieb, CB., Tai, XC., Younes, L. (eds) Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging. Springer, Cham. https://doi.org/10.1007/978-3-030-98661-2_71

Download citation

Publish with us

Policies and ethics

Navigation